首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Kynurenine-3-monooxygenase (KM), the third enzyme in the kynurenine (KYN) pathway from tryptophan to quinolinic acid (QA), is a monooxygenase requiring oxygen, NADPH and FAD for the catalytic oxidation of L-kynurenine to 3-hydroxykynurenine and water. KM is innately low in the brain and similar in activity to indoleamine oxidase, the rate-limiting pathway enzyme. Accumulation in the CNS of QA, a known excitotoxin, is proposed to cause convulsions in several pathologies. Thus, we theorized that hyperbaric oxygen (HBO) induced convulsions arise from increased QA via oxygen K, effects on this pathway [Brown OR, Draczynska-Lusiak. Oxygen activation and inactivation of quinolinate-producing and iron-requiring 3-hydroxyanthranilic acid oxidase: a role in hyperbaric oxygen-induced convulsions? Redox Report 1995; 1: 383-385]. To complement prior studies on the effects of oxygen on pathway enzymes, in this paper we report the effects of oxygen on KM. Brain and liver KM enzyme are not known to be identical, and some systemically-produced KYN pathway intermediates can permeate the brain and might stimulate the brain pathway. Thus, KM from both brain and liver was assayed at various oxygen substrate concentrations to evaluate, in vitro, the potential effects of increases in oxygen, as would occur in mammals breathing therapeutic and convulsive HBO. In crude tissue extracts, KM was not activated during incubation in HBO up to 6 atm. The effects of oxygen as substrate on brain and liver KM activity was nearly identical: activity was nil at zero oxygen with an apparent oxygen Km of 20-22 microM. Maximum KM activity occurred at about 1000 microM oxygen and decreased slightly to plateau from 2000 to 8000 microM oxygen. This compares to approximately 30-40 microM oxygen typically reported for brain tissue of humans or rats breathing air, and an unknown but surely much lower value (perhaps below 1 microM) intracellularly at the site of KM. Thus HBO, as used therapeutically and at convulsive pressures, likely stimulates flux through the KM-catalyzed step of the KYN pathway in liver and in brain and could increase brain QA, by Km effects on brain KM, or via increased KM pathway intermediates produced systemically (in liver) and transported into the brain.  相似文献   

2.
The time course of changes in blood and brain catecholamines, catechol O-methyltransferase (COMT), ammonia, and amino acids leading to convulsion by high pressure oxygen breathing (OHP) in rats has been investigated. Brain catecholamines were suppressed by OHP. They changed in phase with brain COMT concentration and consequently were not due to the action of this degrading enzyme. Convulsive actions seem not to be influenced by brain catecholamine concentration. Blood adrenaline concentrations are, however, significantly elevated both prior to and during convulsions. In both brain and blood, ammonia concentration increases, glutamate decreases, and glutamine-aspargine increases. It is proposed that the efficacy of the glutamate-glutamine ammonia buffering system in blood and brain is important in the prevention of the onset of convulsions but that when brain gamma-aminobutyric acid is depressed to critical levels, convulsions result.  相似文献   

3.
Abstract

Kynurenine-3-monooxygenase (KM), the third enzyme in the kynurenine (KYN) pathway from tryptophan to quinolinic acid (QA), is a monooxygenase requiring oxygen, NADPH and FAD for the catalytic oxidation of L-kynurenine to 3-hydroxykynurenine and water. KM is innately low in the brain and similar in activity to indoleamine oxidase, the rate-limiting pathway enzyme. Accumulation in the CNS of QA, a known excitotoxin, is proposed to cause convulsions in several pathologies. Thus, we theorized that hyperbaric oxygen (HBO) induced convulsions arise from increased QA via oxygen Km effects on this pathway [Brown OR, Draczynska-Lusiak. Oxygen activation and inactivation of quinolinate-producing and iron-requiring 3-hydroxyanthranilic acid oxidase: a role in hyperbaric oxygen-induced convulsions? Redox Report 1995; 1: 383–385]. To complement prior studies on the effects of oxygen on pathway enzymes, in this paper we report the effects of oxygen on KM. Brain and liver KM enzyme are not known to be identical, and some systemically-produced KYN pathway intermediates can permeate the brain and might stimulate the brain pathway. Thus, KM from both brain and liver was assayed at various oxygen substrate concentrations to evaluate, in vitro, the potential effects of increases in oxygen, as would occur in mammals breathing therapeutic and convulsive HBO. In crude tissue extracts, KM was not activated during incubation in HBO up to 6 atm. The effects of oxygen as substrate on brain and liver KM activity was nearly identical: activity was nil at zero oxygen with an apparent oxygen Km of 20–22 µM. Maximum KM activity occurred at about 1000 µM oxygen and decreased slightly to plateau from 2000 to 8000 µM oxygen. This compares to approximately 30–40 µM oxygen typically reported for brain tissue of humans or rats breathing air, and an unknown but surely much lower value (perhaps below 1 µM) intracellularly at the site of KM. Thus HBO, as used therapeutically and at convulsive pressures, likely stimulates flux through the KM-catalyzed step of the KYN pathway in liver and in brain and could increase brain QA, by Km effects on brain KM, or via increased KM pathway intermediates produced systemically (in liver) and transported into the brain.  相似文献   

4.
Changes in hepatopancreas, muscle and gill tissue nitrogen metabolic profiles were studied in a penaeid prawn, Penaeus indicus, following its exposure to sublethal concentrations of methylparathion, carbaryl and aldrin. In all the insecticide exposed prawn tissues, Ammonia levels were significantly increased and a shift in the nitrogen metabolism towards the synthesis of urea and glutamine was observed. Inhibition of glutamate oxidation to ammonia and alpha-ketoglutarate by glutamate dehydrogenase suggests a mechanism whereby hyperammonemia is reduced by minimizing the addition of further ammonia to the already existing elevated ammonia pool. Increased alanine and aspartate aminotransferases demonstrates the onset of gluconeogenesis. Mechanisms to detoxify the ammonia by enhancing the synthesis of urea and glutamine at the cellular level was observed in the selected tissues pave way for the survivability of prawns in insecticide polluted environs.  相似文献   

5.
Silver catfish (Rhamdia quelen; Teleostei) were exposed to commercial formulation Roundup, a glyphosate herbicide: 0 (control), 0.2 or 0.4 mg/L for 96 h. Fish exposed to glyphosate showed an increase in hepatic glycogen, but a reduction in muscle glycogen at both concentrations tested. Glucose decreased in liver and increased in muscle of fish at both herbicide concentrations. Glyphosate exposure increased lactate levels in liver and white muscle at both concentrations. Protein levels increased in liver and decreased in white muscle while levels of ammonia in both tissues increased in fish at both glyphosate concentrations. Specific AChE activity was reduced in brain after treatments, no changes were observed in muscle tissue. Catalase activity in liver did not change during of exposure. Fish exposed to glyphosate demonstrated increased TBARS production in muscle tissue at both concentrations tested. For both glyphosate concentrations tested brain showed a reduction of TBARS after 96 h of exposure. The present results showed that in 96 h, glyphosate changed AChE activity, metabolic parameters and TBARS production. The parameters measured can be used as herbicide toxicity indicators considering environmentally relevant concentration.  相似文献   

6.
Indoleamine 2,3-dioxygenase (IDO) reacts with either oxygen or superoxide and tryptophan (trp) or other indoleamines while tryptophan 2,3-dioxygenase (TDO) reacts with oxygen and is specific for trp. These enzymes catalyze the rate-limiting step in the kynurenine (KYN) pathway from trp to quinolinic acid (QA) with TDO in kidney and liver and IDO in many tissues, including brain where it is low but inducible. QA, which does not cross the blood-brain barrier, is an excitotoxin found in the CNS during various pathologies and is associated with convulsions. We proposed that HBO-induced convulsions result from increased flux through the KYN pathway via oxygen stimulation of IDO. To test this, TDO and IDO of liver and brain, respectively, of Sprague Dawley rats were assayed with oxygen from 0 to 6.2 atm HBO. TDO activity was appreciable at even 30 microM oxygen and rose steeply to a maximum at 40 microM. Conversely, IDO had almost no detectable activity at or below 100 microM oxygen and maximum activity was not reached until about 1150 microM. (Plasma contains about 215 microM oxygen and capillaries about 20 microM oxygen when rats breathe air.) KYN was 60% higher in brains of HBO-convulsed rats compared to rats breathing air. While the oxygen concentration inside cells of rats breathing air or HBO is not known precisely, it is clear that the rate-limiting, IDO-catalyzed step in the brain KYN pathway (but not liver TDO) can be greatly accelerated in rats breathing HBO.  相似文献   

7.
In C. pagurus exposed to air for 18 h, blood ammonia content decreased within the 2 first hours, then increased at a relatively constant rate (25 microM/h); blood urate content increased at a lower rate (10 microM/h) and a classical blood acidosis was observed. In the cheliped muscle, a transient 22% decrease in GDH activity for ammonia formation and a 48% increase in GDH activity in the reverse reaction (glutamate synthesis) occurred following 6 and 12 h of emersion, respectively. Changes in LDH activity, used as an indicator of anaerobic potential of muscle, were not observed, except for an 18% increase in crabs exposed to air for 24 h. The increase in blood urate content, not known as a response to emersion in decapods, appeared to be different from that observed in response to hypoxia. The relatively low blood ammonia overload and the GDH increased activity for glutamate synthesis suggested that part of the produced ammonia was stored under a bound form in some tissues. The response of C. pagurus to air exposure is discussed on account of the Storey and Storey ('90) theory.  相似文献   

8.
1. Small mammals have been used to study the effects of O2 toxicity. The aim of the present study was to investigate whether body size should be considered when applying the results of these studies to man. 2. Oxygen toxicity is enhanced as perfusion and metabolism increase: specific animal tissues of high perfusion are more susceptible to O2 toxicity. Exercise, high metabolic rate, and increased brain blood flow enhance O2 toxicity. 3. Increased specific O2 consumption and perfusion as body mass decreases may enhance O2 toxicity in small mammals. 4. Survival time in normobaric hyperoxia (1 atm O2) and the time to first appearance of convulsions in hyperbaric oxygen (4-5 atm) were collected from the literature and showed no relation to body size. 5. Known difference in antioxidant enzyme activity cannot explain the findings. 6. Independence of tissue PO2 on body size, or equal rates of free radical formation and degradation, are suggested as possible mechanisms. 7. Small mammals can serve as a good model for O2 toxicity in man.  相似文献   

9.
Growth of and fatty acid synthesis in Escherichia coli were inhibited by oxygen at partial pressures above 1 atm and were prevented by exposure to oxygen at 4.2 atm on membranes incubated on a minimal medium. Growth and fatty acid synthesis returned to control rates when cells were removed from hyperoxia to air. The spectrum of fatty acids produced was unchanged by oxygen at pressures which reduced the rate of synthesis. In situ fatty acids were stable to oxygen at pressures which prevented growth and synthesis. Reinitiation of synthesis after complete inhibition in hyperoxia occurred without production of aberrant fatty acids. Fatty acid synthetase specific activity was virtually unchanged, compared with air controls, in cells exposed either to 3.2 or to 15.2 atm of oxygen. The spectrum of fatty acids synthesized by cell-free extracts during incubation in 4.2 atm of oxygen was not different from air-incubated controls. Synthetase assays included added NADPH, acyl carrier protein, mercaptoethanol, and malonyl coenzyme A; hence, damage, other than reversible sulfhydryl oxidation, to the apoenzymes of synthetase was ruled out.  相似文献   

10.
1. Increases in the concentrations of lactic acid and pyruvic acid in rat brain during acute dieldrin poisoning are associated with hyperactivity of the brain, whereas an increase in the cerebral alanine concentration occurs before the convulsions. Throughout the dieldrin-induced seizure pattern, fluctuations in the concentration of brain ammonia are out of phase with the actual convulsions. 2. Increases in the concentrations of alanine, ammonia and lactic acid in rat brain accompany picrotoxin-induced seizures; there is no increase in the concentration of glutamine. These changes are consistent with the inhibition of glutamine synthesis. 3. In addition to previously reported changes in the concentrations of intermediary metabolites of the brain after the administration of Telodrin (Hathway & Mallinson, 1964), increases have now been found in the alanine and lactic acid concentrations. Since increases in the alanine and glutamine concentrations occur before the convulsions, liberation of ammonia also occurs before the onset of convulsions and throughout their course. Ammonia-binding mechanisms later become inadequate and free ammonia accumulates in cerebral tissues. 4. An increase in the pyruvic acid concentration of the brain after the intraperitoneal injection of either dieldrin or Telodrin is endogenous in origin. 5. The parenteral administration of a small dose of glutamine increases the cerebral concentrations of alanine and glutamic acid. Some animals previously treated with glutamine resisted Telodrin convulsions. 6. Mechanisms for the disposal of ammonia liberated in brain are discussed.  相似文献   

11.
The Critical Oxygen Pressures for Respiration in Intact Plants   总被引:7,自引:0,他引:7  
Two methods for determining critical respiratory oxygen pressure in whole plants are described. By a polarographic method involving the use of cylindrical platinum electrodes the following critical oxygen pressures for root respiration were found: Rice (cv. Norin 36). 0.024 atm: Rice (cv. Norm 37). 0.026 atm: Eriophorum angustifolium. 0.02 atm. These values contrast markedly with those obtained in vitro, and support earlier criticisms of in vitro measurements: they call into question the use of such data in the modelling of root aeration. When the results were assessed by an electrical analogue system, it was concluded that the respiratory activity in the intact root does not follow the normally accepted hyperbolic relationship with oxygen partial pressure. The experimental data were simulated most closely by assuming the critical oxygen pressure to be a function of respiratory responses in the low porosity (high diffusional impedance) tissues of the root meristem and stele, and respiratory activity in the moderately porous root cortex to be unaffected at values greater than 0.001 atm. A critical oxygen pressure of 0.025–0.04 atm for E. angustifolium was found from analyses of the gas phase oxygen in the leaves of whole plants after submergence in the dark. It was concluded that the higher value found by this method was most likely a function of respiratory responses in root tissue remote from the leaf and should not be regarded as the critical oxygen pressure for leaf respiration. The form of the oxygen concentration vs. time plot again suggested a very much lower critical oxygen pressure for certain of the plant tissues.  相似文献   

12.
The effects of high oxygen pressure on pyruvate dehydrogenase (pyruvate: lipoate oxidoreductase (decarboxylating and acceptor-acylating), EC 1.2.4.1) activity, tissue concentration of ATP, and CO2 production from glucose were studied in rat brain cortical slices. The increase in pyruvate dehydrogenase activity and the lowering of cellular ATP, occurring during potassium-induced depolarization at 1 atm of oxygen, were reversed by increasing the oxygen pressure to 5 atm. When brain slices were incubated at 1 atm oxygen with [U-14C]glucose, a high potassium medium approximately doubled the production of 14CO2. Oxygen at 5 atm abolished this potassium-dependent increase in 14CO2 production with no significant effect on glucose oxidation in normal Krebs-Ringer phosphate medium. Adding 4 atm helium to 1 atm oxygen did not interfere with the ability of potassium ions to activate pyruvate dehydrogenase, lower ATP, or increase glucose oxidation. The results show that toxic effects of hyperbaric oxygen, not manifest in "resting" tissue, may be revealed during stress such as potassium depolarization. The site of the toxic effects of oxygen is probably the cell membrane where excess oxygen appears to interfere with the action of the sodium pump, calcium transport or other processes stimulated by increased concentrations of extracellular potassium.  相似文献   

13.
Regeneration in murine musculus gastrocnemius was studied in animals aged 2-2.5. It was demonstrated that 20Cy irradiation caused the inhibition of necrosis resorption, suppressed the proliferative activity of muscular and connective tissues. Impulse laser therapy employed after irradiation of dissected musculus gastrocnemius potentiated fibrin resorption and markedly stimulated regeneration of muscular and connective tissues. Nonexposed disintegrated muscular tissue, when implanted to the site of injury produced a significant stimulating effect resulting in necrosis resorption, more pronounced than under laser therapy, and recovering the regenerative capacity of the exposed tissue.  相似文献   

14.
This study was undertaken to determine whether gulf toadfish (Opsanus beta) could metabolize ammonia from their environment into other, less toxic products. To this end, gulf toadfish were exposed to 3.8 mM 15NH(4)Cl in seawater for 24 and 48 h. Liver, kidney, gill, brain and muscle samples were analyzed for distribution of 15N within the tissue and among various nitrogen-containing metabolites (ammonia, amino-N, glutamine-N, urea and protein). The data reported here show that the toadfish can indeed take up and metabolize ammonia. Analysis of individual metabolic products of ammonia indicates that the toadfish can convert this toxic chemical into other less toxic metabolites. Ammonia enrichment is significantly different over controls in the kidney, brain and muscle. Urea enrichment is most significant in the brain, with less significant enrichment occurring in the liver and muscle. While accumulation of ammonia into an amino acid pool was not a significant metabolic fate, protein synthesis was significantly enriched in all tissues (with the highest levels occurring in the gill) indicating that amino acid synthesis may be a pathway of ammonia detoxification en route to protein synthesis, and that environmental ammonia can be 'fixed' into protein. Finally, it was found that glutamine-N synthesis occurs at significant levels in the liver, brain and muscle.  相似文献   

15.
The effects of high oxygen pressure on pyruvate dehydrogenase (pyruvate: lipoate oxidoreductase (decarboxylating and acceptor-acylating), EC 1.2.4.1) activity, tissue concentration of ATP, and CO2 production from glucose were studied in rat brain cortical slices. The increase in pyruvate dehydrogenase activity and the lowering of cellular ATP, occurring during potassium-induced depolarization at 1 atm of oxygen, were reversed by increasing the oxygen pressure to 5 atm. When brain slices were incubated at 1 atm oxygen with [U-14C]glucose, a high potassium medium approximately doubled the production of 14CO2. Oxygen at 5 atm abolished this potassium-dependent increase in 14CO2 production with no significant effect on glucose oxidation in normal Krebs-Ringer phosphate medium. Adding 4 atm helium to 1 atm oxygen did not interfere with the ability of potassium ions to activate pyruvate dehydrogenase, lower ATP, or increase glucose oxidation. The results show that toxic effects of hyperbaric oxygen, not manifest in “resting” tissue, may be revealed during stress such as potassium depolarization. The site of the toxic effects of oxygen is probably the cell membrane where excess oxygen appears to interfere with the action of the sodium pump, calcium transport or other processes stimulated by increased concentrations of extracellular potassium.  相似文献   

16.
Because previous work showed that in the newborn brain, but not in the adult brain, glutamate decarboxylase (GAD) is notably susceptible to heat, we have studied the possible involvement of GAD inhibition in febrile convulsions and the related changes in gamma-aminobutyric acid (GABA) content. Rats of different ages were subjected to hyperthermia, and GAD activity was determined in brain homogenates by measuring the release of 14CO2 from labeled glutamate and by measuring the formation of GABA. The latter method gave considerably lower values than the former in the youngest rats, and was considered more reliable. With this method, we found a 37-48% inhibition of GAD activity in rat pups 2-5 days old, which showed febrile seizures at progressively higher body temperatures, whereas in 10- and 15-day-old animals, which did not show convulsions, GAD activity was not affected by hyperthermia. Whole-brain GABA levels, however, did not change at any age. In contrast to GAD, choline acetyltransferase and lactic dehydrogenase activities were not altered by hyperthermia at any of the ages studied. These results suggest that a decreased efficiency of the inhibitory neurotransmission mediated by GABA, consequent to the inhibition of GAD activity, may be a factor related to febrile convulsions.  相似文献   

17.
The concentrations of several acidic and neutral amino acids of brain, liver, and skeletal muscle were determined in field voles, Microtus montanus, and compared to values obtained from voles harboring a chronic infection of Trypanosoma brucei gambiense. All of the amino acids examined were found at comparable levels in brain tissue from both groups of animals with the exception of tyrosine, which was reduced by approximately 45% in the infected voles. Similarly, the only difference noted in liver tissue was 32% decrease of free tyrosine in the infected animals. With respect to muscle tissue, in addition to a 45% reduction of free tyrosine in the infected voles, decreases of a smaller magnitude were also noted for threonine, glutamate, and valine. The relatively specific alteration of free tyrosine concentrations in the investigated tissues of trypanosome-infected animals suggests an alteration in host metabolism of this amino acid and/or parasite utilization.  相似文献   

18.
The pathway of glutamate metabolism in rat brain mitochondria   总被引:9,自引:2,他引:7       下载免费PDF全文
1. The pathway of glutamate metabolism in non-synaptic rat brain mitochondria was investigated by measuring glutamate, aspartate and ammonia concentrations and oxygen uptakes in mitochondria metabolizing glutamate or glutamine under various conditions. 2. Brain mitochondria metabolizing 10mm-glutamate in the absence of malate produce aspartate at 15nmol/min per mg of protein, but no detectable ammonia. If amino-oxyacetate is added, the aspartate production is decreased by 80% and ammonia production is now observed at a rate of 6.3nmol/min per mg of protein. 3. Brain mitochondria metabolizing glutamate at various concentrations (0-10mm) in the presence of 2.5mm-malate produce aspartate at rates that are almost stoicheiometric with glutamate disappearance, with no detectable ammonia production. In the presence of amino-oxyacetate, although the rate of aspartate production is decreased by 75%, ammonia production is only just detectable (0.3nmol/min per mg of protein). 4. Brain mitochondria metabolizing 10mm-glutamine and 2.5mm-malate in States 3 and 4 were studied by using glutamine as a source of intramitochondrial glutamate without the involvement of mitochondrial translocases. The ammonia production due to the oxidative deamination of glutamate produced from the glutamine was estimated as 1nmol/min per mg of protein in State 3 and 3nmol/min per mg of protein in State 4. 5. Brain mitochondria metabolizing 10mm-glutamine in the presence of 1mm-amino-oxyacetate under State-3 conditions in the presence or absence of 2.5mm-malate showed no detectable aspartate production. In both cases, however, over the first 5min, ammonia production from the oxidative deamination of glutamate was 21-27nmol/min per mg of protein, but then decreased to approx. 1-1.5nmol/min per mg. 6. It is concluded that the oxidative deamination of glutamate by glutamate dehydrogenase is not a major route of metabolism of glutamate from either exogenous or endogenous (glutamine) sources in rat brain mitochondria.  相似文献   

19.
The relationship between the susceptibility to convulsions, the content of pyridoxal 5'-phosphate and the activity of pyridoxal kinase (EC 2.7.1.35) and glutamate decarboxylase (EC 4.1.1.15) in brain, was studied in the developing mouse. Seizures were induced by pyridoxal phosphate-gamma-glutamyl hydrazone (PLPGH), a drug previously reported to reduce the levels of pyridoxal 5'-phosphate and as a consequence to inhibit the activity of glutamate decarboxylase in brain of adult mice. It was found that the seizure pattern, as well as the time of appearance of convulsions, differed between 2- and 5-day old mice and 10-day old or older mice, indicating a progressive increase in seizure susceptibility during development. In brain, pyridoxal kinase activity and pyridoxal 5'-phosphate levels were decreased by the administration of PLPGH at all ages studied, whereas glutamate decarboxylase activity was inhibited less than 25% in 2- and 5-day old mice, and about 50% thereafter. Parallelly, the activation of glutamate decarboxylase by pyridoxal 5'-phosphate added in vitro to control homogenates was less in 2- and 5-day old mice than in older animals. It is concluded that the increase in the susceptibility to seizures induced by PLPGH during development is probably related to the increase observed in the sensitivity of glutamate decarboxylase in vivo to a decrease of pyridoxal 5'-phosphate levels. The correlation between pyridoxal 5'-phosphate, glutamate decarboxylase, and seizure susceptibility seems to be established at about 10 days of age.  相似文献   

20.
Acute and chronic ammonia toxicity was produced in the mice by intraperitoneal injection of ammonium chloride (200 mg/kg) and by exposure of mice to ammonia vapours (5% v/v) continuously for 2 days and 5 days respectively. The ammonia content was elevated in the cerebellum, cerebral cortex and brain stem and in liver. In acute ammonia intoxication there was a decrease in the monoamine oxidase (MAO) activity in all the three regions of brain. In chronic ammonia toxicity (2 days of exposure) a significant increase in the activity of MAO was observed in the cerebral cortex while in cerebellum and brain stem there was a significant decrease. In cerebral cortex and cerebellum there was a rise in the activity of MAO as a result of exposure to ammonia vapours for 5 days. A significant decrease was observed in the activity of glutamate decarboxylase (GAD) in all the three regions of the brain both in acute and chronic ammonia toxicity (2 days). There was a decrease in the activity of this enzyme only in the cerebral cortex in the animals exposed to ammonia for 5 days. The activity of GABA-aminotransferase (GABA-T) showed a significant rise in cerebellum and a fall in the brain stem in acute ammonia toxicity. In chronic ammonia toxicity GABA-T showed a rise in all the three regions of brain. Chronic ammonia toxicity produced a significant decrease in the content of glutamate in all the three regions without a significant change in the content of aspartate. GABA and glutamine. The content of alanine increased in all the three regions of brain under these experimental conditions. The ratio of glutamate + aspartate/GABA and glutamate/glutamine showed a decrease in all the three regions as a result of ammonia toxicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号