首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of membrane potential on resting and bradykinin-stimulated changes in [Ca2+]i were measured in fura-2 loaded cultured endothelial cells from bovine atria by spectrofluorimetry. The basal and bradykinin-stimulated release of endothelium-derived relaxing factor, monitored by bioassay methods, were dependent on extracellular Ca2+. Similarly, the plateau phase of the biphasic [Ca2+]i response to bradykinin stimulation exhibited a dependence on extracellular Ca2+, whereas the initial transient [Ca2+]i peak was refractory to the removal of extracellular Ca2+. The effect of membrane depolarization on the plateau phase of the bradykinin-induced change in [Ca2+]i was determined by varying [K+]o. The resting membrane potential measured under current clamp conditions was positively correlated with the extracellular [K+] (52 mV change/10-fold change in [K+]o). The observed decrease in resting and bradykinin-stimulated changes in [Ca2+]i upon depolarization is consistent with an ion transport mechanism where the influx is linearly related to the electrochemical gradient for Ca2+ entry (Em - ECa). The inhibition of bradykinin-stimulated Ca2+ entry by isotonic K+ was not due to the absence of extracellular Na+ since Li+ substitution did not inhibit the agonist-induced Ca2+ entry. In K(+)-free solutions and in the presence of ouabain, bradykinin evoked synchronized oscillations in [Ca2+]i in confluent endothelial cell monolayers. These [Ca2+]i oscillations between the plateau and resting [Ca2+]i levels were dependent on extracellular Ca2+ and K+ concentrations. Although the mechanism(s) underlying [Ca2+]i oscillations in vascular endothelial cells is unclear, these results suggest a role of the membrane conductance.  相似文献   

2.
Con A刺激致T淋巴细胞胞浆游离Ca~(2+)浓度升高   总被引:1,自引:0,他引:1  
本文分别应用荧光Ca~(2+)指示剂Quin2和Indo-1研究了Con A刺激的T淋巴细胞[Ca~(2+)]i升高过程及其发生机制.结果表明Con A与T淋巴细胞作用可导致细胞[Ca~(2+)]i的迅速升高.这种增加的胞内游离Ca~(2+)不仅来自胞外Ca~(2+)的内流,也来源于胞内钙库的释放.其中Ca~(2+)内流与T细胞钙通道的开放有关.可被钙通道抑制剂戊脉胺抑制,细胞的去极化及钾通道阻断剂四乙胺均不能阻断Ca~(2+)的内流,提示Ca~(2+)内流不是通过电位操纵的钙通道实现的,也与拥通道的开闭无关.Ca~(2+)内流可能是通过Con A受体活化的受体操纵的钙通道而实现的.  相似文献   

3.
Embryonic cells transiently express an embryonic muscarinic system during morphogenesis. Stimulation of the embryonic muscarinic receptor results in biphasic intracellular Ca2+ mobilization: an initial "peak" due to Ca2+ release from intracellular stores is followed by a sustained "plateau" of enhanced cytoplasmic Ca2+ due to influx of extracellular Ca2+. In the present investigation, we characterized the Ca2+ influx by measuring the cytoplasmic free Ca2+ concentration [Ca2+]i using the Ca2+ indicator fura-2: 1. The increase of [Ca2+]i during the plateau depended linearly on the logarithm of the extracellular calcium concentration whereas the initial peak was almost independent from extracellular calcium. 2. The organic Ca2+ entry blockers verapamil, gallopamil, nifedipine, nitrendipine and the inorganic blockers Mn2+, Mg2+ and La3+ were without effect on both phases of Ca2+ mobilization. Only Ni2+ at concentrations above 1 mM was able to reduce the influx without affecting the intracellular Ca2+ release. 3. Substitution of extracellular Na+ by guanidine+, choline+ or tris+ and membrane depolarisation by increasing the extracellular K+ concentration had no effect on either phase of Ca2+ mobilization. We conclude that a non-voltage dependent, receptor-operated influx mechanism, probably a "second messenger operated Ca2+ channel", is responsible for the Ca2+ influx after stimulation of the embryonic muscarinic receptor.  相似文献   

4.
Changes in the membrane potential and the intracellular Ca2+ concentration ([Ca2+]i) caused by somatostatin (SRIF) were simultaneously measured in human GH-producing pituitary tumor cells, by means of the nystatin-perforated whole cell clamp technique and Fura-2 AM. An application of 10(-8) M SRIF hyperpolarized the membrane and arrested Ca(2+)-dependent spontaneous action potentials. [Ca2+]i concurrently decreased during membrane hyperpolarization. When the membrane potential was clamped below the threshold for voltage-gated Ca2+ channels, [Ca2+]i decreased and SRIF did not further reduce [Ca2+]i. In cells which did not show spontaneous action potentials, SRIF hyperpolarized the membrane but it affected [Ca2+]i little. From these results it was concluded that the reduction in [Ca2+]i caused by SRIF was ascribed to the decrease in Ca2+ influx through voltage-gated channels during membrane hyperpolarization. The effect of SRIF on the voltage-gated Ca2+ channel current was also examined under the perforated whole cell clamp. SRIF (10(-8) M) inhibited the Ca2+ channel current to 80.8 +/- 15.4% (n = 5) of the control. Because SRIF-induced inhibition of the voltage-gated Ca2+ channel current was not prominent, it was considered that membrane hyperpolarization is the major cause of the reduction in [Ca2+]i in human GH-producing cells.  相似文献   

5.
Stimulation of enriched pituitary gonadotrophs by gonadotropin-releasing hormone (GnRH) elicits dose-dependent biphasic elevations of cytosolic calcium ([Ca2+]i) and luteinizing hormone (LH) release, with rapid initial peaks followed by sustained plateaus during continued exposure to the agonist. A potent GnRH-antagonist, [N-acetyl-D-p-Cl-Phe1,2,D-Trp3,D-Lys6,D-Ala10]GnRH, prevented the biphasic [Ca2+]i and LH responses when added before GnRH, and rapidly abolished both responses to GnRH when added during the plateau phase. In low Ca2+ medium the LH peak responses to GnRH were reduced and the subsequent sustained responses were almost completely abolished; reduction of extracellular Ca2+ during exposure to GnRH caused a prompt decline of LH release. The initial [Ca2+]i peak is derived largely from intracellular calcium mobilization with a partial contribution from calcium influx, while the sustained phase is dependent on the entry of extracellular Ca2+ through both L-type and dihydropyridine-insensitive channels. The presence of L-type voltage-sensitive calcium channels (VSCC) in pituitary gonadotrophs was indicated by the ability of elevated extracellular [K+] to stimulate calcium influx and LH release, and the sensitivity of these responses to dihydropyridine agonist and antagonist analogs. In cells pretreated with high [K+], the peak [Ca2+]i response to GnRH was enhanced but the subsequent plateau phase was markedly attenuated. This divergent effect of sustained membrane depolarization on the biphasic [Ca2+]i response suggests that calcium entry through VSCC initially potentiates agonist-induced mobilization of Ca2+ from intracellular storage sites. However, established Ca2+ entry through depolarization-activated VSCC cannot be further increased by agonist stimulation because both processes operate through the same channels, probably by changes in their activation-inactivation kinetics. Finally, the reciprocal potentiation by the dihydropyridine agonist, BK 8644, and GnRH of [Ca2+]i and LH responses confirms that both compounds act on the same type of channels, i.e., L-type VSCC, that participate in agonist-mediated calcium influx and gonadotropin secretion.  相似文献   

6.
Single pituitary gonadotrophs exhibit episodes of spontaneous fluctuations in cytoplasmic calcium concentration [( Ca2+]i) due to entry through voltage-sensitive calcium channels (VSCC) and show prominent agonist-induced oscillations in [Ca2+]i that are generated by periodic release of intracellular Ca2+. Gonadotropin releasing hormone (GnRH) elicited three types of Ca2+ responses: at low doses, subthreshold, with an increase in basal [Ca2+]i; at intermediate doses, oscillatory, with dose-dependent modulation of spiking frequency; and at high doses, biphasic, without oscillations. Elevation of [Ca2+]i or activation of protein kinase C (PKC) did not influence the frequency of agonist-induced [Ca2+]i spikes but caused dose-dependent reductions in amplitude for all types of Ca2+ response. Stimulation of transient Ca2+ spikes by GnRH was followed by inhibition of the spontaneous fluctuations. GnRH also reduced the ability of high extracellular K+ to promote Ca2+ influx through VSCC. Activation of PKC by phorbol esters stimulated Ca2+ influx in quiescent cells but inhibited influx when VSCC were already activated, either spontaneously or by high K+. In contrast to their biphasic actions on [Ca2+]i, phorbol esters exerted only stimulatory actions on gonadotropin release, even when Ca2+ influx was concomitantly reduced. However, pituitary cells had to be primed with an appropriate [Ca2+]i level before exocytosis could be amplified by PKC. In PKC-depleted cells, all actions of phorbol esters on Ca2+ entry and amplitude modulation, and on LH release, were abolished. GnRH-induced LH secretion was also significantly reduced, especially the plateau phase of the response. These data indicate that Ca2+ and PKC serve as interacting signals during the cascade of cellular events triggered by agonist stimulation, in which Ca2+ turns cell responses on or off, and PKC amplifies the positive and negative effects of Ca2+.  相似文献   

7.
Using the acetoxymethyl ester of "Quin 2," a fluorescent Ca2+-indicator, we have loaded prolactin (PRL)-producing rat pituitary cells with non-toxic concentrations of Quin 2 and quantitated changes in cytosolic free calcium concentration ( [Ca2+]i) during stimulation of PRL release by thyrotropin-releasing hormone (TRH) and 40 mM K+. TRH induced a biphasic response, with an immediate (less than 1 s) spike in [Ca2+]i from basal levels (350 +/- 80 nM) to a peak of 1-3 microM, which decayed rapidly (t 1/2 = 8 s) to a near basal nadir, then rising to a plateau in [Ca2+]i of 500-800 nM. The TRH-induced spike phase was attenuated but not abolished by prior addition of EGTA, while the plateau phase was eliminated by EGTA. Addition of 40 mM K+ caused an immediate spike in [Ca2+]i to 1-3 microM which equilibrated slowly (t 1/2 = 1 min) directly to a plateau of 600-800 nM. The K+-induced spike and plateau phases were both abolished by prior addition of EGTA. The biphasic nature of TRH action on [Ca2+]i parallels the biphasic actions of TRH on 45Ca2+ fluxes and the biphasic release of PRL by GH cells in suspension. These findings provide evidence that Ca2+-dependent agonist-mediated increases in [Ca2+]i and hormone release are linked, and may generally have two modes: an acute "spike" mode, dependent primarily on redistribution of intracellular Ca2+ stores; and a sustained "plateau" mode, dependent on influx of extracellular Ca2+.  相似文献   

8.
Measurements of cell volume changes, free cytosolic Ca2+ concentration [( Ca2+]i) with Fura 2 and cell membrane potential with 3,3'-dipropylthiodicarbocyanine iodide were used to study the effect of cell volume change on Ca2+ influx and the membrane potential of the osteoblastic osteosarcoma cell line, UMR-106-01. Swelling the cells by hypo-osmotic stress was followed by reduction in cell volume which was markedly impaired by removal of medium Ca2+. Accordingly, cell swelling resulted in [Ca2+]i increase only in the presence of medium Ca2+. The cell swelling-activated Ca2+ entry pathway was active at resting membrane potentials, and Ca2+ influx through this pathway markedly increased upon cell hyperpolarization. A linear relationship between Ca2+ entry and the potential across the plasma membrane was observed. Thus, the volume-activated Ca2+ permeating pathway in UMR-106-01 cells has conductive properties. These pathways do not spontaneously inactivate with time when the cells are not allowed to volume regulate. The pathway can be blocked by micromolar concentrations of nicardipine and La3+ but display very low sensitivity to diltiazem and verapamil. Activation of the volume-sensitive, Ca2+ permeating pathway was not dependent on an increase in [Ca2+]i. Likewise, activation of the pathway was independent of a change in membrane potential between -85 and -3 mV. The increase in [Ca2+]i resulted in hyperpolarization of the cells, probably due to activation of Ca2+-activated K+ channels. The volume-sensitive pathways were partially active under isotonic conditions. Their activity was inhibited by cell shrinkage and increased by cell swelling. The pathways were sensitive to small changes in cell volume, particularly around a medium osmolarity of 310 mosM.  相似文献   

9.
By cross-linking membrane immunoglobulins (mIg), the antigenic stimulation of B lymphocytes induces an increase in intracellular free calcium levels ([Ca2+]i) because of a combination of release from intracellular stores and transmembrane influx. It has been suggested that both events are linked, as in a number of other cases of receptor- induced increase in [Ca2+]i. Conversely, in B lymphocytes, type II receptors for the Fc fragment of IgG (Fc gamma RII) inhibit mIg- mediated signaling. Thus, we have investigated at the level of single cells if these receptors could act on specific phases of mIg Ca2+ signaling. Lipopolysaccharide-activated murine B splenocytes and B lymphoma cells transfected with intact or truncated Fc gamma RII-cDNA were used to determine the domains of Fc gamma RII implicated in the inhibition of the Ca2+ signal. [Ca2+]i was measured in single fura-2- loaded cells by microfluorometry. The phases of release from intracellular stores and of transmembrane influx were discriminated by using manganese, which quenches fura-2, in the external medium as a tracer for bivalent cation entry. The role of membrane potential was studied by recording [Ca2+]i in cells voltage-clamped using the perforated patch-clamp method. Cross-linking of mIgM or mIgG with F(ab')2 fragments of anti-Ig antibodies induced a sustained rise in [Ca2+]i due to an extremely fast and transitory release of Ca2+ from intracellular stores and a long lasting transmembrane Ca2+ influx. The phase of influx, but not that of release, was inhibited by membrane depolarization. The increase in [Ca2+]i occurred after a delay inversely related to the dose of ligand. Co-cross-linking mIgs and Fc gamma RII with intact anti-Ig antibodies only triggered transitory release of Ca2+ from intracellular stores but no Ca2+ influx, even when the cell was voltage-clamped at negative membrane potentials. These transitory Ca2+ rises had similar amplitudes and delays to those induced by cross-linking mIgs alone. Thus, our data show that Fc gamma RII does not mediate an overall inhibition of mIg signaling but specifically affects transmembrane Ca2+ influx without affecting the release of Ca2+ from intracellular stores. Furthermore, this inhibition is not mediated by cell depolarization. Thus, Fc gamma RII represents a tool to dissociate physiologically the phases of release and transmembrane influx of Ca2+ triggered through antigen receptors.  相似文献   

10.
The effects of caffeine on cytoplasmic [Ca2+] ([Ca2+]i) and plasma membrane currents were studied in single gastric smooth muscle cells dissociated from the toad, Bufo marinus. Experiments were carried out using Fura-2 for measuring [Ca2+]i and tight-seal voltage-clamp techniques for recording membrane currents. When the membrane potential was held at -80 mV, in 15% of the cells studied caffeine increased [Ca2+]i without having any effect on membrane currents. In these cells ryanodine completely abolished any caffeine induced increase in [Ca2+]i. In the other cells caffeine caused both an increase in [Ca2+]i and activation of an 80-pS nonselective cation channel. In this group of cells ryanodine only partially blocked the increase in [Ca2+]i induced by caffeine; moreover, the change in [Ca2+]i that did occur was tightly coupled to the time course and magnitude of the cation current through these channels. In the presence of ryanodine, blockade of the 80-pS channel by GdCl3 or decreasing the driving force for Ca2+ influx through the plasma membrane by holding the membrane potential at +60 mV almost completely blocked the increase in [Ca2+]i induced by caffeine. Thus, the channel activated by caffeine appears to be permeable to Ca2+. Caffeine activated the cation channel even when [Ca2+]i was clamped to below 10 nM when the patch pipette contained 10 mM BAPTA suggesting that caffeine directly activates the channel and that it is not being activated by the increase in Ca2+ that occurs when caffeine is applied to the cell. Corroborating this suggestion were additional results showing that when the membrane was depolarized to activate voltage-gated Ca2+ channels or when Ca2+ was released from carbachol- sensitive internal Ca2+ stores, the 80-pS channel was not activated. Moreover, caffeine was able to activate the channel in the presence of ryanodine at both positive and negative potentials, both conditions preventing release of Ca2+ from stores and the former preventing its influx. In summary, in gastric smooth muscle cells caffeine transiently releases Ca2+ from a ryanodine-sensitive internal store and also increases Ca2+ influx through the plasma membrane by activating an 80- pS cation channel by a mechanism which does not seem to involve an elevation of [Ca2+]i.  相似文献   

11.
In many cells, inhibition of sarcoplasmic reticulum (SR) Ca2+-ATPase activity induces a steady-state increase in cytosolic calcium concentration ([Ca2+]i) that is sustained by calcium influx. The goal was to characterize the response to inhibition of SR Ca2+-ATPase activity in bovine airway smooth muscle cells. Cells were dispersed from bovine trachealis and loaded with fura 2-AM (0.5 microM) for imaging of single cells. Cyclopiazonic acid (CPA; 5 microM) inhibited refilling of both caffeine- and carbachol-sensitive calcium stores. In the presence of extracellular calcium, CPA caused a transient increase in [Ca2+]i from 166 +/- 11 to 671 +/- 100 nM, and then [Ca2+]i decreased to a sustained level (CPA plateau; 236 +/- 19 nM) significantly above basal. The CPA plateau spontaneously declined toward basal levels after 10 min and was attenuated by discharging intracellular calcium stores. When CPA was applied during sustained stimulation with caffeine or carbachol, decreases in [Ca2+]i were observed. We concluded that the CPA plateau depended on the presence of SR calcium and that SR Ca2+-ATPase activity contributed to sustained increases in [Ca2+]i during stimulation with caffeine and, to a lesser extent, carbachol.  相似文献   

12.
We used perforated patch, whole-cell current recordings and video-based fluorescence ratio imaging to monitor the relation of plasma membrane ionic conductances to intracellular free Ca2+ within individual colonic epithelial cells (HT-29). The Ca2(+)-mediated agonist, neurotensin, activated K+ and Cl- conductances that showed different sensitivities to [Ca2+]i. The Cl- conductance was sensitive to increases or decreases in [Ca2+]i around the resting value of 76 +/- 32 (mean +/- SD) nM (n = 46), whereas activation of the K+ conductance required at least a 10-fold rise in [Ca2+]i. Neurotensin increased [Ca2+]i by stimulating a transient intracellular Ca2+ release, which was followed by a sustained rise in [Ca2+]i due to Ca2+ influx from the bath. The onset of the initial [Ca2+]i transient, monitored at a measurement window over the cell interior, lagged behind the rise in Cl- current during agonist stimulation. This lag was not present when the [Ca2+]i rise was due to Ca2+ entry from the bath, induced either by the agonist or by the Ca2+ ionophore ionomycin. The temporal differences in [Ca2+]i and Cl- current during the agonist-induced [Ca2+]i transient can be explained by a localized Ca2+ release from intracellular stores in the vicinity of the plasma membrane Cl- channel. Chloride currents recover toward basal values more rapidly than [Ca2+]i after the agonist-induced [Ca2+]i transient, and, during a sustained neurotensin-induced [Ca2+]i rise, Cl- currents inactivate. These findings suggest that an inhibitory pathway limits the increase in Cl- conductance that can be evoked by agonist. Because this Cl- current inhibition is not observed during a sustained [Ca2+]i rise induced by ionomycin, the inhibitory pathway may be mediated by another agonist-induced messenger, such as diacylglycerol.  相似文献   

13.
Thyrotropin-releasing hormone (TRH) acts on pituitary cells to raise the cytosolic free Ca2+ concentration ([Ca2+]i) and causes simultaneously a transient hyperpolarization of the plasma membrane. The combination of the microfluorimetric monitoring of [Ca2+]i with electrophysiological recordings obtained using the patch clamp technique in its whole cell configuration, allows the analysis of the correlation between changes in [Ca2+]i and the alterations in ionic currents at the plasma membrane. It was shown that in the absence of hormone stimulation, a depolarization-induced change in steady state [Ca2+]i, as well as the internal perfusion with Ca2+ at microM levels at constant membrane potential led to the activation of outward K+ current. TRH stimulation resulted in a marked but transient rise in [Ca2+]i; concomitantly, there was an increase in membrane conductance and an enhancement of outward current. During the time course of an individual response, an excellent correlation between the changes in [Ca2+]i and those in conductance or current was observed. The relative changes of current and conductance during the TRH response were consistent with the activation of a single type of ionic current, the apparent reversal potential of which coincided with the equilibrium potential for K+. A strong correlation between the TRH-induced changes in [Ca2+]i and K+, conductance was demonstrated in a large number of cells with varied kinetic features: significant correlation coefficients were found both for the transition time from basal to maximal values (r = 0.85, p less than 0.001) as well as for the total duration of the responses (r = 0.68, p less than 0.002). It is concluded that during the early phase of TRH action, the hormone-induced rise in [Ca2+]i is the principal cause of enhanced K+ channel activation.  相似文献   

14.
We investigated spatiotemporal changes in cytoplasmic free Ca2+ concentration ([Ca2+]i) in norepinephrine (NE)-stimulated and fura-2-loaded individual H-35 rat hepatoma cells, using digital imaging microscopy and high time-resolution microspectrofluorometry. Application of NE (5 x 10(-6) M) resulted in an initial transient increase in [Ca2+]i, followed by a small sustained [Ca2+]i plateau above the pre-stimulation level. The initial peak and the small sustained plateau originated from intracellular stores and the extracellular space, respectively. The initial transient evoked by NE was totally blocked by phentolamine, an alpha-adrenergic antagonist, but was not blocked by either pre-incubation with nominally Ca(2+)-free medium or by pre-treatment of cells with La3+. On the other hand, the sustained plateau was eliminated by Ca(2+)-free medium or La3+. Therefore, H-35 cells have a Ca(2+)-signaling pathway which is activated via alpha-adrenergic receptors. Mn2+ entered the cytosol after NE stimulation, as shown by quenching of fura-2. This indicates that H-35 hepatoma cells possess Mn(2+)-permeable Ca2+ channels at the plasma membrane. In addition, the Ca2+ efflux pattern from H-35 cells to the extracellular space during NE stimulation was visualized by digital imaging microscopy when free fura-2 was equilibrated between the cells and the extracellular space. The efflux of Ca2+ from H-35 begins between the initial [Ca2+]i transient and the sustained [Ca2+]i plateau.  相似文献   

15.
The effects of different substances on [Ca2+]i and membrane potential (measured by fura-2 and bis-oxonol fluorescence techniques, respectively) were studied in wild-type and NIH-3T3 fibroblasts transfected with the cDNA encoding the human epidermal growth factor receptor. Application of partially purified PDGF or FGF induced, after a lag (0.5-1 min), a [Ca2+]i increase composed by an initial, slow peak, sustained primarily by intracellular Ca2+ release followed by a plateau, sustained by Ca2+ influx from the medium. The [Ca2+]i changes were paralleled by plasma membrane hyperpolarization mainly due to the activation of a K+ efflux, since raising the extracellular K+ concentration progressively reversed the effect of both growth factors. These responses were much slower than those induced by other agents (bradykinin, extracellular ATP, and EGF). The close resemblance between PDGF- and FGF-induced early signals (time-course and insensitivity to phorbol esters) suggests similar transmembrane signalling mechanisms at the cognate receptor.  相似文献   

16.
The regulation of the increase in intracellular calcium ([Ca2+]i) occurring in cytolytic T lymphocytes (CTLs) upon their interaction with antigen was examined. This [Ca2+]i increase and lytic function were insensitive to verapamil, a Ca channel blocker. An antigen-independent increase in [Ca2+]i was not induced by depolarization of CTLs with excess extracellular K+, suggesting that Ca2+ influx is not mediated by the ubiquitous voltage-gated Ca channel. The antigen-induced [Ca2+]i increase was inhibited by prior membrane hyperpolarization with valinomycin. Hyperpolarization occurred under normal circumstances in CTLs exposed to antigen-receptor-specific antibodies. This potential change was Ca2+-dependent and inhibited by K channel blockade. Conversely, K channel blockade augmented the antigen-specific [Ca2+]i increase while markedly decreasing the K+ efflux associated with CTL lytic function. Therefore, either membrane potential or intracellular K+ regulates the antigen-specific [Ca2+]i increase in CTLs.  相似文献   

17.
The mechanism by which extracellular ATP stimulates insulin secretion was investigated in RINm5F cells. ATP depolarized the cells as demonstrated both by using the patch-clamp technique and a fluorescent probe. The depolarization is due to closure of ATP-sensitive K+ channels as shown directly in outside-out membrane patches. ATP also raised cytosolic Ca2+ [( Ca2+]i). At the single cell level the latency of the [Ca2+]i response was inversely related to ATP concentration. The [Ca2+]i rise is due both to inositol trisphosphate mediated Ca2+ mobilization and to Ca2+ influx. The former component, as well as inositol trisphosphate generation, were inhibited by phorbol myristate acetate which uncouples agonist receptors from phospholipase C. This manoeuvre did not block Ca2+ influx or membrane depolarization. Diazoxide, which opens ATP-sensitive K+ channels, attenuated membrane depolarization and part of the Ca2+ influx stimulated by ATP. However, the main Ca2+ influx component was unaffected by L-type channel blockers, suggesting the activation of other Ca2+ conductance pathways. ATP increased the rate of insulin secretion by more than 12-fold but the effect was transient. Prolonged exposure to EGTA dissociated the [Ca2+]i rise from ATP-induced insulin secretion, since the former was abolished and the latter only decreased by about 60%. In contrast, vasopressin-evoked insulin secretion was more sensitive to Ca2+ removal than the accompanying [Ca2+]i rise. Inhibition of phospholipase C stimulation by phorbol myristate acetate abrogated vasopressin but only reduced ATP-induced insulin secretion by 34%. These results suggest that ATP stimulates insulin release by both phospholipase C dependent and distinct mechanisms. The Ca2+)-independent component of insulin secretion points to a direct triggering of exocytosis by ATP.  相似文献   

18.
Endothelial cells in vivo form an interface between flowing blood and vascular tissue, responding to humoral and physical stimuli to secrete relaxing and contracting factors that contribute to vascular homeostasis and tone. The activation of endothelial cell-surface receptors by vasoactive agents is coupled to an elevation in cytosolic Ca2+, which is caused by Ca2+ entry via ion channels in the plasma membrane and by Ca2+ release from intracellular stores. Ca2+ entry may occur via four different mechanisms: 1) a receptor-mediated channel coupled to second messengers; 2) a Ca2+ leak channel dependent on the electrochemical gradient for Ca2+; 3) a stretch-activated nonselective cation channel; and 4) internal Na+-dependent Ca2+ entry (Na+-Ca2+ exchange). The rate of Ca2+ entry through these ion pathways can be modulated by the resting membrane potential. Membrane potential may be regulated by at least two types of K channels: inwardly rectifying K channels activated upon hyperpolarization or shear stress; and a Ca2+-activated K channel activated upon depolarization, which may function to repolarize the agonist-stimulated endothelial cell. After agonist stimulation, cytosolic Ca2+ increases in a biphasic manner, with an initial peak due to inositol 1,4,5-trisphosphate-mediated Ca2+ release from intracellular stores, followed by a sustained plateau that is dependent on the presence of [Ca2+]o and on membrane potential. The delay in agonist-activated Ca2+ influx is consistent with the coupling of receptor activation to Ca2+ entry via a second messenger. Oscillations in [Ca2+]i, which may involve both Ca2+ entry and release, have been observed in isolated and confluent endothelial cell monolayers stimulated by histamine and bradykinin. Receptor-mediated Ca2+ entry, release, and refilling of intracellular stores follows a cycle that involves the plasma membrane.  相似文献   

19.
The role of intracellular Ca2+ pools in oscillations of the cytosolic Ca2+ concentration ([Ca2+]c) triggered by Ca2+ influx was investigated in mouse pancreatic B-cells. [Ca2+]c oscillations occurring spontaneously during glucose stimulation or repetitively induced by pulses of high K+ (in the presence of diazoxide) were characterized by a descending phase in two components. A rapid decrease in [Ca2+]c coincided with closure of voltage-dependent Ca2+ channels and was followed by a slower phase independent of Ca2+ influx. Blocking the SERCA pump with thapsigargin or cyclopiazonic acid accelerated the rising phase of [Ca2+]c oscillations and increased their amplitude, which suggests that the endoplasmic reticulum (ER) rapidly takes up Ca2+. It also suppressed the slow [Ca2+]c recovery phase, which indicates that this phase corresponds to the slow release of Ca2+ that was taken up by the ER during the upstroke of the [Ca2+]c transient. Glucose promoted the buffering capacity of the ER and amplified the slow [Ca2+]c recovery phase. The slow phase induced by high K+ pulses was not affected by modulators of Ca2+- or inositol 1,4,5-trisphosphate-induced Ca2+ release, did not involve a depolarization-induced Ca2+ release, and was also observed at the end of a rapid rise in [Ca2+]c triggered from caged Ca2+. It is attributed to passive leakage of Ca2+ from the ER. We suggest that the ER displays oscillations of the Ca2+ concentration ([Ca2+]ER) concomitant and parallel to [Ca2+]c. The observation that thapsigargin depolarizes the membrane of B-cells supports the proposal that the degree of Ca2+ filling of the ER modulates the membrane potential. Therefore, [Ca2+]ER oscillations occurring during glucose stimulation are likely to influence the bursting behavior of B-cells and eventually [Ca2+]c oscillations.  相似文献   

20.
In order to define the differences in the distribution of cytosolic free Ca2+ ([Ca2+]i) in pancreatic beta-cells stimulated with the fuel secretagogue glucose or the Ca(2+)-mobilizing agents carbachol and ATP, we applied digital video imaging to beta-cells loaded with fura-2.83% of the cells responded to glucose with an increase in [Ca2+]i after a latency of 117 +/- 24 s (mean +/- S.E., 85 cells). Of these cells, 16% showed slow wave oscillations (frequency 0.35/min). In order to assess the relationship between membrane potential and the distribution of the [Ca2+]i rise, digital image analysis and perforated patch-clamp methods were applied simultaneously. The system used allowed sufficient temporal resolution to visualize a subplasmalemmal Ca2+ transient due to a single glucose-induced action potential. Glucose could also elicit a slow depolarization which did not cause Ca2+ influx until the appearance of the first of a train of action potentials. [Ca2+]i rose progressively during spike firing. Inhibition of Ca2+ influx by EGTA abolished the glucose-induced rise in [Ca2+]i. In contrast, the peak amplitude of the [Ca2+]i response to carbachol was not significantly different in normal or in Ca(2+)-deprived medium. Occasionally, the increase of the [Ca2+]i rise was polarized to one area of the cell different from the subplasmalemmal rise caused by glucose. The amplitude of the response and the number of responding cells were significantly increased when carbachol was applied after the addition of high glucose (11.2 mM). ATP also raised [Ca2+]i and promoted both Ca2+ mobilization and Ca2+ influx. The intracellular distribution of [Ca2+]i was homogeneous during the onset of the response. A polarity in the [Ca2+]i distribution could be detected either in the descending phase of the peak or in subsequent peaks during [Ca2+]i oscillations caused by ATP. In the absence of extracellular Ca2+, the sequential application of ATP and carbachol revealed that carbachol was still able to raise [Ca2+]i after exhaustion of the ATP response. This may be due to desensitization to the former agonist, since the response occurred in the same area of the cell. These results reveal subtle differences in [Ca2+]i distribution following membrane depolarization with glucose or the application of Ca(2+)-mobilizing agonists.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号