首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An efficient and broad-spectrum protocol for cryopreservation of Vitis spp. shoot tips by droplet-vitrification is reported. Shoot tips (1.0 mm) containing 5–6 leaf primordia (LPs) were precultured for 3 d with a preculture medium containing 0.3 M sucrose, 0.16 μM glutathione, and 0.14 μM ascorbic acid. Precultured shoot tips were treated for 20 min at 24°C with a loading solution composed of 2 M glycerol and 0.4 M sucrose, followed by exposure at 0°C to half-strength plant vitrification solution 2 (PVS2) for 30 min, and then full-strength PVS2 for 50 min. Dehydrated shoot tips were transferred into 2.5-μL PVS2 carried on aluminum foil, prior to a direct immersion in liquid nitrogen. With this method, an average shoot regrowth level of 50.5% was obtained from cryopreserved shoot tips in six V. vinifera genotypes (three wine cultivars, two table cultivars, and one rootstock) and two V. pseudoreticulata genotypes. Vegetative growth of the regenerants recovered from cryopreservation, significantly increased as the number of subculture cycles increased and was greater than the control after the third subculture following cryopreservation. Inter-simple sequence repeats (ISSR) and random amplification of polymorphic DNA (RAPD) analyses did not detect any polymorphic loci in the plants of V. vinifera L. cv. ‘Cabernet Sauvignon’ from cryopreserved shoot tips compared to the original cultures. This droplet-vitrification cryopreservation method provides a technical platform to set up cryobanks of Vitis spp.  相似文献   

2.
Jerusalem artichoke (Helianthus tuberosus L.) cultivars are conserved in genebanks for use in breeding and horticultural research programs. Jerusalem artichoke collections are particularly vulnerable to environmental and biological threats because they are often maintained in the field. These field collections could be securely conserved in genebanks if improved cryopreservation methods were available. This work used four Jersualem artichoke cultivars (‘Shudi’, ‘M6’, ‘Stampede’, and ‘Relikt’) to improve upon an existing procedure. Four steps were optimized and the resulting procedure is as follows: preculture excised shoot tips (2–3 mm) in liquid MS medium supplemented with 0.4 M sucrose for 3 days, osmoprotect shoot tips in loading solution for 30 min, dehydrate with plant vitrification solution 2 for 15 min before rapid cooling in liquid nitrogen, store in liquid nitrogen, rapidly rewarm in MS liquid medium containing 1.2 M sucrose, and recover on MS medium supplemented with 0.1 mg L?1 GA3 for 3–5 days in the dark and then on the same medium for 4–6 weeks in the light (14 h light/10 h dark). After cryopreservation, Jerusalem artichoke cultivar ‘Shudi’ had the highest survival (93%) and regrowth (83%) percentages. Cultivars ‘M6’, ‘Stampede’, and ‘Relikt’ achieved survival and regrowth percentages ranging from 44 to 72%, and 37–53%, respectively. No genetic changes, as assessed by using simple sequence repeat markers, were detected in plants regenerated after LN exposure in Jerusalem artichoke cultivar ‘Shudi’. Differential scanning calorimetry analyses were used to investigate the thermal activities of the tissues during the cryopreservation process and it was determined that loading with 2.0 M sucrose and 0.4 M sucrose dehydrated the shoot tips prior to treatment with PVS2. Histological observations revealed that the optimized droplet vitrification protocol caused minimal cellular damage within the meristem cells of the shoot tips.  相似文献   

3.
 Sugar beet shoot tips from cold-acclimated plants were successfully cryopreserved using a vitrification technique. Dissected shoot tips were precultured for 1 day at 5  °C on solidified DGJ0 medium with 0.3 M sucrose. After loading for 20 min with a mixture of 2 M glycerol and 0.4 M sucrose (20  °C), shoot tips were dehydrated with PVS2 (0  °C) for 20 min prior to immersion in liquid nitrogen. Both cold acclimation and loading enhanced the dehydration tolerance of shoot tips to PVS2. After thawing, shoot tips were deloaded for 15 min in liquid DGJ0 medium with 1.2 M sucrose (20  °C). The optimal exposure time to both loading solution and PVS2 depended on the in vitro morphology of the clone. With tetraploid clones a higher sucrose concentration during cold acclimation and preculture further enhanced survival after cryopreservation. Survival rates ranged between 60% and 100% depending on the clone. Since only 10–50% of the surviving shoot tips developed into non-hyperhydric shoots, regrowth was optimized. Received: 13 September 1999 / Revision received: 2 March 2000 / Accepted: 16 March 2000  相似文献   

4.
Tuberaria major is an endangered endemic species from the Algarve, in the south of Portugal. We investigated two techniques for the cryopreservation of T. major shoot tips, namely vitrification and encapsulation-dehydration. Before the cryopreservation trials, shoot tips were precultured for 1 day on liquid Murashige and Skoog (MS) medium containing 0.3 M sucrose. For the vitrification method, shoots tips were exposed for 0, 30, 60, 90 and 120 min to plant vitrification solution 2 (PVS2). As for the encapsulation-dehydration method, shoot tips were dried inside a laminar air flow cabinet for 0, 1, 2, 3, 4, 5 and 6 h at room temperature. The highest regrowth percentages were approximately 60 and 67 % for vitrification and encapsulation-dehydration, respectively. The best times were 60 min exposure to PVS2 for vitrification and 3 h desiccation for encapsulation-dehydration. Though these are preliminary results, the use of the cryopreservation techniques tested here proved to be an important asset in the conservation of this endangered species and will complement the conservation strategies previously developed.  相似文献   

5.
Summary The objective of this study was to establish a cryopreservation protocol for sour orange (Citrus aurantium L.). Cryopreservation was carried out via encapsulation-dehydration, vitrification, and encapsulation-vitrification on shoot tips excised from in vitro cultures. Results indicated that a maximum of 83% survival and 47% regrowth of encapsulated-dehydrated and cryopreserved shoot tips was obtained with 0.5M sucrose in the preculture medium and further dehydration for 6 h to attain 18% moisture content. Dehydration of encapsulated shoot tips with silica gel for 2h resulted in 93% survival but only 37% regrowth of cryopreserved shoot tips. After preculturing with 0.5M sucrose, 80% of the vitrified cryopreserved shoots survived when 2M sucrose plus 10% dimethyl sulfoxide (DMSO) was used as a cryoprotectant for 20 min at 25°C. Survival and regrowth of vitrified cryopreserved shoot tips were 67% and 43%, respectively, when 0.4M sucrose plus 2M glycerol was used as a loading solution followed by application of 100% plant vitrification solution (PVS2) for 20 min. Increased duration of exposure to the loading solution up to 60 min increased survival (83%) and regrowth (47%) of cryopreserved shoot tips. With encapsulation-vitrification, dehydration with 100% PVS2 for 2 or 3 h at 0°C resulted in 50 or 57% survival and 30 or 40% regrowth, respectively, of cryopreserved shoot tips.  相似文献   

6.
Cryopreservation of Robinia pseudoacacia explants by vitrification achieved 78% survival following the stepwise preculture of shoot tips in (0.3 + 0.5 + 0.7 M) sucrose with a 80 min incubation in PVS2; compared to 87% survival after desiccation of explants to 30% water content, following 3 days alginate bead (with glycerol and sucrose treatments) preculture in 0.7 M sucrose.  相似文献   

7.
The objective of the present study was the cryopreservation of monotypic endemic Hladnikia pastinacifolia Rchb. shoot tips from an in vitro culture, via encapsulation-dehydration (ED) or encapsulation-vitrification (EV). For all tested genotypes, the highest rates of shoot regrowth and multiplication were obtained after overnight preculture in 0.4 M sucrose, encapsulation in Murashige and Skoog (MS) medium with 0.4 M sucrose and 1 M glycerol, followed by polymerization in 3% (w/v) Na-alginate in MS with 0.4 M sucrose. Optimal osmoprotection was achieved for ED with 0.4 M sucrose plus 1 M glycerol and for EV with 0.4 M sucrose plus 2 M glycerol. The best dehydration time for ED was 150 min in a desiccation chamber with silica gel, and the best vitrification time for EV was 85 min in plant vitrification solution 2 (PVS2). For ED, dehydration for 150 min resulted in explant water content of 22%. When the encapsulation method was combined with ED, 53% regrowth was achieved, and when it was combined with EV, 64% regrowth was achieved. Both methods could become applicable for the long-term cryopreservation of H. pastinacifolia germplasm, although EV was faster and resulted in better final regrowth success. Genetic stability analysis of cryopreserved plant samples was carried out for two genotypes, using random amplified polymorphic DNA (RAPD) markers to compare the two different cryopreservation protocols. Significant genetic differences between the genotypes were detected and a low level of genomic variation was observed.  相似文献   

8.
In this work, we compared the efficiency of encapsulation-dehydration and droplet-vitrification techniques for cryopreserving grapevine (Vitis vinifera L.) cv. Portan shoot tips. Recovery of cryopreserved samples was achieved with both techniques; however, droplet-vitrification, which was used for the first time with grapevine shoot tips, produced higher regrowth. With encapsulationdehydration, encapsulated shoot tips were precultured in liquid medium with progressively increasing sucrose concentrations over a 2-day period (12 h in medium with 0.25, 0.5, 0.75 and 1.0 M sucrose), then dehydrated to 22.28% moisture content (fresh weight). After liquid nitrogen exposure 37.1% regrowth was achieved using 1 mm-long shoot tips and only 16.0% with 2 mm-long shoot tips. With droplet-vitrification, 50% regrowth was obtained following treatment of shoot tips with a loading solution containing 2 M glycerol + 0.4 M sucrose for 20 min, dehydration with half-strength PVS2 vitrification solution (30% (w/v) glycerol, 15% (w/v) ethylene glycol, 15% dimethylsulfoxide and 0.4 M sucrose in basal medium) at room temperature, then with full strength PVS2 solution at 0°C for 50 min before direct immersion in liquid nitrogen. No regrowth was achieved after cryopreservation when shoot tips were dehydrated with PVS3 vitrification solution (50% (w/v) glycerol and 50% (w/v) sucrose in basal medium).  相似文献   

9.
In vitro-grown shoot tips of Alnus glutinosa (L.) Gaertn. were successfully cryopreserved by vitrification. Shoot tips (0.5–1 mm) excised from 6-week-old shoots were precultured in hormone-free Woody Plant Medium (WPM) supplemented with 0.2 M sucrose, for 2 days at 4 °C in the dark, and then treated with a mixture of 2 M glycerol plus 0.4 M sucrose, for 20 min at 25 °C. Osmoprotected shoot tips were first dehydrated with 50 % vitrification solution (PVS2), for 30 min at 0 °C, and then placed in 100 % PVS2, for 30 min at 0 °C. The solution was replaced with fresh 100 % PVS2, and the shoot tips were plunged directly into liquid nitrogen. The shoot tips were rewarmed in a water bath at 40 °C for 2 min, and then washed twice, for 10 min at 25 °C, with 1.2 M sucrose solution, before being transferred onto WPM supplemented with 0.5 mg l?1 N 6-benzyladenine, 0.5 mg l?1 indole-3-acetic acid, 0.2 mg l?1 zeatin, 20 g l?1 glucose and 6 g l?1 Difco Bacto agar. The shoot tips were kept in darkness for 1 week and under dim lighting for another week, before being exposed to standard culture conditions (16 h photoperiod). This protocol was successfully applied to three alder genotypes, with recovery rates higher than 50 %.  相似文献   

10.
In vitro grown shoot tips of transgenic papaya lines (Carica papaya L.) were successfully cryopreserved by vitrification. Shoot tips were excised from stock shoots that were preconditioned in vitro for 45–50-day-old and placed on hormone-free MS medium with 0.09 M sucrose. After loading for 60 min with a mixture of 2 M glycerol and 0.4 M sucrose at 25°C, shoot tips were dehydrated with a highly concentrated vitrification solution (PVS2) for 80 min at 0°C and plunged directly into liquid nitrogen. The regeneration rate was approximately 90% after 2 months post-thawing. Successfully vitrified and warmed shoot tips of three non-transgenic varieties and 13 transgenic lines resumed growth within 2 months and developed shoots in the absence of intermediate callus formation. Dehydration with PVS2 was important for the cryopreservation of transgenic papaya lines. This vitrification procedure for cryopreservation appears to be promising as a routine method for cryopreserving shoot tips of transgenic papaya line germplasm.  相似文献   

11.
 Routine cryopreservation of shoot tips from sweet potato [Ipomoea batatas (L.) Lam] has been hampered by their survival variability after cryogenic exposure. We examined the effects of light conditions on stock plants, sucrose preculture and cryoprotectant loading on survival after vitrification using PVS2 solution. The survival of vitrified sweet potato shoot tips cooled to approximately –208  °C was increased by preculturing with 0.3 M sucrose for 24 h at 22  °C. Survival was also enhanced by excising shoot tips immediately after the 8-h dark photoperiod. The best survival after cryogenic exposure was obtained using 2 M glycerol +0.4 M sucrose for 1 h at 22  °C followed by dehydration with PVS2 for 16 min at 22  °C. Rapid cooling was used and achieved by the immersion of foil strips into partially solidified nitrogen. Successfully vitrified and warmed shoot tips directly developed shoots on a medium containing 1 μM NAA, 0.5 μM BA and 0.1 μM kinetin with only minimum callus formation. Shoot formation occurred in all surviving shoot tips. This procedure shows promise for cryopreserving sweet potato shoot tips. Received: 2 March 1999 / Revision received: 21 September 1999 / Accepted: 29 September 1999  相似文献   

12.
In vitro-grown shoot tips of five tetraploid potato (SolanumtuberosumL.) clones were cryopreserved by vitrification. Excisedshoot tips (0.5–0.7 mm) were pre-cultured on filter paperdiscs over half strength liquid Murashige and Skoog (MS) mediumsupplemented with 8.7 µMGA3and different combinationsof sucrose (0.3, 0.5 and 0.7M) plus mannitol (0, 0.2 and 0.4M)for 2 d under a 16 h photoperiod at 24 °C. The pre-culturedshoot tips were either successively loaded with 20 and 60% PVS2 solutions or directly exposed to concentrated vitrificationsolution before physical vitrification during liquid nitrogentreatment. The vitrified shoot tips were warmed rapidly andtreated with dilution mixture (MS+1.2Msucrose) for 30 min beforeplating on regrowth medium. Addition of mannitol to the pre-culturemedium improved survival of vitrified shoot tips. Direct dehydrationof pre-cultured shoot tips with concentrated PVS 2 was detrimentalto survival of vitrified shoot tips. Shoot tips pre-culturedon medium containing 0.3Msucrose plus 0.2Mmannitol, and loadedwith 20% PVS 2 for 30 min followed by 15 min incubation in 60%PVS 2 and 5 min incubation in 100% PVS 2 at 0 °C resultedin up to 54% survival after vitrification. About 50% of vitrifiedand warmed shoot tips formed shoots directly. Post-thaw culturingof vitrified shoot tips on medium containing an elevated levelof sucrose (0.2M) under diffuse light for the first week enhancedthe survival rate. Continuous culturing of vitrified shoot tipson high-sucrose medium induced multiple shoot formation.Copyright1998 Annals of Botany Company Solanum tuberosumL., potato, cryopreservation, germplasm conservation,in vitroconservation, meristems, shoot tips, tissue culture, vitrification.  相似文献   

13.
We report a straightforward and widely applicable cryopreservation method for Lilium shoot tips. This method uses adventitious shoots that were induced from leaf segments cultured for 4 weeks on a shoot regeneration medium containing 1 mg/l α-naphthaleneacetic acid and 0.5 mg/l thidiazuron. Shoot tips (1.5–2 mm in length) including 2–3 leaf primordia were precultured on Murashige and Skoog (MS; 1962) medium with 0.5 M sucrose for 1 day and then treated with a loading solution containing 0.4 M sucrose and 2 M glycerol for 20 min, followed by a Plant Vitrification Solution 2 (PVS2) treatment for 4 h at 0 °C. Dehydrated shoot tips were transferred onto 2.5 µl PVS2 droplets on aluminum foil strips, prior to a direct immersion into liquid nitrogen for 1 h. Frozen shoot tips were re-warmed in MS medium containing 1.2 M sucrose for 20 min at room temperature, followed by post-thaw culture for shoot regrowth. Shoot regrowth levels ranged from 42.5 % for L. longiflorum × Oriental ‘Triumphator’ to 87.5 % for L. Oriental hybrid ‘Siberia’, with a mean shoot regrowth level of 67.1 % across the six diverse Lilium genotypes tested. Histological observations found that the survival patterns were similar in cryopreserved shoot tips of ‘Triumphator’ and ‘Siberia’. Assessments using inter-simple sequence repeat markers found no differences in regenerants recovered from the control stock cultures and from cryopreserved shoot tips in ‘Triumphator’ and ‘Siberia’. This Lilium droplet-vitrification cryopreservation method is efficient, simple and widely applicable for the long-term conservation of lily genetic resources.  相似文献   

14.
Cryopreservation is a reliable and cost-effective method for the long-term preservation of clonally propagated species. The number of vegetatively propagated species conserved by cryopreservation is increasing through development of vitrification-based methods; droplet vitrification in particular is becoming the preferred method for many species, as it ensures fast freezing and thawing rates. This research investigated if cold, antioxidant and osmotic pre-treatments could maintain the structural integrity of cells, thence aid in developing a droplet vitrification protocol for kiwifruit using Actinidia chinensis var. chinensis ‘Hort16A’ as a model. Cold acclimation of donor plantlets at 4 °C for 2 weeks followed by sucrose pre-culture of shoot tips and supplementation of ascorbic acid (0.4 mM) in all media throughout the procedure registered 40% regeneration after cryopreservation. Transmission electron microscope imaging of meristematic cells confirmed sucrose and ascorbic acid pre-treatment of shoot tips from cold acclimated plantlets following treatment in vitrification solution exhibited severe plasmolysis and some disruption of membrane and vacuoles. In contrast cells without cold acclimation or sucrose and ascorbic acid pre-treatments exhibited minimal change after exposure to vitrification solution. After cryopreservation and recovery, all cells of untreated shoot tips showed rupture of the plasma membrane, loss of cytoplasmic contents and organelle distortions. By comparison, most pre-treated shoot-tip cells from cold acclimated plantlets retained their structural integrity, showing that only those cells that have been dehydrated and plasmolysed can withstand cryopreservation by vitrification.  相似文献   

15.
In this study, we investigated the possibility of using the droplet-vitrification technique for cryopreserving nodal segments of in vitro plantlets of the endangered plant species Lithodora rosmarinifolia. Among the three vitrification solutions tested, only solutions B1, containing (w/v) 50 % glycerol and 50 % sucrose, and B3, containing 40 % glycerol and 40 % sucrose, were able to induce cryotolerance in nodal explants, resulting in intermediate survival and recovery after cryopreservation. A three-step vitrification protocol, including an additional dehydration treatment with half-strength vitrification solution for 30 min before the treatment with full-strength vitrification solution, did not lead to any improvement in survival and recovery compared with the two-step protocol. The optimal protocol was the following: preculture of nodal segments in liquid medium with 0.3 M sucrose for 16 h and 0.7 M sucrose for 5 h, treatment for 20 min in loading solution containing 1.9 M glycerol + 0.5 M sucrose, dehydration with vitrification solution B1 (glycerol 50.0 %, sucrose 50.0 %, w/v) for 60 min at room temperature, rapid cooling in minute droplets of vitrification solution, and rapid rewarming by immersion of nodal segments for 20 min in unloading solution containing 1.2 M sucrose. Under these conditions, 33 % recovery of cryopreserved nodal explants was achieved. Regrowth of cryopreserved samples was rapid and direct. These results indicate that long-term storage of L. rosmarinifolia by means of cryopreservation of nodal segments is possible, thereby contributing to securing the diversity of this rare and endangered plant species.  相似文献   

16.
A vitrification method enabled efficient cryopreservation of embryogenic tissue (ETs) of Norway spruce (Picea abies L.) at ?196 °C in liquid nitrogen (LN). Correctly formed, normal somatic embryos were generated from ETs that had been thawed after removal from LN. The pregrowth-dehydration method involved preculture of ETs with sucrose (0.25–1.00 M) in the presence or absence of 10 μM abscisic acid (ABA), followed by air-drying for 2 h and rapid freezing in LN. Pretreatment of ETs with both sucrose and ABA promoted ET growth after preculture and thawing more effectively than treatment with sucrose alone. Survival of ETs after thawing from LN using both sucrose and ABA was 54.4 % compared to pretreatment with sucrose alone which was 20 %. Addition of ABA in the preculture medium also improved the ability of ETs to form cotyledonary stage somatic embryos. The somatic embryos, which had normal shoot and root apices and the correct number of cotyledons, were indistinguishable from regenerants obtained from control cultures. Genetic analysis of control and cryopreserved ETs, as well as somatic embryos derived from cryopreserved ETs, indicated that the cryopreservation method had no effect on any of the five microsatellite loci (SpAGC1, SpAGC2, SpAGG3, SpAC1H8, and SpAC1F7) tested. The cryopreservation protocol outlined should enable the long-term storage of valuable clones of Norway spruce in LN, potentially for hundreds of years.  相似文献   

17.
Volk GM  Caspersen AM 《Protoplasma》2007,231(3-4):215-226
Summary. Successful cryopreservation of plant shoot tips is dependent upon effective desiccation through osmotic or physical processes. Microscopy techniques were used to determine the extent of cellular damage and plasmolysis that occurs in peppermint (Mentha × piperita) shoot tips during the process of cryopreservation, using the cryoprotectant plant vitrification solution 2 (PVS2) (30% glycerol, 15% dimethyl sulfoxide, 15% ethylene glycol, 0.4 M sucrose) prior to liquid-nitrogen exposure. The meristem cells were the smallest and least plasmolyzed cell type of the shoot tips, while the large, older leaf and lower cortex cells were the most damaged. When treated with cryoprotectant solutions, meristem cells exhibited concave plasmolysis, suggesting that this cell type has a highly viscous protoplasm, and protoplasts have many cell wall attachment sites. Shoot tip cells were most severely plasmolyzed after PVS2 treatment, liquid-nitrogen exposure, and warming in 1.2 M sucrose. Successful recovery may be dependent upon surviving the plasmolytic conditions induced by warming and diluting treated shoot tips in 1.2 M sucrose solutions. In peppermint shoot tips, clumps of young meristem or young leaf cells survive the cryopreservation process and regenerate plants containing many shoots. Cryoprotective treatments that favor survival of small, meristematic cells and young leaf cells are most likely to produce high survival rates after liquid-nitrogen exposure. Correspondence and reprints: National Center for Genetic Resources Preservation, U.S. Department of Agriculture, 1111 S. Mason Street, Fort Collins, CO 80521, U.S.A.  相似文献   

18.
This study was carried out to optimize a modified droplet-vitrification procedure for the cryopreservation of shoot tips from different carnation genotypes. The best procedure was developed by applying orthogonal tests to the experimental data and by further investigation of the effects on the regrowth percentage. It consisted in preculturing shoot tips in liquid Murashige and Skoog (MS) medium with 0.3 M sucrose for 2 days, pretreating them in liquid MS medium with 5 % Dimethyl sulfoxide +5 % glycerol + 0.3 M sucrose for 10 min, osmoprotecting in Loading solution for 20 min at 25 °C, cryoprotecting with Plant vitrification solution No.2 (PVS2) for 60 min at 0 °C, transferring in drops of fresh PVS2 over aluminum strips and finally storing them in Liquid nitrogen. With the application of the optimized protocol, four carnation cultivars (‘Master’, ‘Calibra’, ‘Lamour’ and ‘Ofcar’) achieved regrowth percentage after cryopreservation ranging from 41 to 73 %. Ultrastructural observations investigated by using transmission electron microscopy showed that the cells encountered the stress during cryopreservation and the main damages occurred during the dehydration step. For surviving cells, the most of the damaged cells could be repaired after recovery growth. This modified protocol will aid in the long-term conservation of carnation germplasm and the ultrastructural studies will benefit for understanding the damage and recovery of the cells during cryopreservation.  相似文献   

19.
Hirai D  Sakai A 《Plant cell reports》2003,21(10):961-966
Shoot tips of sweet potato were successfully cryopreserved using an encapsulation vitrification method. Encapsulated shoot tips were pre-incubated in liquid Murashige-Skoog medium containing 30 g/l sucrose for 24 h, then precultured in sucrose-enriched medium (0.3 M sucrose) for 16 h. Shoot tips were osmoprotected with a mixture of 2 M glycerol and 1.6 M sucrose for 3 h before being dehydrated with a highly concentrated vitrification solution (PVS2) for 1 h at 25 degrees C. The encapsulated and dehydrated shoot tips were transferred to a 2 ml cryotube, suspended in 0.5 ml PVS2, and plunged directly into liquid nitrogen. Rapidly warmed shoot tips developed normal shoots and roots in 21 days without any morphological abnormalities after plating on a recovery medium. High levels (average of about 80%) of shoot formation were obtained for three cultivars of sweet potato. This encapsulation vitrification method appears promising for cryopreservation of sweet potato germplasm.  相似文献   

20.
This study was carried out on Kober 5BB (Vitis Berlandieri × V. riparia) grape rootstock shoot tips during the preparatory steps preceding the direct immersion in liquid nitrogen, in order to overcome until now unsuccessful cryopreservation with this species. The exposure of shoot tips to 0.3–0.4 M sucrose leads to a high cell solute concentration. The treatment with plant vitrification solution (PVS2) alone, i.e., not followed by storage in liquid nitrogen, markedly affected shoot tip survival. After a 30 min exposure, regrowth percentage of shoot tips decreased from 94 % (control) to 57 %, and dropped to 15 % when the treatment was prolonged up to 60 min. After a 90 min exposure, no regrowth occurred. In addition, plantlets regenerated from shoot tips which underwent 60 min or more exposure to PVS2 showed signs of malformation. Microscope observations of shoot tips treated with 0.3 or 0.4 M sucrose and 30 min PVS2 showed the presence of cells starting to plasmolyze, localized in the area surrounding the apical meristem. A limited presence of starch grains in meristem and bract cells was also noted. However, the most conspicuous consequence of prolonged PVS2 treatment was convex plasmolysis. The phenomenon was dependent on the time of PVS2 exposure. Indeed, after a 30 min treatment, plasmolysis was minimal or absent, but it increased with longer exposure to PVS2 at 4 °C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号