首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the present study, a simple and efficient method for obtaining transgenic callus tissues of soybean [Glycine max (L.) Merr.] was developed based on Agrobacterium-mediated transformation. Hypocotyl segments of soybean were used as the starting material. Several factors such as soybean genotype, Agrobacterium concentration, inoculation time, co-cultivation period and addition of antioxidants in co-cultivation medium affecting the transformation efficiency were examined. The explants were cultured on callus induction medium containing 0.5 mg L?1 6-benzylaminopurine and 2.0 mg L?1, 2,4-Dichlorophenoxyacetic acid for callus induction. Callus tissues were induced at both the acropetal and basipetal ends. CaMV35S::GUS and CaMV35S::GFP transgenic callus tissues were obtained using the optimized protocol. The average transformation efficiency reached up to 87.7 % based on GUS detection. From inoculation with Agrobacterium to obtaining transgenic soybean callus will take about 3 weeks. In order to validate this method for gene function investigation, GVG::GmSARK transgenic soybean callus tissues were obtained and their senescence-associated phenotypes were assessed. To our knowledge, this is the first report using hypocotyl segments as starting materials to obtain transgenic callus, and this system provides a method for high-throughput screening of functional genes of interest in transformed soybean callus.  相似文献   

2.
Plant defense responses can lead to altered metabolism and even cell death at the sites of Agrobacterium infection, and thus lower transformation frequencies. In this report, we demonstrate that the utilization of culture conditions associated with an attenuation of defense responses in monocot plant cells led to highly improved Agrobacterium-mediated transformation efficiencies in perennial ryegrass (Lolium perenne L.). The removal of myo-inositol from the callus culture media in combination with a cold shock pretreatment and the addition of l-Gln prior to and during Agrobacterium-infection resulted in about 84 % of the treated calluses being stably transformed. The omission of myo-inositol from the callus culture media was associated with the failure of certain pathogenesis related genes to be induced after Agrobacterium infection. The addition of a cold shock and supplemental Gln appeared to have synergistic effects on infection and transformation efficiencies. Nearly 60 % of the stably transformed calluses regenerated into green plantlets. Calluses cultured on media lacking myo-inositol also displayed profound physiological and biochemical changes compared to ones cultured on standard growth media, such as reduced lignin within the cell walls, increased starch and inositol hexaphosphate accumulation, enhanced Agrobacterium binding to the cell surface, and less H2O2 production after Agrobacterium infection. Furthermore, the cold treatment greatly reduced callus browning after infection. The simple modifications described in this report may have broad application for improving genetic transformation of recalcitrant monocot species.  相似文献   

3.
In this study, leaf midribs, the elite explants, were used for the first time to develop an efficient regeneration and transformation protocol for ramie [Boehmeria nivea (L.) Gaud.] via Agrobacterium-mediated genetic transformation. Sensitivity of leaf midribs regeneration to kanamycin was evaluated, which showed that 40 mg l?1 was the optimal concentration needed to create the necessary selection pressure. Factors affecting the ramie transformation efficiency were evaluated, including leaf age, Agrobacterium concentration, length of infection time for the Agrobacterium solution, acetosyringone concentration in the co-cultivation medium, and the co-cultivation period. The midrib explants from 40-day-old in vitro shoots, an Agrobacterium concentration at OD600 of 0.6, 10-min immersion in the bacteria solution, an acetosyringone concentration of 50 mg l?1 in the co-cultivation medium and a 3-day co-cultivation period produced the highest efficiencies of regeneration and transformation. In this study, the average transformation rate was 23.25 %. Polymerase chain reactions using GUS and NPTII gene-specific primers, Southern blot and histochemical GUS staining analyses further confirmed that the transgene was integrated into the ramie genome and expressed in the transgenic ramie. The establishment of this system of Agrobacterium-mediated genetic transformation and regeneration of transgenic plants will be used not only to introduce genes of interest into the ramie genome for the purpose of trait improvement, but also as a common means of testing gene function by enhancing or inhibiting the expression of target genes.  相似文献   

4.
Tissue culture techniques, medium composition, pH value and targeted tissues, agroinfection and co-culture conditions, selection process were optimized for efficient turfgrass transformation. A highly regenerable callus lines were produced in callus induction medium modified from N6 basal medium. Six-week-old calluses were cultured on Pre-regeneration medium I for 4 days and then subjected to Agrobacterium tumefaciens. After co-cultivation at 20±1 °C in a 16 h light/8 h darkness for 3 days, the calluses were cultured on non-selective Pre-regeneration medium II supplemented with 400 mg l−1 l-cysteine for 7 days. Plantlets were regenerated on the Regeneration medium without selection pressure. A selection pressure was given to the regenerated plantlets when they were rooted on the Plantlet rooting medium. Roots appeared within 8–12 days in putative transformed plantlets. Resistant plants obtained were phenotypically normal and fully fertile. Chemical and molecular analyses confirmed that foreign genes were successfully introduced into the genome of perennial ryegrass or tall fescue. The transformation efficiency can attain 23.3% in perennial ryegrass.  相似文献   

5.
For the first time we have developed a reliable and efficient vacuum infiltration-assisted Agrobacterium-mediated genetic transformation (VIAAT) protocol for Indian soybean cultivars and recovered fertile transgenic soybean plants through somatic embryogenesis. Immature cotyledons were used as an explant and three Agrobacterium tumefaciens strains (EHA 101, EHA 105, and KYRT 1) harbouring the binary vector pCAMBIA1301 were experimented in the co-cultivation. The immature cotyledons were pre-cultured in liquid somatic embryo induction medium prior to vacuum infiltration with the Agrobacterium suspension and co-cultivated for 3 days on co-cultivation medium containing 50 mg l?1 citric acid, 100 µM acetosyringone, and 100 mg l?1 l-cysteine. The transformed somatic embryos were selected in liquid somatic embryo induction medium containing 10 mg l?1 hygromycin and the embryos were germinated in basal medium containing 20 mg l?1 hygromycin. The presence and integration of the hpt II and gus genes into the soybean genome were confirmed by GUS histochemical assay, polymerase chain reaction, and Southern hybridization. Among the different combinations tested, high transformation efficiency (9.45 %) was achieved when immature cotyledons of cv. Pusa 16 were pre-cultured for 18 h and vacuum infiltrated with Agrobacterium tumefaciens KYRT 1 for 2 min at 750 mm of Hg. Among six Indian soybean cultivars tested, Pusa 16 showed highest transformation efficiency of 9.45 %. The transformation efficiency of this method (VIAAT) was higher than previously reported sonication-assisted Agrobacterium-mediated transformation. These results suggest that an efficient Agrobacterium-mediated transformation protocol for stable integration of foreign genes into soybean has been developed.  相似文献   

6.
An efficient and reproducible Agrobacterium-mediated genetic transformation of Withania coagulans was achieved using leaf explants of in vitro multiple shoot culture. The Agrobacterium strain LBA4404 harboring the binary vector pIG121Hm containing β-glucuronidase gene (gusA) under the control of CaMV35S promoter was used in the development of transformation protocol. The optimal conditions for the Agrobacterium-mediated transformation of W. coagulans were found to be the co-cultivation of leaf explants for 20 min to agrobacterial inoculum (O.D. 0.4) followed by 3 days of co-cultivation on medium supplemented with 100 μM acetosyringone. Shoot bud induction as well as differentiation occurred on Murashige and Skoog medium supplemented with 10.0 μM 6-benzylaminopurine, 8.0 μM indole 3-acetic acid, and 50.0 mgl?1 kanamycin after three consecutive cycles of selection. Elongated shoots were rooted using a two-step procedure involving root induction in a medium containing 2.5 μM indole 3-butyric acid for 1 week and then transferred to hormone free one-half MS basal for 2 weeks. We were successful in achieving 100 % frequency of transient GUS expression with 5 % stable transformation efficiency using optimized conditions. PCR analysis of T0 transgenic plants showed the presence of gusA and nptII genes confirming the transgenic event. Histochemical GUS expression was observed in the putative transgenic W. coagulans plants. Thin layer chromatography showed the presence of similar type of withanolides in the transgenic and non-transgenic regenerated plants. A. tumefaciens mediated transformation system via leaf explants developed in this study will be useful for pathway manipulation using metabolic engineering for bioactive withanolides in W. coagulans, an important medicinal plant.  相似文献   

7.
We developed an efficient Agrobacterium-mediated transformation protocol for spinach (Spinacia oleracea L.) that uses root-derived callus. Evaluation of this protocol was based on the systematic evaluation of factors that influence transformation efficiency. Four of the five factors that were tested significantly affected the transformation efficiency, including spinach cultivar, Agrobacterium tumefaciens strain and density, and the duration of co-cultivation. Transgenic spinach plants were generated based on optimized conditions, consisting of callus explants of the cultivar Gyeowoonae, A. tumefaciens strain EHA105 with OD600 of 0.2, a co-cultivation period of 4 d, and 100 μM acetosyringone supplemented in the inoculation and co-cultivation media. After co-cultivation with A. tumefaciens, explants were cultured in low-selective and then non-selective conditions to enhance the growth of putative transgenic explants. Visualization of the fluorescent marker, enhanced green fluorescent protein (EGFP), was used to select transgenic explants at several stages, including callus, somatic cotyledonary embryo, and plantlet. The best results for fluorescence visualization screening were obtained at the somatic cotyledonary embryo stage. On average, 24.96?±?6.05% of the initial calli regenerated shoots that exhibited EGFP fluorescence. The putative transgenic plants were subjected to β-glucuronidase (GUS)-staining assay, phosphinothricin acetyltransferase (PAT) strip test, and molecular analyses to assess the transgene incorporation into plant genome and its expression. All EGFP-positive plants tested were confirmed to be transgenic by GUS-staining assay, PAT strip test, and molecular analyses. The transformation system described in this study could be a practical and powerful technique for functional genetic analysis and genetic modification of spinach.  相似文献   

8.
An efficient Agrobacterium-mediated genetic transformation method has been developed for the medicinal plant Podophyllum hexandrum Royle, an important source of the anticancer agent podophyllotoxin. Highly proliferating embryogenic cells were infected with Agrobacterium tumefaciens harbouring pCAMBIA 2301, which contains npt II and gusA as selection marker and reporter genes, respectively. The transformed somatic embryos and plantlets were selected on Murashige and Skoog (MS) basal medium containing kanamycin and germination medium, respectively. GUS histochemical analysis, polymerase chain reaction and Southern blot hybridisation confirmed that gusA was successfully integrated and expressed in the P. hexandrum genome. Compared with cefotaxime, 200 mg l?1 timentin completely arrested Agrobacterium growth and favoured somatic embryo development from embryogenic cells. Among the different Agrobacterium strains, acetosyringone concentrations and co-cultivation durations tested, embryogenic callus infected with A. tumefaciens EHA 105 and co-cultivated for 3 days on MS basal medium containing 100 μM acetosyringone proved to be optimal and produced a transformation efficiency of 29.64 % with respect to germinated GUS-positive plantlets. The Agrobacterium-mediated genetic transformation method developed in the present study facilitates the transference of desirable genes into P. hexandrum to improve the podophyllotoxin content and to enhance other useful traits.  相似文献   

9.
A high throughput genetic transformation system in maize has been developed with Agrobacterium tumefaciens mediated T-DNA delivery. With optimized conditions, stable callus transformation frequencies for Hi-II immature embryos averaged approximately 40%, with results in some experiments as high as 50%. The optimized conditions include N6 medium system for Agrobacterium inoculation, co-cultivation, resting and selection steps; no AgNo3 in the infection medium and adding AgNo3 in co-cultivation, resting and selection medium; Agrobacterium concentration at 0.5×109 c.f.u. ml–1 for bacterium inoculation; 100 mg l–1 carbenicillin used in the medium to eliminate Agrobacterium after inoculation; and 3 days for co-cultivation and 4 days for resting. A combination of all of these conditions resulted in establishing a high throughput transformation system. Over 500 T0 plants were regenerated and these plants were assayed by transgene expression and some of them were also analyzed by Southern hybridization. T1 plants were analyzed and transmission of transgenes to the T1 generation was verified. This represents a highly reproducible and reliable system for genetic transformation of maize Hi-II.  相似文献   

10.
The method is the first successful report of Agrobacterium mediated genetic transformation of the commercially important bamboo, Dendrocalamus hamiltonii. It shows how the resistance provided by the somatic embryos of this woody monocot can be overcome using a simple and effective method. The method thus standardized can be also used for the genetic transformation of other important bamboos. Identification of the factors responsible for the resistance of the somatic embryos to Agrobacterium infection was an absolute requirement for devising a successful method. Necrosis due to polyphenol oxidation, lack of differentiation due to cell wall thickening at wound sites, waxy surfaces of somatic embryos with anti-microbial properties were found to prevent Agrobacterium attachment and infection. Therefore, the somatic embryos were transformed with fresh overnight grown Agrobacterium culture containing 500 mg/l polyvinylpyrrolidone (PVP) and 0.01 % Tween-20 as surfactant followed by co-cultivation on Murashige and Skoog (MS) medium containing the vir gene inducer acetosyringone (100 μM) and 1 mg/l 6-Benzylaminopurine BAP for 2 days. Persistent GUS expression and strong positive signals in PCR, slot blot and Southern hybridization confirmed successful genetic transformation.  相似文献   

11.
Seashore paspalum (Paspalum vaginatum O. Swartz) is an important warm-season turfgrass with great salinity tolerance. Based on establishment of embryogenic callus induction and regeneration from different mature seeds of ‘Sea Spray’, an Agrobacterium tumefaciens-mediated transformation was established and optimized in this study. Three clones of callus were selected for examining transformation conditions using Agrobacterium tumefaciens strain AGL1 carrying the binary vector pCAMBIA1305.2, containing β-glucuronidase (GUS) as a reporter gene and hygromycin phosphotransferase (HPT) as a selective marker gene. The results showed that a high transient transformation efficiency was observed by using Agrobacterium concentration of OD600?=?0.6, 5 min of sonication treatment during Agrobacterium infection, and 2 d of co-cultivation. By using the optimized transformation conditions, transgenic seashore paspalum plants were obtained. PCR and Southern blot analysis showed that T-DNA was integrated into the genomes of seashore paspalum. GUS staining experiments showed that the GUS gene was expressed in transgenic plants. Our results suggested that the transformation protocol will provide an effective tool for breeding of seashore paspalum in the future.  相似文献   

12.
The study was carried out to evaluate the amenability of tropical inbred and hybrid maize lines, using Agrobacterium mediated transformation technique. Agrobacterium tumefaciens strains EHA101 harbouring a pTF102 binary vector, EHA101, AGL1, and LBA4404 harbouring pBECK2000.4 plasmid, LBA4404, GV and EHA105 harbouring pCAMBIA2301 plasmid, and AGL1 harbouring the pSB223 plasmid were used. Delivery of transgenes into plant tissues was assessed using transient β-glucuronidase (gus) activity on the 3rd and 4th day of co-cultivation of the infected Immature Zygotic Embryos (IZEs) and embryogenic callus. Transient gus expression was influenced by the co-cultivation period, maize genotype and Agrobacterium strain. The expression was highest after the 3rd day of co-culture compared to the 4th day with intense blue staining was detected for IZEs which were infected with Agrobacterium strains EHA105 harbouring pCAMBIA2301 and EHA101 harbouring pTF102 vector. Putative transformants (To) were regenerated from bialaphos resistant callus. Differences were detected on the number of putative transformants regenerated among the maize lines. Polymerase chain reaction (PCR) amplification of Phosphinothricin acetyltransferase (bar) and gus gene confirmed the transfer of the transgenes into the maize cells. Southern blot hybridization confirmed stable integration of gus into PTL02 maize genome and segregation analysis confirmed the inheritance of the gus. A transformation efficiency of 1.4 % was achieved. This transformation system can be used to introduce genes of interest into tropical maize lines for genetic improvement.  相似文献   

13.

Key message

An improved Agrobacterium -mediated transformation protocol is described for a recalcitrant commercial maize elite inbred with optimized media modifications and AGL1. These improvements can be applied to other commercial inbreds.

Abstract

This study describes a significantly improved Agrobacterium-mediated transformation protocol in a recalcitrant commercial maize elite inbred, PHR03, using optimal co-cultivation, resting and selection media. The use of green regenerative tissue medium components, high copper and 6-benzylaminopurine, in resting and selection media dramatically increased the transformation frequency. The use of glucose in resting medium further increased transformation frequency by improving the tissue induction rate, tissue survival and tissue proliferation from immature embryos. Consequently, an optimal combination of glucose, copper and cytokinin in the co-cultivation, resting and selection media resulted in significant improvement from 2.6 % up to tenfold at the T0 plant level using Agrobacterium strain LBA4404 in transformation of PHR03. Furthermore, we evaluated four different Agrobacterium strains, LBA4404, AGL1, EHA105, and GV3101 for transformation frequency and event quality. AGL1 had the highest transformation frequency with up to 57.1 % at the T0 plant level. However, AGL1 resulted in lower quality events (defined as single copy for transgenes without Agrobacterium T-DNA backbone) when compared to LBA4404 (30.1 vs 25.6 %). We propose that these improvements can be applied to other recalcitrant commercial maize inbreds.  相似文献   

14.
In the present study, an efficient Agrobacterium-mediated gene transformation system was developed for ramie [Boehmeria nivea (L.) Gaud.] based on the examinations of several factors affecting plant transformation efficiency. The effects of Agrobacterium cell density, acetosyringone, co-cultivation temperature, co-cultivation duration, co-cultivation photoperiod and pH on stable transformation were evaluated. Agrobacterium at a concentration of OD = 0.5–0.8 improved the efficiency of transformation. Concentration of acetosyringone at 50 mg/L during co-cultivation significantly increased transformation efficiency. Co-cultivation at 20°C, in comparison to 15, 25 and 28°C, consistently resulted in higher transformation frequencies. A relatively short co-cultivation duration (3 days) was optimal for ramie transformation. Co-cultivation medium at pH 5.9 and co-cultivation in darkness both improved the transformation efficiencies of ramie. An overall scheme for producing transgenic ramie is presented, through which an average transformation rate from 10.5 to 24.7% in five ramie varieties was obtained. Stable expression and integration of the transgenes were confirmed by histochemical GUS assay, kanamycin painting assay, PCR and Southern blotting. This optimized transformation system should be employed for efficient Agrobacterium-mediated transformation of ramie. An erratum to this article can be found at  相似文献   

15.
Agrobacterium tumefaciens-mediated transformation system was established for Hybanthus enneaspermus using leaf explants with the strain LBA4404 harbouring pCAMBIA 2301 carrying the nptII and gusA genes. Sensitivity of leaf explants to kanamycin was standardized (100 mg/l) for screening the transgenic plants. Transformation parameters (OD, virulence inducer, infection time, co-cultivation period, bactericidal antibiotics, etc.) influencing the gene transfer and integration were assessed in the present investigation. Fourteen-day pre-cultured explants were subjected with Agrobacterium strain LBA4404. Optimized parameters such as culture density of 0.5 OD600, infection time of 6 min, AS concentration of 150 µM with 3 days co-cultivation revealed maximum transformation efficiency based on GUS expression assay. The presence of gusA in transgenics was confirmed by polymerase chain reaction and Southern blotting analysis. The present transformation experiment yielded 20 shoots/explant with higher transformation efficiency (28 %). The protocol could be used to introduce genes for trait improvement as well as for altering metabolic pathway for secondary metabolites production.  相似文献   

16.

Key message

An efficient, reproducible and genotype-independent in planta transformation has been standardized for sugarcane using seed as explant.

Abstract

Transgenic sugarcane production through Agrobacterium infection followed by in vitro regeneration is a time-consuming process and highly genotype dependent. To obtain more number of transformed sugarcane plants in a relatively short duration, sugarcane seeds were infected with Agrobacterium tumefaciens EHA 105 harboring pCAMBIA 1304-bar and transformed plants were successfully established without undergoing in vitro regeneration. Various factors affecting sugarcane seed transformation were optimized, including pre-culture duration, acetosyringone concentration, surfactants, co-cultivation, sonication and vacuum infiltration duration. The transformed sugarcane plants were selected against BASTA® and screened by GUS and GFP visual assay, PCR and Southern hybridization. Among the different combinations and concentrations tested, when 12-h pre-cultured seeds were sonicated for 10 min and 3 min vacuum infiltered in 100 µM acetosyringone and 0.1 % Silwett L-77 containing Agrobacterium suspension and co-cultivated for 72-h showed highest transformation efficiency. The amenability of the standardized protocol was tested on five genotypes. It was found that all the tested genotypes responded favorably, though CoC671 proved to be the best responding cultivar with 45.4 % transformation efficiency. The developed protocol is cost-effective, efficient and genotype independent without involvement of any tissue culture procedure and can generate a relatively large number of transgenic plants in approximately 2 months.  相似文献   

17.
Turmeric (Curcuma longa L.) is a rhizomatous species belonging to the Zingiberaceae and known both for its culinary and medicinal uses. Based on an efficient tissue culture and somatic embryogenesis system that we established, we have developed a reliable Agrobacterium-mediated transformation protocol for this species. Calli derived from turmeric inflorescences were used as source tissues for transformation. Factors affecting transformation and regeneration efficiency were evaluated, including callus induction and culture conditions, Agrobacterium strains, co-cultivation conditions, selection agent sensitivity and bacterial elimination, and transformant selection. Optimized transformation conditions were identified, including: use of Agrobacterium strain EHA105 with plasmid pBISN1 for infection; a modified B5 medium system for callus induction, subculture, co-culture and selection; and MS media for transformant regeneration. Transgenic plants and their vegetative (clonal) progeny stably expressed the transgene as indicated by GUS assay, PCR and Southern blot analysis. In addition, a transient gene expression system was developed that involves Agrobacterium infiltration of young turmeric leaves followed by in vitro regeneration of plantlets. This approach established that a MADS-box-GFP fusion protein was localized to the nucleus of turmeric cells. The stable transformation and transient expression systems described herein offer opportunities for assaying gene function in turmeric and for improving turmeric properties.  相似文献   

18.
One of the limitations to conducting maize Agrobacterium-mediated transformation using explants of immature zygotic embryos routinely is the availability of the explants. To produce immature embryos routinely and continuously requires a well-equipped greenhouse and laborious artificial pollination. To overcome this limitation, an Agrobacterium-mediated transformation system using explants of type II embryogenic calli was developed. Once the type II embryogenic calli are produced, they can be subcultured and/or proliferated conveniently. The objectives of this study were to demonstrate a stable Agrobacterium-mediated transformation of maize using explants of type II embryonic calli and to evaluate the efficiency of the protocol in order to develop herbicide-resistant maize. The type II embryogenic calli were inoculated with Agrobacterium tumefaciens strain C58C1 carrying binary vector pTF102, and then were subsequently cultured on the following media: co-cultivation medium for 1 day, delay medium for 7 days, selection medium for 4 × 14 days, regeneration medium, and finally on germination medium. The T-DNA of the vector carried two cassettes (Ubi promoter-EPSPs ORF-nos and 35S promoter–bar ORF-nos). The EPSPs conferred resistance to glyphosate and bar conferred resistance to phosphinothricin. The confirmation of stable transformation and the efficiency of transformation was based on the resistance to phosphinothricin indicated by the growth of putative transgenic calli on selection medium amended with 4 mg l?1 phosphinothricin, northern blot analysis of bar gene, and leaf painting assay for detection of bar gene-based herbicide resistance. Northern blot analysis and leaf painting assay confirmed the expression of bar transgenes in the R1 generation. The average transformation efficiency was 0.60%. Based on northern blot analysis and leaf painting assay, line 31 was selected as an elite line of maize resistant to herbicide.  相似文献   

19.
In this study, recalcitrance of tea plant ( Camellia sinensis) to Agrobacterium-mediated genetic transformation was investigated with an emphasis on specialized compounds in tea. Chemical constituents in tea leaves and calli were extracted into liquid Luria–Bertani (LB) medium to determine their biological activities on Agrobacterium growth, virulence, and plant transformation efficiency. Compared to the control Agrobacterium grown in LB medium, tea leaf extract containing 6.5 mg mL?1 catechins resulted in an 84.6 % reduction of Agrobacterium growth, a 73–36 % suppression of expression for the six virulence (vir) genes, browning of infected tobacco explant wounds, and an absence of transient or stable transformation events. Tea callus extract, containing 0.22 mg mL?1 catechins, did not significantly affect Agrobacterium growth or tobacco transgenic hairy root generation, whereas it enhanced the expression of some vir genes. Treatment with authentic catechin mixtures (other than caffeine) dissolved in LB resulted in suppression of Agrobacterium growth, vir gene expression, and tobacco transformation efficiency. Our data suggest that catechins are the key active constituents in tea leaves. Transient transformation efficiencies of tea leaves were much lower than those of tobacco leaves as indicated by the GUS (β-glucuronidase) assay, probably a result of inhibition by the catechins present in tea leaves. Lower transformation efficiencies of tea calli suggested that additional plant factor(s) might also exert inhibitory effects on tea plant transformation. Agrobacterium rhizogenes ATCC 15834 induced transgenic roots from the tea explants with 15–20 % efficiency. Our data suggested catechins inhibition of tea gene transformation could be overcome by using optimized strains of Agrobacterium.  相似文献   

20.
We utilized gene transfer technology for genetic perennial ryegrass improvement, efficient regeneration, and Agrobacterium-mediated transformation of phosphinothricin acetyltransferase gene (bar). Four growth regulator combinations were compared and intact seeds of six turf-type cultivars as mature embryo sources were tested to optimize the regeneration conditions. Callus formation and regeneration were observed in all seeds. The highest callus formation frequency was observed in the seeds cultured on MS medium supplemented with 9 mg/l 2,4-D, without benzyladenine. Cv. TopGun revealed the highest callus induction and regeneration frequencies of 96 and 48.9%, respectively. By using an optimized regeneration system, embryogenic calli were transformed by an Agrobacterium strain LBA4404 containing the plasmid pCAMBIA3301. After the selection of the potentially transgenic calli with phosphinothricin, a herbicide, 22 transgenic resistant plants were regenerated. With PCR, Southern-blot hybridizations, and GUS expression techniques, we confirmed that some regenerants were transgenic. Two of the tested transgenic plants showed herbicide resistance. Our results indicated that embryogenic calli from mature seeds can be directly used for perennial ryegrass efficient regeneration and transformation and this protocol is applicable for genetic engineering of herbicide-resistant plants. Published in Russian in Fiziologiya Rastenii, 2007, Vol. 54, No. 4, pp. 590–596. The text was submitted by the authors in English.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号