首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The transforming Epstein-Barr virus-encoded latent membrane protein 1 (LMP1) activates signalling on the NF-κB axis through two distinct domains in its cytoplasmic C terminus, namely, CTAR1 (amino acids [aa] 187 to 231) and CTAR2 (aa 351 to 386). The ability of CTAR1 to activate NF-κB appears to be attributable to the direct interaction of tumor necrosis factor (TNF) receptor-associated factor 2 (TRAF2), while recent work indicates that CTAR2-induced NF-κB is mediated through its association with TNF receptor-associated death domain (TRADD). LMP1 expression also results in activation of the c-Jun N-terminal kinase (JNK) (also known as stress-activated protein kinase) cascade, an effect which is mediated exclusively through CTAR2 and can be dissociated from NF-κB induction. The organization and signalling components involved in LMP1-induced JNK activation are not known. In this study we have dissected the extreme C terminus of LMP1 and have identified the last 8 aa of the protein (aa 378 to 386) as being important for JNK signalling. Using a series of fine mutants in which single amino acids between codons 379 and 386 were changed to glycine, we have found that mutations of Pro379, Glu381, Ser383, or Tyr384 diminish the ability of LMP1 CTAR2 to engage JNK signalling. Interestingly, this region was also found to be essential for CTAR2-mediated NF-κB induction and coincides with the LMP1 amino acid sequences shown to bind TRADD. Furthermore, we have found that LMP1-mediated JNK activation is synergistically augmented by low levels of TRADD expression, suggesting that this adapter protein is critical for LMP1 signalling. TRAF2 is known to associate with TRADD, and expression of a dominant-negative N-terminal deletion TRAF2 mutant was found to partially inhibit LMP1-induced JNK activation in 293 cells. In addition, the TRAF2-interacting protein A20 blocked both LMP1-induced JNK and NF-κB activation, further implicating TRAF2 in these phenomena. While expression of a kinase-inactive mutated NF-κB-inducing kinase (NIK), a mitogen-activated protein kinase kinase kinase which also associates with TRAF2, impaired LMP1 signalling on the NF-κB axis, it did not inhibit LMP1-induced JNK activation, suggesting that these two pathways may bifurcate at the level of TRAF2. These data further define a role for TRADD and TRAF2 in JNK activation and confirm that LMP1 utilizes signalling mechanisms used by the TNF receptor/CD40 family to elicit its pleiotropic activities.  相似文献   

2.
CD40L and statins exhibit pro-inflammatory and anti-inflammatory effects, respectively. They are both pleiotropic and can regulate extracellular matrix (ECM) degeneration in an atherosclerotic plaque. Statins can decrease both the CD40 expression and the resulting inflammation. However, the effects of CD40L and stains on atherosclerotic plaque ECM production and the underlying mechanisms are not well established. Moreover, prolyl-4-hydroxylase α1 (P4Hα1) is involved in collagen synthesis but its correlations with CD40L and statins are unknown. In the present study, CD40L suppressed P4Hα1 expression in human aortic smooth muscle cells (HASMCs) in a dose- and time-dependent manner, with insignificant changes in MMP2 expression and negative enzymatic activity of MMP9. CD40L increased TRAF6 expression, JNK phosphorylation, NF-κB nuclear translocation as well as DNA binding. Furthermore, silencing TRAF6, JNK or NF-κB genes abolished CD40L-induced suppression of P4Hα1. Lower NF-κB nuclear import rates were observed when JNK or TRAF6 silenced HASMCs were stimulated with CD40L compared to HASMCs with active JNK or TRAF6. Together, these results indicate that CD40L suppresses P4Hα1 expression in HASMCs by activating the TRAF6-JNK- NF-κB pathway. We also found that rosuvastatin inhibits CD40L-induced activation of the TRAF6-JNK- NF-κB pathway, thereby significantly rescuing the CD40L stimulated P4Hα1 inhibition. The results from this study will help find potential targets for stabilizing vulnerable atherosclerotic plaques.  相似文献   

3.
4.
The Epstein-Barr virus (EBV) transforming protein LMP1 appears to be a constitutively activated tumor necrosis factor receptor (TNFR) on the basis of an intrinsic ability to aggregate in the plasma membrane and an association of its cytoplasmic carboxyl terminus (CT) with TNFR-associated factors (TRAFs). We now show that in EBV-transformed B lymphocytes most of TRAF1 or TRAF3 and 5% of TRAF2 are associated with LMP1 and that most of LMP1 is associated with TRAF1 or TRAF3. TRAF1, TRAF2, and TRAF3 bind to a single site in the LMP1 CT corresponding to amino acids (aa) 199 to 214, within a domain which is important for B-lymphocyte growth transformation (aa 187 to 231). Further deletional and alanine mutagenesis analyses and comparison with TRAF binding sequences in CD40, in CD30, and in the LMP1 of other lymphycryptoviruses provide the first evidence that PXQXT/S is a core TRAF binding motif. The negative effects of point mutations in the LMP1(1-231) core TRAF binding motif on TRAF binding and NF-kappaB activation genetically link the TRAFs to LMP1(1-231)-mediated NF-kappaB activation. NF-kappaB activation by LMP1(1-231) is likely to be mediated by TRAF1/TRAF2 heteroaggregates since TRAF1 is unique among the TRAFs in coactivating NF-kappaB with LMP1(1-231), a TRAF2 dominant-negative mutant can block LMP1(1-231)-mediated NF-kappaB activation as well as TRAF1 coactivation, and 30% of TRAF2 is associated with TRAF1 in EBV-transformed B cells. TRAF3 is a negative modulator of LMP1(1-231)-mediated NF-kappaB activation. Surprisingly, TRAF1, -2, or -3 does not interact with the terminal LMP1 CT aa 333 to 386 which can independently mediate NF-kappaB activation. The constitutive association of TRAFs with LMP1 through the aa 187 to 231 domain which is important in NF-kappaB activation and primary B-lymphocyte growth transformation implicates TRAF aggregation in LMP1 signaling.  相似文献   

5.
6.
DNA damage-induced NF-κB activation plays a critical role in regulating cellular response to genotoxic stress. However, the molecular mechanisms controlling the magnitude and duration of this genotoxic NF-κB signaling cascade are poorly understood. We recently demonstrated that genotoxic NF-κB activation is regulated by reversible ubiquitination of several essential mediators involved in this signaling pathway. Here we show that TRAF family member-associated NF-κB activator (TANK) negatively regulates NF-κB activation by DNA damage via inhibiting ubiquitination of TRAF6. Despite the lack of a deubiquitination enzyme domain, TANK has been shown to negatively regulate the ubiquitination of TRAF proteins. We found TANK formed a complex with MCPIP1 (also known as ZC3H12A) and a deubiquitinase, USP10, which was essential for the USP10-dependent deubiquitination of TRAF6 and the resolution of genotoxic NF-κB activation upon DNA damage. Clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9-mediated deletion of TANK in human cells significantly enhanced NF-κB activation by genotoxic treatment, resulting in enhanced cell survival and increased inflammatory cytokine production. Furthermore, we found that the TANK-MCPIP1-USP10 complex also decreased TRAF6 ubiquitination in cells treated with IL-1β or LPS. In accordance, depletion of USP10 enhanced NF-κB activation induced by IL-1β or LPS. Collectively, our data demonstrate that TANK serves as an important negative regulator of NF-κB signaling cascades induced by genotoxic stress and IL-1R/Toll-like receptor stimulation in a manner dependent on MCPIP1/USP10-mediated TRAF6 deubiquitination.  相似文献   

7.
Neuronal apoptosis has an important role in early brain injury (EBI) following subarachnoid hemorrhage (SAH). TRAF3 was reported as a promising therapeutic target for stroke management, which covered several neuronal apoptosis signaling cascades. Hence, the present study is aimed to determine whether downregulation of TRAF3 could be neuroprotective in SAH-induced EBI. An in vivo SAH model in mice was established by endovascular perforation. Meanwhile, primary cultured cortical neurons of mice treated with oxygen hemoglobin were applied to mimic SAH in vitro. Our results demonstrated that TRAF3 protein expression increased and expressed in neurons both in vivo and in vitro SAH models. TRAF3 siRNA reversed neuronal loss and improved neurological deficits in SAH mice, and reduced cell death in SAH primary neurons. Mechanistically, we found that TRAF3 directly binds to TAK1 and potentiates phosphorylation and activation of TAK1, which further enhances the activation of NF-κB and MAPKs pathways to induce neuronal apoptosis. Importantly, TRAF3 expression was elevated following SAH in human brain tissue and was mainly expressed in neurons. Taken together, our study demonstrates that TRAF3 is an upstream regulator of MAPKs and NF-κB pathways in SAH-induced EBI via its interaction with and activation of TAK1. Furthermore, the TRAF3 may serve as a novel therapeutic target in SAH-induced EBI.Subject terms: Apoptosis, Neuro-vascular interactions  相似文献   

8.
9.
ECSIT (evolutionarily conserved signaling intermediate in Toll pathways) is known as a multifunctional regulator in different signals, including Toll-like receptors (TLRs), TGF-β, and BMP. Here, we report a new regulatory role of ECSIT in TLR4-mediated signal. By LPS stimulation, ECSIT formed a high molecular endogenous complex including TAK1 and TRAF6, in which ECSIT interacted with each protein and regulated TAK1 activity, leading to the activation of NF-κB. ECSIT-knockdown THP-1 (ECSITKD THP-1) cells exhibited severe impairments in NF-κB activity, cytokine production, and NF-κB-dependent gene expression, whereas those were dramatically restored by reintroduction of wild type (WT) ECSIT gene. Interestingly, ECSIT mutants, which lack a specific interacting domain for either TAK1 or TRAF6, could not restore these activities. Moreover, no significant changes in both NF-κB activity and cytokine production induced by TLR4 could be seen in TAK1KD or TRAF6KD THP-1 cells transduced by WT ECSIT, strongly suggesting the essential requirement of TAK1-ECSIT-TRAF6 complex in TLR4 signaling. Taken together, our data demonstrate that the ECSIT complex, including TAK1 and TRAF6, plays a pivotal role in TLR4-mediated signals to activate NF-κB.  相似文献   

10.
Although TRAIL is considered a potential anticancer agent, it enhances tumor progression by activating NF-κB in apoptosis-resistant cells. Cellular FLICE-like inhibitory protein (cFLIP) overexpression and caspase-8 activation have been implicated in TRAIL-induced NF-κB activation; however, the underlying mechanisms are unknown. Here, we report that caspase-8-dependent cleavage of RIP1 in the kinase domain (KD) and intermediate domain (ID) determines the activation state of the NF-κB pathway in response to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) treatment. In apoptosis-sensitive cells, caspase-8 cleaves RIP1 in the KD and ID immediately after the recruitment of RIP1 to the receptor complex, impairing IκB kinase (IKK) recruitment and NF-κB activation. In apoptosis-resistant cells, cFLIP restricts caspase-8 activity, resulting in limited RIP1 cleavage and generation of a KD-cleaved fragment capable of activating NF-κB but not apoptosis. Notably, depletion of the cytoplasmic pool of TRAF2 and cIAP1 in lymphomas by CD40 ligation inhibits basal RIP1 ubiquitination but does not prompt cell death, due to CD40L-induced cFLIP expression and limited RIP1 cleavage. Inhibition of RIP1 cleavage at the KD suppresses NF-κB activation and cell survival even in cFLIP-overexpressing lymphomas. Importantly, RIP1 is constitutively cleaved in human and mouse lymphomas, suggesting that cFLIP-mediated and caspase-8-dependent limited cleavage of RIP1 is a new layer of mechanism that promotes NF-κB activation and lymphoma survival.  相似文献   

11.
Activation of pattern recognition receptors and proper regulation of downstream signaling are crucial for host innate immune response. Upon infection, the NF-κB and interferon regulatory factors (IRF) are often simultaneously activated to defeat invading pathogens. Mechanisms concerning differential activation of NF-κB and IRF are not well understood. Here we report that a MAVS variant inhibits interferon (IFN) induction, while enabling NF-κB activation. Employing herpesviral proteins that selectively activate NF-κB signaling, we discovered that a MAVS variant of ~50 kDa, thus designated MAVS50, was produced from internal translation initiation. MAVS50 preferentially interacts with TRAF2 and TRAF6, and activates NF-κB. By contrast, MAVS50 inhibits the IRF activation and suppresses IFN induction. Biochemical analysis showed that MAVS50, exposing a degenerate TRAF-binding motif within its N-terminus, effectively competed with full-length MAVS for recruiting TRAF2 and TRAF6. Ablation of the TRAF-binding motif of MAVS50 impaired its inhibitory effect on IRF activation and IFN induction. These results collectively identify a new means by which signaling events is differentially regulated via exposing key internally embedded interaction motifs, implying a more ubiquitous regulatory role of truncated proteins arose from internal translation and other related mechanisms.  相似文献   

12.
13.
Nonhuman primates are naturally infected with a B-lymphotropic herpesvirus closely related to Epstein-Barr virus (EBV). These simian EBV share considerable genetic, biologic, and epidemiologic features with human EBV, including virus-induced tumorigenesis. However, latent, transformation-associated viral genes demonstrate marked sequence divergence among species despite the conserved functions. We have cloned the latent membrane protein 1 (LMP1) homologs from the simian EBV naturally infecting baboons (cercopithicine herpesvirus 12, herpesvirus papio) and rhesus monkeys (cercopithicine herpesvirus 15) for a comparative study with the human EBV oncogene. The transmembrane domains are well conserved, but there is striking sequence divergence of the carboxy-terminal cytoplasmic domain essential for B-cell immortalization and interaction with the tumor necrosis factor receptor signaling pathway. Nevertheless, the simian EBV LMP1s retain most functions in common with EBV LMP1, including the ability to induce NF-(kappa)B activity in human cells, to bind the tumor necrosis factor-associated factor 3 (TRAF3) in vitro, and to induce expression of tumor necrosis factor-responsive genes, such as ICAM1, in human B lymphocytes. Multiple TRAF3 binding sites containing a PXQXT/S core sequence can be identified in the simian EBV LMP1s by an in vitro binding assay. A PXQXT/S-containing sequence is also present in the cytoplasmic domain of the Hodgkin's disease marker, CD30, and binds TRAF3 in vitro. The last 13 amino acids containing a PXQXT/S sequence are highly conserved in human and simian EBV LMP1 but do not bind TRAF3, suggesting a distinct role for this conserved region of LMP1. The conserved TRAF3 binding sites in LMP1 and the CD30 Hodgkin's disease marker provides further evidence that a TRAF3-mediated signal transduction pathway may be important in malignant transformation.  相似文献   

14.
Tripartite motif protein 25 (TRIM25), mediates K63-linked polyubiquitination of Retinoic acid inducible gene I (RIG-I) that is crucial for downstream antiviral interferon signaling. Here, we demonstrate that TRIM25 is required for melanoma differentiation-associated gene 5 (MDA5) and MAVS mediated activation of NF-κB and interferon production. TRIM25 is required for the full activation of NF-κB at the downstream of MAVS, while it is not involved in IRF3 nuclear translocation. Mechanical studies showed that TRIM25 is involved in TRAF6-mediated NF-κB activation. These collectively indicate that TRIM25 plays an additional role in RIG-I/MDA5 signaling other than RIG-I ubiquitination via activation of NF-κB.  相似文献   

15.
Crotepoxide (a substituted cyclohexane diepoxide), isolated from Kaempferia pulchra (peacock ginger), although linked to antitumor and anti-inflammatory activities, the mechanism by which it exhibits these activities, is not yet understood. Because nuclear factor κB (NF-κB) plays a critical role in these signaling pathways, we investigated the effects of crotepoxide on NF-κB-mediated cellular responses in human cancer cells. We found that crotepoxide potentiated tumor necrosis factor (TNF), and chemotherapeutic agents induced apoptosis and inhibited the expression of NF-κB-regulated gene products involved in anti-apoptosis (Bcl-2, Bcl-xL, IAP1,2 MCl-1, survivin, and TRAF1), apoptosis (Bax, Bid), inflammation (COX-2), proliferation (cyclin D1 and c-myc), invasion (ICAM-1 and MMP-9), and angiogenesis (VEGF). We also found that crotepoxide inhibited both inducible and constitutive NF-κB activation. Crotepoxide inhibition of NF-κB was not inducer-specific; it inhibited NF-κB activation induced by TNF, phorbol 12-myristate 13-acetate, lipopolysaccharide, and cigarette smoke. Crotepoxide suppression of NF-κB was not cell type-specific because NF-κB activation was inhibited in myeloid, leukemia, and epithelial cells. Furthermore, we found that crotepoxide inhibited TAK1 activation, which led to suppression of IκBα kinase, abrogation of IκBα phosphorylation and degradation, nuclear translocation of p65, and suppression of NF-κB-dependent reporter gene expression. Overall, our results indicate that crotepoxide sensitizes tumor cells to cytokines and chemotherapeutic agents through inhibition of NF-κB and NF-κB-regulated gene products, and this may provide the molecular basis for crotepoxide ability to suppress inflammation and carcinogenesis.  相似文献   

16.
RIP1 and its homologs, RIP2 and RIP3, form part of a family of Ser/Thr kinases that regulate signal transduction processes leading to NF-κB activation. Here, we identify RIP4 (DIK/PKK) as a novel member of the RIP kinase family. RIP4 contains an N-terminal RIP-like kinase domain and a C-terminal region characterized by the presence of 11 ankyrin repeats. Overexpression of RIP4 leads to activation of NF-κB and JNK. Kinase inactive RIP4 or a truncated version containing the ankyrin repeats have a dominant negative (DN) effect on NF-κB induction by multiple stimuli. RIP4 binds to several members of the TRAF protein family, and DN versions of TRAF1, TRAF3 and TRAF6 inhibit RIP4-induced NF-κB activation. Moreover, RIP4 is cleaved after Asp340 and Asp378 during Fas-induced apoptosis. These data suggest that RIP4 is involved in NF-κB and JNK signaling and that caspase-dependent processing of RIP4 may negatively regulate NF-κB-dependent pro-survival or pro-inflammatory signals.  相似文献   

17.
Notoginsenoside R1 (NG-R1), the extract and the main ingredient of Panax notoginseng, has anti-inflammatory effects and can be used in treating acute lung injury (ALI). In this study, we explored the pulmonary protective effect and the underlying mechanism of the NG-R1 on rats with ALI induced by severe acute pancreatitis (SAP). MiR-128-2-5p, ERK1, Tollip, HMGB1, TLR4, IκB, and NF-κB mRNA expression levels were measured using real-time qPCR, and TLR4, Tollip, HMGB1, IRAK1, MyD88, ERK1, NF-κB65, and P-IκB-α protein expression levels using Western blot. The NF-κB and the TLR4 activities were determined using immunohistochemistry, and TNF-α, IL-6, IL-1β, and ICAM-1 levels in the bronchoalveolar lavage fluid (BALF) using ELISA. Lung histopathological changes were observed in each group. NG-R1 treatment reduced miR-128-2-5p expression in the lung tissue, increased Tollip expression, inhibited HMGB1, TLR4, TRAF6, IRAK1, MyD88, NF-κB65, and p-IκB-α expression levels, suppressed NF-κB65 and the TLR4 expression levels, reduced MPO activity, reduced TNF-α, IL-1β, IL-6, and ICAM-1 levels in BALF, and alleviated SAP-induced ALI. NG-R1 can attenuate SAP-induced ALI. The mechanism of action may be due to a decreased expression of miR-128-2-5p, increased activity of the Tollip signaling pathway, decreased activity of HMGB1/TLR4 and ERK1 signaling pathways, and decreased inflammatory response to SAP-induced ALI. Tollip was the regulatory target of miR-128-2-5p.  相似文献   

18.
19.
A chimeric protein vaccine composed of the cholera toxin B subunit fused to proinsulin (CTB-INS) was shown to suppress type 1 diabetes onset in NOD mice and upregulate biosynthesis of the tryptophan catabolic enzyme indoleamine 2, 3-dioxygenase (IDO1) in human dendritic cells (DCs). Here we demonstrate siRNA inhibition of the NF-κB-inducing kinase (NIK) suppresses vaccine-induced IDO1 biosynthesis as well as IKKα phosphorylation. Chromatin immunoprecipitation (ChIP) analysis of CTB-INS inoculated DCs showed that RelB bound to NF-κB consensus sequences in the IDO1 promoter, suggesting vaccine stimulation of the non-canonical NF-κB pathway activates IDO1 expression in vivo. The addition of Tumor Necrosis Factor Associated Factors (TRAF) TRAF 2, 3 and TRAF6 blocking peptides to vaccine inoculated DCs was shown to inhibit IDO1 biosynthesis. This experimental outcome suggests vaccine activation of the TNFR super-family receptor pathway leads to upregulation of IDO1 biosynthesis in CTB-INS inoculated dendritic cells. Together, our experimental data suggest the CTB-INS vaccine uses a TNFR-dependent signaling pathway of the non-canonical NF-κB signaling pathway resulting in suppression of dendritic cell mediated type 1 diabetes autoimmunity.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号