首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The high-M(r) aminoacyl-tRNA synthetase complex previously purified from sheep liver differed from those isolated from several other mammalian sources by the absence of prolyl-tRNA synthetase activity and the presence of glutamyl tRNA synthetase as a polypeptide of 85 kDa instead of 150 kDa. Using a milder extraction procedure that minimizes proteolysis, we now report the isolation of a sheep liver complex that contains both prolyl-tRNA synthetase activity and the 150-kDa polypeptide. The correspondence between prolyl-tRNA synthetase and the 150-kDa polypeptide, inferred from the results of several approaches reported in this study, was further demonstrated by showing that antibodies to a free form of sheep liver prolyl-tRNA synthetase generated by endogenous proteolysis, specifically reacted with the 150-kDa components of the complexes from sheep and rabbit, but failed to react with the previously purified complex from sheep that contained neither prolyl-tRNA synthetases activity nor the 150-kDa component. Moreover, we show that the 150-kDa polypeptide is also recognized by antibodies to the 85-kDa polypeptide previously assigned to glutamyl-tRNA synthetase. The possibility that the largest subunit of the mammalian high-M(r) complexes may be a bifunctional protein encoding both glutamyl- and prolyl-tRNA synthetase activities is considered and discussed in light of the recently published sequence of the corresponding polypeptide from HeLa cells. In accordance with this prediction, we show that the amino acid sequence of the carboxyl-terminal moiety of this bifunctional polypeptide shows significant similarity to the sequence of prolyl-tRNA synthetase from Escherichia coli.  相似文献   

2.
The size distribution of lysyl- and arginyl-tRNA synthetases in crude extracts from rat liver was re-examined by gel filtration. It is shown that irrespective of the addition or not of several proteinase inhibitors, lysyl-tRNA synthetase was present exclusively as a high-Mr entity, while arginyl-tRNA synthetase occurred as high- and low-Mr forms, in the constant proportions of 2:1, respectively. The polypeptide molecular weights of the arginyl-tRNA synthetase in these two forms were 74000 and 60000, respectively. The high-Mr forms of lysyl- and arginyl-tRNA synthetases were co-purified to yield a multienzyme complex, the polypeptide composition of which was virtually identical to that of the complexes from rabbit liver and from cultured Chinese hamster ovary cells. Of the nine aminoacyl-tRNA synthetases, specific for lysine, arginine, methionine, leucine, isoleucine, glutamine, glutamic and aspartic acids and proline, which characterize the purified complex, each, except prolyl-tRNA synthetase, was assigned to the constituent polypeptides by the protein-blotting procedure, using the previously characterized antibodies to the aminoacyl-tRNA synthetase components of the corresponding complex from sheep liver.  相似文献   

3.
In extracts of various mammalian tissues obtained in the presence of protease inhibitors Val-tRNA synthetase exists exclusively as a complex with a molecular mass of about 800 kDa. This complex was purified by gel filtration and two HPLC steps and contained five different polypeptides with molecular masses of 140, 50, 50, 40 and 30 kDa. The complex seems to have no tissue or species specificity, because preparations with identical polypeptide composition were obtained by the same method from rabbit liver and reticulocytes, and rat and beef liver. Four low-molecular-mass polypeptides were identified by two-dimensional electrophoresis as subunits of the heavy form of elongation factor 1 (EF-1H). The complex possesses the activity of EF-1 in the poly(U)-directed translation system, indicating that EF-1H is an integral part of the complex. Gel filtration of the tissue extracts reveals three different peaks of EF-1 activity, corresponding to EF-1 alpha, EF-1H and the high-molecular-mass complex of Val-tRNA synthetase and EF-1H. All activity of Val-tRNA synthetase and about 25% of EF-1 activity are associated with the complex. Different forms of EF-1 revealed no significant differences in the nucleotide-binding properties, but the complex of Val-tRNA synthetase with EF-1H was 10 times more active in the poly(U)-directed binding of Phe-tRNAPhe to ribosomes than EF-1H. These results strongly suggest that the complex of Val-tRNA synthetase with EF-1H is a novel functionally active individual form of EF-1.  相似文献   

4.
Rat liver Fraction X containing the 24S complex of nine aminoacyl-tRNA synthetases, including prolyl-tRNA synthetase, was centrifuged on a 15-35% sucrose density gradient to obtain the 8S form of prolyl-tRNA synthetase. The enzyme was purified on a prolyldiaminohexyl-Sepharose 4B affinity column, specifically binding prolyl-tRNA synthetase to Sepharose-bound proline. After SDS-polyacrylamide gel electrophoresis, two peptides of 58 and 61 kDa were detected in the peak of prolyl-tRNA synthetase activity eluted from the affinity column. The 58 and 61 kDa peptides were also present in the 24S complex containing prolyl-tRNA synthetase activity isolated on the sucrose density gradient.  相似文献   

5.
6.
A protein kinase was partially purified from barley (Hordeum vulgare L. cv Sundance) endosperm by ammonium sulfate fractionation, followed by ion-exchange, Reactive Blue, Mono-Q, and phosphocellulose chromatography. It was shown to phosphorylate Arabidopsis 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase and a synthetic peptide that was shown previously to act as a substrate for HMG-CoA reductase kinase purified from cauliflower, confirming it to be barley HMG-CoA reductase kinase. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the partially purified preparation showed the presence of a polypeptide with an approximate relative molecular weight (M(r)) of 60,000, which is the size predicted for the barley sucrose nonfermenting-1 (SNF1)-related protein kinases BKIN2 and BKIN12. Antisera were raised to a rye (Secale cereale L.) SNF1-related protein kinase (RKIN1) expressed in Escherichia coli as a fusion with maltose-binding protein and to a synthetic peptide with a sequence that is conserved in, and specific to, plant members of the SNF1-related protein kinase family. The maltose-binding protein-RKIN1 fusion protein antiserum recognized a doublet of polypeptides with an approximate M(r), of 60,000 in crude endosperm extracts and a single polypeptide in root extracts, which co-migrated with the smaller polypeptide in the endosperm doublet. Both antisera recognized a polypeptide with an approximate M(r) of 60,000 in the partially purified protein kinase preparation, suggesting strongly that barley HMG-CoA reductase kinase is a member of the SNF1-related protein kinase family.  相似文献   

7.
An investigation of the subunit structure of glutamyl-tRNA synthetase (EC 6.1.1.17) from Escherichia coli indicates that this enzyme is a monomer. The enzyme purified to apparent homogeneity is a single polypeptide chain with a molecular weight of 62,000 ± 3,000 and KGlum ? 50 μM in the aminoacylation reaction. Analytical gel electrophoretic procedures were used to determine the molecular weight of species exhibiting glutamyl-tRNA synthetase activity in freshly prepared extracts of several strains of E. coli, which had been grown under various nutritional conditions and harvested at different stages of growth. In all cases, glutamyl-tRNA synthetase activity was associated with a protein having about the same molecular weight and KGlum as the purified enzyme. Thus, no evidence of an oligomeric form of glutamyl-tRNA synthetase with a greater affinity for l-glutamate was obtained, in contrast to a previous report of J. Lapointe and D. Söll (J. Biol. Chem.247, 4966–4974, 1972).  相似文献   

8.
A glutamyl-tRNA synthetase has been purified to homogeneity from Rhizobium meliloti, using reversed-phase chromatography as the last step. Amino acid sequencing of the amino-terminal region of the enzyme indicates that it contains a single polypeptide, whose molecular weight is about 54,000, as judged by SDS-gel electrophoresis. The primary structures of the amino-terminus region and of an internal peptide obtained by cleavage of the enzyme with CNBr have similarities of 58 and 48% with regions of the glutamyl-tRNA synthase of Escherichia coli; these are thought to be involved in the binding of ATP and tRNA, respectively. The small amount of glutamyl-tRNA synthetase present in R. meliloti is consistent with the metabolic regulation of the biosynthesis of many aminoacyl-tRNA synthetases.  相似文献   

9.
A high molecular mass aminoacyl-tRNA synthetase complex has been isolated from a murine erythroleukemia cell line. This multienzyme complex contains activities for the arginyl-, aspartyl-, glutamyl-, glutaminyl-, isoleucyl,- leucyl-, lysyl-, methionyl-, and prolyl-tRNA synthetases. This enzyme composition, the polypeptide pattern observed upon sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and the relative stoichiometry of the component polypeptides are characteristic of high molecular mass complexes of aminoacyl-tRNA synthetases isolated from a variety of mammalian tissues and cell types. Negatively stained preparations of native complex and of glutaraldehyde-treated material have been examined by electron microscopy. In both cases, a distinctive particle is observed which appears in several orientations. The most common views are of two different projections of a squarish particle that measures approximately 27 x 27 nm. Other commonly observed views are of a "U" shape, a rectangle, and a triangle. All of these views are seen in both gradient-purified samples and those prepared directly from material as isolated. These data are consistent with a model for the multienzyme aminoacyl-tRNA synthetase complex as a "cup" or elongated U structure. These studies demonstrate that the high molecular mass complex of eukaryotic aminoacyl-tRNA synthetases does have a coherent structure that can be visualized by electron microscopy.  相似文献   

10.
A gene fusion event in the evolution of aminoacyl-tRNA synthetases   总被引:4,自引:0,他引:4  
The genes of glutamyl- and prolyl-tRNA synthetases (GluRS and ProRS) are organized differently in the three kingdoms of the tree of life. In bacteria and archaea, distinct genes encode the two proteins. In several organisms from the eukaryotic phylum of coelomate metazoans, the two polypeptides are carried by a single polypeptide chain to form a bifunctional protein. The linker region is made of imperfectly repeated units also recovered as singular or plural elements connected as N-terminal or C-terminal polypeptide extensions in various eukaryotic aminoacyl-tRNA synthetases. Phylogenetic analysis points to the monophyletic origin of this polypeptide motif appended to six different members of the synthetase family, belonging to either of the two classes of aminoacyl-tRNA synthetases. In particular, the monospecific GluRS and ProRS from Caenorhabditis elegans, an acoelomate metazoan, exhibit this recurrent motif as a C-terminal or N-terminal appendage, respectively. Our analysis of the extant motifs suggests a possible series of events responsible for a gene fusion that gave rise to the bifunctional glutamyl-prolyl-tRNA synthetase through recombination between genomic sequences encoding the repeated units.  相似文献   

11.
We describe the recognition by Thermus thermophilus prolyl-tRNA synthetase (ProRSTT) of proline, ATP and prolyl-adenylate and the sequential conformational changes occurring when the substrates bind and the activated intermediate is formed. Proline and ATP binding cause respectively conformational changes in the proline binding loop and motif 2 loop. However formation of the activated intermediate is necessary for the final conformational ordering of a ten residue peptide ("ordering loop") close to the active site which would appear to be essential for functional tRNA 3' end binding. These induced fit conformational changes ensure that the enzyme is highly specific for proline activation and aminoacylation. We also present new structures of apo and AMP bound histidyl-tRNA synthetase (HisRS) from T. thermophilus which we compare to our previous structures of the histidine and histidyl-adenylate bound enzyme. Qualitatively, similar results to those observed with T. thermophilus prolyl-tRNA synthetase are found. However histidine binding is sufficient to induce the co-operative ordering of the topologically equivalent histidine binding loop and ordering loop. These two examples contrast with most other class II aminoacyl-tRNA synthetases whose pocket for the cognate amino acid side-chain is largely preformed. T. thermophilus prolyl-tRNA synthetase appears to be the second class II aminoacyl-tRNA synthetase, after HisRS, to use a positively charged amino acid instead of a divalent cation to catalyse the amino acid activation reaction.  相似文献   

12.
The gltX gene, coding for the glutamyl-tRNA synthetase of Rhizobium meliloti A2, was cloned by using as probe a synthetic oligonucleotide corresponding to the amino acid sequence of a segment of the glutamyl-tRNA synthetase. The codons chosen for this 42-mer were those most frequently used in a set of R. meliloti genes. DNA sequence analysis revealed an open reading frame of 484 codons, encoding a polypeptide of Mr 54,166 containing the amino acid sequences of an NH2-terminal and various internal fragments of the enzyme. Compared with the amino acid sequence of the glutamyl-tRNA synthetase of Escherichia coli, the N-terminal third of the R. meliloti enzyme was strongly conserved (52% identity); the second third was moderately conserved (38% identity) and included a few highly conserved segments, whereas no significant similarity was found in the C-terminal third. These results suggest that the C-terminal part of the protein is probably not involved in the recognition of substrates, a feature shared with other aminoacyl-tRNA synthetases.  相似文献   

13.
We showed previously that wheat germ extracts contain two forms of protein synthesis initiation factor 4F that have very similar functional properties (Browning, K. S., Lax, S. R., and Ravel, J. M. (1987) J. Biol. Chem. 262, 11228-11232). One form, designated eIF-4F, is a complex containing two subunits, p220 and p26. The other form, designated eIF-(iso)4F, is a complex containing two subunits, p82 and p28, which are antigenically distinct from the subunits of eIF-4F. Both the p26 subunit of eIF-4F and the p28 subunit of eIF-(iso)4F are m7G cap-binding proteins. In this investigation, affinity-purified antibodies to the p220 and p26 subunits of wheat germ eIF-4F and to the p82 and p28 subunits of wheat germ eIF-(iso)4F were used to determine if isozyme forms of eIF-4F are present in maize and cauliflower. Extracts from wheat germ, maize root tips, and cauliflower inflorescences were partially purified by adsorption on m7GTP-Sepharose and elution with m7GTP (MGS eluate). Analysis by sodium dodecyl sulfate gel electrophoresis and immunoblotting with antibodies to the subunits of the wheat germ factors showed that the MGS eluate from maize contains polypeptides that react with antibodies to the p82 and p28 subunits of wheat eIF-(iso)4F, as well as polypeptides that react with antibodies to the p220 and p26 subunits of wheat eIF-4F. The MGS eluate from cauliflower also contains polypeptides that reacted with antibodies to the subunits of wheat eIF-(iso)4F. These results indicate that both maize and cauliflower contain the isozyme form of eIF-4F. In addition, it was found that the factors in the MGS eluate from maize support polypeptide synthesis in a system from wheat deficient in eIF-4F and eIF-(iso)4F, whereas the factors in the MGS eluate from cauliflower support polypeptide synthesis only to a small extent.  相似文献   

14.
A high molecular mass complex of aminoacyl-tRNA synthetases is readily isolated from a variety of eukaryotes. Although its composition is well characterized, knowledge of its structure and organization is still quite limited. This study uses antibodies directed against prolyl-tRNA synthetase for immunoelectron microscopic localization of the bifunctional glutamyl-/prolyl-tRNA synthetase. This is the first visualization of a specific site within the multisynthetase complex. Images of immunocomplexes are presented in the characteristic views of negatively stained multisynthetase complex from rabbit reticulocytes. As described in terms of a three domain working model of the structure, in "front" views of the particle and "intermediate" views, the primary antibody binding site is near the intersection between the "base" and one "arm." In "side" views, where the particle is rotated about its long axis, the binding site is near the midpoint. "Top" and "bottom" views, which appear as square projections, are also consistent with the central location of the binding site. These data place the glutamyl-/prolyl-tRNA synthetase polypeptide in a defined area of the particle, which encompasses portions of two domains, yet is consistent with the previous structural model.  相似文献   

15.
A high Mr synthetase core complex isolated from higher eukaryotes contains aminoacyl-tRNA synthetases specific for arginine, aspartic acid, glutamic acid, glutamine, isoleucine, leucine, lysine, methionine, and proline. Previously, five of the synthetases were shown to be phosphorylated in reticulocytes, and the glutaminyl- and aspartyl-tRNA synthetases were shown to be selectively phosphorylated in response to 8-bromo cAMP (Pendergast, A. M., Venema, R. C., and Traugh, J. A. (1987) J. Biol. Chem. 262, 5939-5942). Exposure of reticulocytes to phorbol 12-myristate 13-acetate stimulates the selective phosphorylation of one synthetase in the complex, glutamyl-tRNA synthetase. Only the glutamyl-tRNA synthetase is modified to a significant extent when the purified complex is phosphorylated in vitro by protein kinase C; up to 0.7 mol of phosphate is incorporated per mol of synthetase. Two-dimensional phosphopeptide mapping shows a single tryptic phosphopeptide, which is identical for the enzyme modified in vitro by protein kinase C or in phorbol 12-myristate 13-acetate-stimulated cells. Phosphorylation in vivo is reproducibly accompanied by a 38 +/- 10% reduction in aminoacylation activity of partially purified glutamyl-tRNA synthetase assayed in vitro. Phosphorylation in vitro has no detectable effect on aminoacylation. This difference may be due to the absence of a required effector molecule which alters activity by interaction with the phosphorylated synthetase. Glutamyl-tRNA synthetase is one of a growing number of translational components, including initiation factors, which are coordinately modified by protein kinase C in response to phorbol 12-myristate 13-acetate.  相似文献   

16.
Earlier studies have shown that native tryptophanyl-tRNA synthetase from beef pancreas is composed of two apparently identical subunits having a molecular weight of 60000 plus or minus 2000 each. Incubation of the pruified enzyme with trypsin under restrictive conditions results in splitting of each subunit to form an enzymatically inactive polypeptide chain of mol. wt 24500 plus or minus 1500. During proteolysis, two distinct intermediate forms of mol. wt 51000 plus or minus 2000 and 40000 plus or minus 2000 and fragments of mol. wt 14000 plus or minus 2500 are formed. The presence of substrates, viz. ATP, tryptophan or tryptophanyl adenylate, decreases the rate of proteolysis. However, a band pattern monitored by acrylamide gel electrophoresis is qualitatively indistinguishable from that obtained in the absence of substrates. Native and trypsin-modified subunits (the latter having a molecular weight of 24500) have been maleylated, reduced, carbosymethylated and subjected to exhaustive digestion by trypsin followed by peptide mapping. Comparison of the finger prints has shown that the trypsin-modified subunit represents a polypeptide with lowered content of dicarboxylic amino acids. That the number of peptides revealed after complete proteolysis of native and trypsin-modified subunits does not favour the presence of long repetitive sequences in each subunit, is at variance with some bacterial aminoacyl-tRNA synthetases. Study of the fluorescence polarisation of 1-anilino-8-napthalene sulphonate adsorbed on the dimeric tryptophanyl-tRNA synthetase, indicates that the molecule behaves as a complete entity in Brownian rotation. The trypsin-resistant end products, composed of two types of polypeptides (mol. wts 24500 and 14000), remain associated with each other. From the mol. wt of this associate it follows that each fragment is present in the associate in duplicate. When the purification procedure was carried out in the absence of a protease inhibitor, the active modified enzyme form was obtained. As judged from the molecular weight values, it is composed of two equal subunits corresponding to one of the products of limited proteolysis. The data presented are compatible with compact three-dimensional structure of tryptophanyl-tRNA synthetase having very limited regions exposed to exogenous or endogenous proteolysis.  相似文献   

17.
In higher eukaryotes, nine aminoacyl-tRNA synthetases are associated within a multienzyme complex which is composed of 11 polypeptides with molecular masses ranging from 18 to 150 kDa. We have cloned and sequenced a cDNA from Drosophila encoding the largest polypeptide of this complex. We demonstrate here that the corresponding protein is a multifunctional aminoacyl-tRNA synthetase. It is composed of three major domains, two of them specifying distinct synthetase activities. The amino and carboxy-terminal domains were expressed separately in Escherichia coli, and were found to catalyse the aminoacylation of glutamic acid and proline tRNA species, respectively. The central domain is made of six 46 amino acid repeats. In prokaryotes, these two aminoacyl-tRNA synthetases are encoded by distinct genes. The emergence of a multifunctional synthetase by a gene fusion event seems to be a specific, but general attribute of all higher eukaryotic cells. This type of structural organization, in relation to the occurrence of multisynthetase complexes, could be a mechanism to integrate several catalytic domains within the same particle. The involvement of the internal repeats in mediating complex assembly is discussed.  相似文献   

18.
Guo LT  Chen XL  Zhao BT  Shi Y  Li W  Xue H  Jin YX 《Nucleic acids research》2007,35(17):5934-5943
For most aminoacyl-tRNA synthetases (aaRS), their cognate tRNA is not obligatory to catalyze amino acid activation, with the exception of four class I (aaRS): arginyl-tRNA synthetase, glutamyl-tRNA synthetase, glutaminyl-tRNA synthetase and class I lysyl-tRNA synthetase. Furthermore, for arginyl-, glutamyl- and glutaminyl-tRNA synthetase, the integrated 3' end of the tRNA is necessary to activate the ATP-PPi exchange reaction. Tryptophanyl-tRNA synthetase is a class I aaRS that catalyzes tryptophan activation in the absence of its cognate tRNA. Here we describe mutations located at the appended beta1-beta2 hairpin and the AIDQ sequence of human tryptophanyl-tRNA synthetase that switch this enzyme to a tRNA-dependent mode in the tryptophan activation step. For some mutant enzymes, ATP-PPi exchange activity was completely lacking in the absence of tRNA(Trp), which could be partially rescued by adding tRNA(Trp), even if it had been oxidized by sodium periodate. Therefore, these mutant enzymes have strong similarity to arginyl-tRNA synthetase, glutaminyl-tRNA synthetase and glutamyl-tRNA synthetase in their mode of amino acid activation. The results suggest that an aaRS that does not normally require tRNA for amino acid activation can be switched to a tRNA-dependent mode.  相似文献   

19.
Protein biosynthesis requires aminoacyl-transfer RNA (tRNA) synthetases to provide aminoacyl-tRNA substrates for the ribosome. Most bacteria and all archaea lack a glutaminyl-tRNA synthetase (GlnRS); instead, Gln-tRNA(Gln) is produced via an indirect pathway: a glutamyl-tRNA synthetase (GluRS) first attaches glutamate (Glu) to tRNA(Gln), and an amidotransferase converts Glu-tRNA(Gln) to Gln-tRNA(Gln). The human pathogen Helicobacter pylori encodes two GluRS enzymes, with GluRS2 specifically aminoacylating Glu onto tRNA(Gln). It was proposed that GluRS2 is evolving into a bacterial-type GlnRS. Herein, we have combined rational design and directed evolution approaches to test this hypothesis. We show that, in contrast to wild-type (WT) GlnRS2, an engineered enzyme variant (M110) with seven amino acid changes is able to rescue growth of the temperature-sensitive Escherichia coli glnS strain UT172 at its non-permissive temperature. In vitro kinetic analyses reveal that WT GluRS2 selectively acylates Glu over Gln, whereas M110 acylates Gln 4-fold more efficiently than Glu. In addition, M110 hydrolyzes adenosine triphosphate 2.5-fold faster in the presence of Glu than Gln, suggesting that an editing activity has evolved in this variant to discriminate against Glu. These data imply that GluRS2 is a few steps away from evolving into a GlnRS and provides a paradigm for studying aminoacyl-tRNA synthetase evolution using directed engineering approaches.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号