首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
W A Scott  D J Wigmore 《Cell》1978,15(4):1511-1518
Simian virus 40 (SV40) chromatin isolated from infected BSC-1 cell nuclei was incubated with deoxyribonuclease I, staphylococcal nuclease or an endonuclease endogenous to BSC-1 cells under conditions selected to introduce one doublestrand break into the viral DNA. Full-length linear DNA was isolated, and the distribution of sites of initial cleavage by each endonuclease was determined by restriction enzyme mapping. Initial cleavage of SV40 chromatin by deoxyribonuclease I or by endogenous nuclease reduced the recovery of Hind III fragment C by comparison with the other Hind III fragments. Similarly, Hpa I fragment B recovery was reduced by comparison with the other Hpa I fragments. When isolated SV40 DNA rather than SV40 chromatin was the substrate for an initial cut by deoxyribonuclease I or endogenous nuclease, the recovery of all Hind III or Hpa I fragments was approximately that expected for random cleavage. Initial cleavage by staphylococcal nuclease of either SV40 DNA or SV40 chromatin occurred randomly as judged by recovery of Hind III or Hpa I fragments. These results suggest that, in at least a portion of the SV40 chromatin population, a region located in Hind III fragment C and Hpa I fragment B is preferentially cleaved by deoxyribonuclease I or by endogenous nuclease but not by staphylococcal nuclease.Complementary information about this nuclease-sensitive region was provided by the appearance of clusters of new DNA fragments after restriction enzyme digestion of DNA from viral chromatin initially cleaved by endogenous nuclease. From the sizes of new fragments produced by different restriction enzymes, preferential endonucleolytic cleavage of SV40 chromatin has been located between map positions 0.67 and 0.73 on the viral genome.  相似文献   

2.
Deoxyribonuclease I produces staggered cuts in the DNA of chromatin   总被引:8,自引:0,他引:8  
The relationship of cuts made by deoxyribonuclease I (DNase I, EC. 3.1.4.5) on the two strands of DNA of chromatin has been investigated. DNA was extracted from a DNase I digest of rat liver nuclei and incubated with the large fragment of DNA polyrnerase I. Analysis of the products of this incubation indicates the cuts made by DNase I on opposite strands are staggered with respect to one another. A cut on one strand is about two bases in the 3′ direction or eight bases in the 5′ direction from the position on its own strand which is directly across from the cut on the other strand. A different result is obtained when a DNase I digest of native DNA is analyzed. Current models for the organization of DNA in the nucleosome are discussed with respect to these results.  相似文献   

3.
S A Whatley  C Hall    L Lim 《The Biochemical journal》1981,196(1):115-119
The organization of chromatin in neuronal and glial nuclei isolated from different brain regions of rats during development was studied by digestion of nuclei with micrococcal nuclease. A short chromatin repeat length (approx. 176 base-pairs compared with that of glial nuclei from foetal cerebral cortex (approx. 200 base-pairs) was present in hypothalamic neurons throughout the ages studied, which was similar to the repeat length of cortical neurons from 7- and 25-day-old animals (approx. 174 base-pairs). Whereas in cortical neurons the chromatin repeat length shortened from approx. 200 base-pairs in the foetus to approx. 174 base-pairs in the first postnatal week, the short chromatin repeat length of hypothalamic neurons was already present 2 days before birth, indicating that hypothalamic neurons differentiate earlier than cortical neurons during brain development.  相似文献   

4.
Abstract: Total cerebral hemisphere nuclei purified from adult rabbit brain were subfractionated into neuronal and glial populations. Previous studies have shown that chromatin in neuronal nuclei is organized in an unusual nucleosome conformation compared with glial or kidney nuclei, i.e., a short DNA repeat length is present. We now analyze whether this difference in chromatin organization is associated with an alteration in the histone component of nucleosomes. Total histone isolated by acid/urea-protamine extraction of purified neuronal, glial, and kidney nuclei was analyzed by electrophoresis on SDS-polyacrylamide slab gels. Histone H1 that was selectively extracted from nuclei was also examined. Differences were not observed on SDS gels in the electrophoretic mobilities of histones associated with either the nucleosome core particle (histones H2A, H2B, H3, H4) or the nucleosome linker region (histone H1). Total histone and selectively extracted histone H1 were also analyzed on acid/urea slab gels that resolve histones on the basis of both molecular weight and charge differences. When analyzed in this system, differences with respect to electrophoretic mobility were not detected when comparing either selectively extracted histone H1 or total histone from neuronal and glial nuclei. Quantitative analyses were also performed and neuronal nuclei were found to contain less histone H1 per milligram DNA compared with glial or kidney nuclei. Neuronal nuclei also demonstrated a lower ratio of histone H1/core histone. These results suggest that the pronounced difference in chromatin organization in neuronal compared with glial nuclei, which is reflected by a short DNA repeat length in neurons, appears to be associated with quantitative differences in neuronal histone H1.  相似文献   

5.
DNA isolated from (a) liver chromatin digested in situ with endogenous Ca2+, Mg2+-dependent endonuclease, (b) prostate chromatin digested in situ with micrococcal nuclease or pancreatic DNAase I, and (c) isolated liver chromatin digested with micrococcal nuclease or pancreatic DNAase I has been analyzed electrophoretically on polyacrylamide gels. The electrophoretic patterns of DNA prepared from chromatin digested in situ with either endogenous endonuclease (liver nuclei) or micrococcal nuclease (prostate nuclei) are virtually identical. Each pattern consists of a series of discrete bands representing multiples of the smallest fragment of DNA 200 +/- 20 base pairs in length. The smallest DNA fragment (monomer) accumulates during prolonged digestion of chromatin in situ until it accounts for nearly all of the DNA on the gel; approx. 20% of the DNA of chromatin is rendered acid soluble during this period. Digestion of liver chromatin in situ in the presence of micrococcal nuclease results initially in the reduction of the size of the monomer from 200 to 170 base pairs of DNA and subsequently results in its conversion to as many as eight smaller fragments. The electrophoretic pattern obtained with DNA prepared from micrococcal nuclease digests of isolated liver chromatin is similar, but not identical, to that obtained with liver chromatin in situ. These preparations are more heterogeneous and contain DNA fragments smaller than 200 base pairs in length. These results suggest that not all of the chromatin isolated from liver nuclei retains its native structure. In contrast to endogenous endonuclease and micrococcal nuclease digests of chromatin, pancreatic DNAase I digests of isolated chromatin and of chromatin in situ consist of an extremely heterogeneous population of DNA fragments which migrates as a continuum on gels. A similar electrophoretic pattern is obtained with purified DNA digested by micrococcal nuclease. The presence of spermine (0.15 mM) and spermidine (0.5 mM) in preparative and incubation buffers decreases the rate of digestion of chromatin by endogenous endonuclease in situ approx. 10-fold, without affecting the size of the resulting DNA fragments. The rates of production of the smallest DNA fragments, monomer, dimer, and trimer, are nearly identical when high molecular weight DNA is present in excess, indicating that all of the chromatin multimers are equally susceptible to endogenous endonuclease. These observations points out the effects of various experimental conditions on the digestion of chromatin by nucleases.  相似文献   

6.
Quiescent cells from adult vertebrate liver and contact-inhibited or serum-deprived tissue cultures are active metabolically but do not carry out nuclear DNA replication and cell division. Replication of intact nuclei isolated from either quiescent Xenopus liver or cultured Xenopus A6 cells in quiescence was barely detectable in interphase extracts of Xenopus laevis eggs, although Xenopus sperm chromatin was replicated with approximately 100% efficiency in the same extracts. Permeabilization of nuclei from quiescent Xenopus liver or cultured Xenopus epithelial A6 cells did not facilitate efficient replication in egg extracts. Moreover, replication of Xenopus sperm chromatin in egg extracts was strongly inhibited by a soluble extract of isolated Xenopus liver nuclei; in contrast, complementary-strand synthesis on single-stranded DNA templates in egg extracts was not affected. Inhibition was specific to endogenous molecules localized preferentially in quiescent as opposed to proliferating cell nuclei, and was not due to suppression of cdk2 kinase activity. Extracts of Xenopus liver nuclei also inhibited growth of sperm nuclei formed in egg extracts. However, the rate and extent of decondensation of sperm chromatin in egg extracts were not affected. The formation of prereplication centers detected by anti-RP-A antibody was not affected by extracts of liver nuclei, but formation of active replication foci was blocked by the same extracts. Inhibition of DNA replication was alleviated when liver nuclear extracts were added to metaphase egg extracts before or immediately after Ca++ ion-induced transition to interphase. A plausible interpretation of our data is that endogenous inhibitors of DNA replication play an important role in establishing and maintaining a quiescent state in Xenopus cells, both in vivo and in cultured cells, perhaps by negatively regulating positive modulators of the replication machinery.  相似文献   

7.
Abstract: DNA ligase activities were measured in neuron-rich and glial nuclear preparations and liver nuclei isolated from adult guinea pigs. The enzymatic properties of cerebral and liver nuclear DNA ligases were studied with isolated nuclei and nuclear extracts. ATP (Km= 46–48 μM) and bivalent cation (Mg2+ or Mn2+) were required for the maximal activities in cerebral and liver nuclei. β-Mercaptoethanol did not affect the activities, but N-ethylmaleimide and p-chloromercuribenzoate completely inhibited the activities. Deoxyadenosine-5′-triphosphate partially inhibited the activities in both cerebral and liver nuclei. An interdependent effect of Na+ and Mg2+ on the enzyme activities was observed. A high concentration (200 mM) of Na+ activated both enzymes and shifted to the acid side the optimal pH for both enzymes. DNA ligase was more easily extracted with lower concentrations of NaCl from liver nuclei than from cerebral nuclei, but the extraction curves from both nuclear species reached a plateau level (92% of total activities of nuclear enzymes) at 200 mM-NaCl. Apparent Km for the substrate [32P]phosphoryl DNA was determined according to a modification of the Michaelis-Menten equation, which was applied for the case where an unknown amount of substrate nicks in chromatin DNA coexisted with the nicks in exogenous substrate DNA. Neuronal and glial nuclear enzymes had similar Km values (about 20 μg of [32P]phosphoryl DNA/ml), but the liver nuclear enzyme had a higher Km value (54 μg of [32P]phosphoryl DNA/ml). The modified Michaelis-Menten equation provided the amounts of nicks available as substrate in chromatin DNA of isolated nuclei. Neuronal and glial nuclei contained 1.5 and 0.29 pmol of nicks/μg of nuclear DNA, respectively, in contrast to an intermediate amount of nicks in liver nuclei (0.63 pmol/μg of nuclear DNA). DNA ligase activity in neuronal nuclei [312 units (fmol of 5′-phosphomonoester converted into a phosphatase-resistant form per min at 37°C) per μg of nuclear DNA] was 11-fold higher than that in glial nuclei [28.7 units/μg of nuclear DNA]. Liver nuclei contained an intermediate activity [54.7 units/μg of nuclear DNA].  相似文献   

8.
Abstract— [3H]Deoxythymidine-5′-triphosphate incorporation into P51 (51% neuronal nuclei: 49% glial nuclei), P3 (3% neuronal nuclei: 97% glial nuclei) and liver nuclear preparations, isolated from the adult guinea pig, was determined in the presence of the other three complementary deoxyribonucleo-tides. The enzymic characteristics of the DNA synthesis reaction were studied and DNA polymerase contents were estimated in neuronal, glial and liver nuclei. (1) Cerebral and liver nuclei exhibited similar enzymic properties for DNA synthesis activities with a few discrepancies. (2) P51 nuclei synthesized DNA 2.4-fold more actively than P3 nuclei. Liver nuclei carried out the most active DNA synthesis. The proportion of chromatin DNA available as template and primer was estimated by comparison with native calf thymus DNA. The available proportions found, in terms of the total chromatin DNA. were 2.39% for P51 nuclei, 1.38% for P3 nuclei and 37.6% for liver nuclei. (3) Exogenous native and heat-denatured calf thymus DNA were utilized as template and primer by DNA polymerase in nuclei in different ways depending on the nuclear species. The enzyme was saturated with native DNA by elevating the concentration and the activity reached a plateau. Denatured DNA inhibited the activity at the higher concentrations. (4) From the enzyme activities at a saturation concentration of exogenous DNA, DNA polymerase contents were estimated: P51 nuclei, 39.2 ± 2.6 (s.e.m. ) units (fmol of TMP incorporated/30 min at 31°C)/μg of nuclear DNA; P3 nuclei. 24.5 ± 1.6; and liver nuclei, 72.5 ± 8.1; the specific activity obtained on a protein basis was 1.55 times higher with P3 nuclei than with P51 nuclei. (5) Denatured DNA inhibited the nuclear DNA polymerase activity dependent on native DNA. The efficiency of inhibition was in the order: P3 > P51 > liver nuclei.  相似文献   

9.
Putative high-mobility-group (HMG) proteins 1, 2, and 17 were detected in neuronal and glial nuclei isolated from the cerebral hemisphere of rabbit brain. Although divergent chromatin structures are present in these two populations of brain nuclei (i.e., neuronal nuclei exhibit a short DNA repeat length), no differences were apparent in the electrophoretic mobilities of putative HMG proteins 1, 2, and 17 on SDS gels.  相似文献   

10.
1. Various types of nuclear preparations, with different ratios of neuronal to glial nuclei, were isolated from guinea-pig cerebral grey matter and ox cerebral grey matter and white matter. Conditions appropriate for the separate assay of RNA and poly A formation were described. Comparative rates of RNA and poly A formation were studied in cerebral and liver nuclei. 2. RNA polymerase activity per nucleus is higher in neuronal nuclei than in glial nuclei. In liver nuclei, the activity is much lower than in cerebral nuclei. The physical relationship between RNA polymerase and deoxyribonucleoprotein seems to differ in neuronal, glial and liver nuclei. 3. Poly A polymerase activity in liver nuclei is selectively activated by Mn(2+) and inhibited by GTP, CTP and UTP. On a DNA basis, the activity in an aggregate enzyme is the same as in intact nuclei. Poly A polymerase activity per nucleus is much higher in liver nuclei than in neuronal nuclei. Glial nuclei show an intermediate activity. 4. It is suggested that, in neuronal nuclei, the synthesis of RNA is more prominent than that of poly A under conditions where both polymers are formed simultaneously. This contrasts with liver nuclei, where more poly A is made than RNA. 5. In neuronal nuclei, the rate of CTP incorporation is much higher than in glial and liver nuclei. This incorporation is most probably due to poly C synthesis.  相似文献   

11.
Thymus, spleen and liver nuclei released a large fraction of soluble chromatin in vitro when incubation was carried out in sucrose media containing low concentrations of CaCl2 and/or MgCl2. A significant fraction of deoxyribopolynucleotides (DPN) was also extracted from nuclei. After 30 min of incubation at 37 degrees C, the maximum release of soluble chromatin was observed near a pH of 8, which corresponds to the optimum pH of the alkaline endonuclease activity from thymus, spleen and liver. The soluble chromatin and DPN were precipitated by increasing the bivalent ion concentration of the medium. The protein/DNA ratio and the molecular weight of DNA suggest that the soluble chromatin and DPN represent nucleosome-like particles. The release of soluble chromatin in the first 4 hours of incubation was significantly increased if the nuclear fraction was isolated from the thymus and spleen of whole-body irradiated mice (1000 rad). This effect was absent in the liver nuclei.  相似文献   

12.
The presence of Ca2+, Mg2+-dependent endonuclease activity in isolated brain cell nuclei was demonstrated and a comparison of some peculiarities of chromatin autolysis in rat brain and liver cell nuclei was carried out. Endogenous brain nuclease hydrolyzes chromatin into its structural subunits; its specific activity is 10,5 times as low as compared to the endogenous nuclease activity in rat liver nuclei. The dependency of the chromatin autolysis rate on pH and ionic composition of the incubation medium in isolated rate brain and liver nuclei appeared to be the same. The presence of Mn2+ changed the autolysis nature both in brain and in liver cell nuclei, the relative (as compared to Mg2+-dependent) Mn2+-dependent activity being higher in the brain cell nuclei. Possible differences of brain and liver chromatin structure (e. g. the presence of regions free of nucleosomic organization in brain chromatin) are assumed.  相似文献   

13.
A Panet  H Cedar 《Cell》1977,11(4):933-940
The sensitivity to micrococcal nuclease and DNAase I of the integrated proviral DNA sequences in Swiss mouse cells infected with Moloney murine leukemia virus has been studied. Chromatin was separated into micrococcal nuclease-sensitive and -resistant regions, and the amount of proviral sequences in these DNA preparations was estimated by kinetic hybridization with single-stranded complementary DNA of Moloney murine leukemia virus. At least two thirds of the proviral DNA sequences were found in the open regions of chromatin, and only one third was resistant to nuclease. The proviral DNA sequences are even more sensitive to deoxyribonuclease I. When intact nuclei were treated with limited amounts of enzyme, only 5% of the nuclear DNA was digested, whereas 48% of the proviral DNA was degraded.The proviral DNA sequences in cells which do not produce virus are more resistant to nuclease digestion, as compared to virus producer cells. Thus the endogenous proviral sequences, in normal uninduced Swiss mouse cells, are randomly distributed between resistant and sensitive portions of chromatin when tested with either micrococcal nuclease or pancreatic deoxyribonuclease I. The effect of cell cycle synchronization on the accessibility of the proviral sequences to pancreatic deoxyribonuclease I was investigated with rat cells infected with Moloney murine leukemia virus. The amount of proviral DNA sensitive to pancreatic deoxyribonuclease I is higher in actively dividing cells than in cells arrested at Go phase, which produce only small amounts of virus.  相似文献   

14.
Methylation of chromatin DNA in rat liver cell nuclei incubated in a medium with [3H]CH3-S-adenosyl methionine was studied. It was shown that under the given experimental conditions DNA methylation and chromatin degradation by endogenous nuclear nuclease (nucleases) with a formation of chromatin structural subunits occur simultaneously. An analysis of methylated chromatin DNA degradation products based on a number of approaches demonstrated a predominant methylation of extra-nucleosomal DNA. The data obtained suggest that chromatin of isolated nuclei contain sites with supermethylated DNA fragments incorporating not less than 400 nucleotide pairs. These sites possess an increased sensitivity to endogenous nuclease.  相似文献   

15.
The process of methylation of chromosomal proteins [histones and nonhistone proteins (NHP)] in neuronal and glial cell nuclei obtained from cerebral hemispheres of rats at 1, 10, and 30 days of age was investigated. Purified neuronal and glial nuclei were incubated in the presence of S-adenosyl[methyl-3H]methionine. Histone and NHPs were extracted and fractionated by polyacrylamide gel electrophoresis. The results obtained indicate remarkable differences in the process of methylation of histones and NHPs between neuronal and glial nuclei, especially during the first period of postnatal development. In both nuclear populations the histone fraction H3 was labeled to a greater degree than the other fractions and showed the major changes during postnatal development. The densitometric and radioactive patterns of NHPs show considerable changes in the two nuclear populations at the various ages examined. The main difference between neuronal and glial nuclei consists in the intense methylation of proteins with a molecular weight of approximately 100,000, which are present in neuronal nuclei and virtually absent in glial ones. The results obtained may be correlated with the different chromatin structures of neuronal and glial nuclei and with the patterns of maturation and differentiation of neuronal and glial cells during postnatal development.  相似文献   

16.
Jean O. Thomas  R.J. Thompson 《Cell》1977,10(4):633-640
We have used micrococcal nuclease as a probe of the repeating structure of chromatin in four nuclear populations from three tissues of the rabbit. Neuronal nuclei isolated from the cerebral cortex contain about 160 base pairs of DNA in the chromatin repeat unit, as compared with about 200 base pairs for nonastrocytic glial cell nuclei from the same tissue, neuronal nuclei from the cerebellum and liver nuclei. All four types of nuclei show the same features of nucleosomal organization as other eucaryotic nuclei so far studied: nucleosomes liberated by digestion with micrococcal nuclease give a “core particle” containing 140 base pairs as a metastable intermediate on further digestion and a series of single-strand DNA fragments which are mutiples of 10 bases after digestion with DNAase I. Nuclei from cerebral cortex neurons, which have a short repeat, are distinct from the others in being larger, in having a higher proportion of euchromatin (dispersed chromatin) as judged by microscopy and in being more active in RNA synthesis in vitro.  相似文献   

17.
Xenoantisera were raised to total chromatin from the leukemia cell line K562, or materials released through limited deoxyribonuclease I digestion of nuclei or during the control incubation of nuclei without enzyme. The peroxidase-antiperoxidase method of antibody-antigen detection was employed to visualize individual antigens resolved on one-dimensional polyacrylamide gels following transfer to sheets of nitrocellulose (immunotransfers). Each antiserum contained multiple antigen specificities as evidenced by the diverse patterns of reactive bands displayed on the immunotransfers. The most striking difference in antigens recognized between the antisera was observed in the molecular weight region below 50,000, where two highly reactive bands were seen mainly with antiserum to nuclear materials released by deoxyribonuclease I digestion. The antigens detected with all of the antisera were present in chromatins prepared from proliferating cells, while the levels of antigens present in chromatin from non-proliferating peripheral blood lymphocytes were greatly reduced or not detected. Antigens in chromatin from proliferating cells that migrated with apparent molecular weights of 37,000 and 100,000 were not lost once the activities to antigens in lymphocyte chromatin were absorbed out. These two activities were absorbed from antisera with the same amount of chromatins from proliferating cells. Two antigens migrating at molecular weight 52,000 and 76,000 appeared more active in the chromatin from unstimulated lymphocytes than in chromatin from proliferating cells.  相似文献   

18.
19.
Several cytochemical studies of the DNA content and ploidy status of neuronal cell nuclei in the central nervous system have reported the occurrence of hyperdiploid amounts of DNA in Purkinje cells and suggest the existence of some type of ‘extra’ DNA, the biological significance of which is, as yet, unknown. To explore this phenomenon further, the DNA content of glial and Purkinje cell nuclei was determined in several vertebrate species, using the DNA-specific fluorochrome 4′,6-diamidino-2-phenylindole (DAPI) to stain isolated cerebellar nuclei for analysis with a single parameter flow cytometer. The Feulgen reaction for DNA was used to stain liver and cerebellar tissue imprints for the measurement of individual nuclei with a Vickers M86 integrating microdensitometer. In both types of analyses, chicken erythrocyte nuclei served as an internal reference standard of 2.5 pg DNA per cell. The mean DNA content of Purkinje cells and glial or granule cells was essentially the same as that found for diploid (2C) non-neuronal cells, such as hepatocytes, in rainbow trout, Amazon molly fish, salamander (Plethodon), mouse, rat, rabbit, cat, dog, monkey and human. Although Purkinje cell nuclei with 4C DNA levels were found in all of these species, except salamander and rabbit, the frequency of such cells was low (1–7%) and varied with the species. There was a low incidence of Purkinje cell nuclei with interclass DNA amounts in all species examined. Our data show that most neuronal cell nuclei in the cerebellum contain 2C levels of DNA.  相似文献   

20.
Synthesis of lipids was studied in isolated nuclei from rat thymus and liver cells. On incubation of the isolated nuclei with [2-14C]acetate and [1-14C]glycerol, the label was intensively incorporated into phospholipids and with a significantly lower intensity into fatty acids and cholesterol. Only trace amounts of radioactivity were detected in the lipids of chromatin prepared from isolated thymus nuclei after their incubation, and this suggested that lipids were mainly synthesized on the nuclear membrane. On the preincubation of thymus tissue homogenate with [2-14C]acetate and the subsequent isolation of the nuclei and chromatin, the radioactivity of chromatin lipids was comparable to the radioactivity of nuclear lipids. The findings suggested that in the isolated nuclei the newly synthesized lipids were not transported into chromatin from the nuclear membrane. The specific radioactivities of individual phospholipids and fatty acids were different in the isolated nuclei and in nuclei obtained from preincubated homogenate. Mechanisms of lipid synthesis in isolated nuclei and causes of the different radioactivities of lipids in the isolated nuclei and in the nuclei obtained from the preincubated homogenate are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号