首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Callus cultures were initiated from seedling root segments ofmungbean (Vigna radiata (L.) Wilczek var. radiata) cv. K 851on modified PC-L2 basal medium. Growing cells were exposed toincreasing concentrations of NaCl in the medium. A concentrationof 300 mol m–3 NaCl proved completely inhibitory to growthof the calli. On incubation for 25 d, cells which could toleratethis concentration of NaCl grew to form cell clones. Selectedclones were characterized with regard to their growth behaviour,K+, Na+ and free proline content when grown under stress aswell as on normal media and were compared with the normal sensitivecallus. The selected callus was capable of growing on mediumcontaining NaCl at the inhibitory concentration. The K+ contentof the selected callus was lower in the case of the NaCl mediumthan for the normal medium. However, the selected clones maintainedhigher K+ and Na+ levels, with increased salinization comparedwith the wild-type cells. Salt-selected cells accumulated higherlevels of free proline under NaCl stress compared to wild-typecells. Under normal conditions, however, the amounts of freeproline in selected and non-selected calli were comparable. Key words: Vigna radiata, callus culture, NaCl stress  相似文献   

2.
The extent by which salinity affects plant growth depends partlyon the ability of the plant to exclude NaCl. To study the uptakeof NaCl into excised roots of Zea mays L. cv. ‘Tanker’,two different techniques were applied. A root pressure probewas used to record steady state as well as transient valuesof root (xylem) pressure upon exposure of the root to mediacontaining NaCl and KCl as osmotic solutes. In treatments withNaCl, pressure/time responses of the root indicated a significantuptake of NaCl into the xylem. NaCl induced kinetics were completelyreversible when the NaCl solution was replaced by an isosmoticKCl solution. This indicated a passive movement of Na+-saltsacross the root cylinder. Root samples were taken at differenttimes of exposure to NaCl and prepared for X-ray microanalysis(EDX analysis). Radial profiles of ion concentrations (Na+,K+, Cl) were measured in cell vacuoles and xylem vesselsalong the root axis. Na+ appeared rapidly in mature xylem (earlymetaxylem) and living xylem (late metaxylem) before it was detectablein vacuoles of the root cortex. EDX results confirmed that thekinetics observed by the pressure probe technique correspondedmainly to an influx of Na+-salts into early metaxylem. In latemetaxylem, the uptake of Na+ was associated with a decline ofK+. The Na+/K+ exchange indicated a mechanism to reduce sodiumfrom the transpiration stream. Ion localization, ion transport, maize, root pressure, salinity, water relations, X-ray microanalysis, Zea mays  相似文献   

3.
Effect of Sudden Salt Stress on Ion Fluxes in Intact Wheat Suspension Cells   总被引:4,自引:0,他引:4  
Although salinity is one of the major problems limiting agriculturalproduction around the world, the underlying mechanisms of highNaCl perception and tolerance are still poorly understood. Theeffects of different bathing solutions and fusicoccin (FC),a known activator of plasma membrane ATPase, on plasma membranepotential (Em) and net fluxes of Na+, K+and H+were studied inwheat suspension cells (Triticum aestivum) in response to differentNaCl treatments. Emof cells in Murashige and Skoog (MS) mediumwas less negative than in cells exposed to a medium containing10 mM KCl + 0.1 m M CaCl2(KSM) and to a basic salt medium (BSM),containing 1 m M KCl and 0.1 m M CaCl2. Multiphasic Na+accumulationin cells was observed, peaking at 13 min after addition of 120m M NaCl to MS medium. This time scale was in good agreementwith net Na+flux changes measured non-invasively by moving ion-selectivemicroelectrodes (the MIFE system). When 120 m M NaCl was addedto all media studied, a quick rise of Na+influx was reversedwithin the first 20 min. In both 120 and 20 m M NaCl treatmentsin MS medium, net Na+efflux was observed, indicating that activeNa+transporters function in the plant cell response to saltstress. Lower external K+concentrations (KSM and BSM) and FCpre-treatment caused shifts in Na+fluxes towards net influxat 120 m M NaCl stress. Copyright 2000 Annals of Botany Company Sodium, potassium, proton, membrane potential, fusicoccin, salt stress, wheat, Triticum aestivum  相似文献   

4.
The growth of garden orache, A triplex hortensis was studiedunder conditions of mild NaCl or Na2SO4 salinity. Growth, drymatter production and leaf size were substantially stimulatedat 10 mM and 50 mM Na+ salts. Increased growth, however, appearedto be due to a K+-sparing effect of Na+ rather than to salinityper se. The distribution of K+ and Na+ in the plant revealeda remarkable preference for K+ in the roots and the hypocotyl.In the shoot the K/Na ratio decreased strongly with leaf age.However, the inverse changes in K+ and Na+ content with leafage were dependent on the presence of bladder hairs, which removedalmost all of the Na+ from the young leaf lamina. Measurementsof net fluxes of K+ and Na+ into roots and shoots of growingAtriplex plants showed a higher K/Na selectivity of the netion flux to the root compared to the shoot. With increasingsalinity the selectivity ratio SK, Na* of net ion fluxes tothe roots and to the shoots was increased. The data suggestthat recirculation of K+ from leaves to roots is an importantlink in establishing the K/Na selectivity in A. hortensis plants.The importance of K+ recirculation and phloem transport forsalt tolerance is discussed. Key words: Atriplex hortensis, Salinity, Potassium, Sodium, K+ retranslocation, Bladder hairs, Growth stimulation  相似文献   

5.
The effects of salinity on growth, water relations, glycinebetainecontent, and ion accumulation in the perennial halophyte Atriplexgriffithii var. stocksii were determined. The following questionswere addressed: (1) What effect does salinity have on growthresponses at different ages? (2) Is A. griffithii an ion accumulator?(3) Does A. griffithii accumulate glycinebetaine in responseto salinity? Atriplex griffithii plants were grown in pots at0, 90, 180 and 360  m M NaCl in sand culture in a plantgrowth chamber and plants were harvested after 30, 60 and 90d. Plant total dry weight was significantly inhibited at 360m M NaCl. Root growth showed a substantial promotion at 90 mM NaCl. The water potential and osmotic potential of shootsbecame more negative with increasing salinity and time of growth.The Na+and Cl-content in both shoots and roots increased withincreases in salinity. Increased treatment levels of NaCl induceddecreases in Ca+, K+and Mg2+in plants. Atriplex griffithii accumulateda large quantity of ions, with the ash content reaching 39%of the dry weight in leaves. Inorganic ion accumulation is significantin osmotic adjustment and facilitates water uptake along a soil-plantgradient. Glycinebetaine concentration was low in roots, andin stems it increased with increases in salinity. Total amountsof glycinebetaine in leaves increased with increases in salinity,and its concentration increased substantially at 360 m M NaCl.Copyright 2000 Annals of Botany Company Atriplex griffithii, glycinebetaine, growth, ions, water relations.  相似文献   

6.
Growth and ion accumulation were measured in callus culturesof Cicer arietinum L. cv. BG-203, grown on media supplementedwith 0–200 mol m–3 NaCl. Fresh and dry weights decreasedat concentrations ranging from 100–200 mol m–3,the reduction being greater during the third and fourth weeksof culture. Slight stimulation of growth was observed at 25and 50 mol m–3 NaCl. There was also a decrease in tissuewater content (fresh weight: dry weight) at 100–200 molm–3 NaCl. The concentration of Na+ and Cl in thetissue increased with increasing salinity of the medium. Mostof the accumulation of these ions occurred by the first weekwhile significant growth inhibition became apparent by onlythe third week of culture. Tissue K+ and Mg2+ decreased withincreasing salinization, the decrease being greater in K+ levels.Levels of Ca2+, however, were maintained throughout the experimentalrange. Key words: Cicer arietinum, NaCl stress, Callus cultures, Ion accumulation  相似文献   

7.
An attempt was made to explain the abnormal behaviour of stomatain Capsicum scabrous diminutive, a wilty pepper mutant. Stomatalmovement in the pepper plant was found to be associated withchanges in the ion content of the guard cells. These changeswere smaller in the mutant than in the normal plants. In addition,total ion content was higher in the mutant under both controland NaCl treatments. Na+ substituted K+ in its function in stomatalmovement under high salinity. This phenomenon was more pronouncedin the mutant plants. Analysis of whole root systems and leavesof plants grown on solutions of high NaCl or KCl concentrationconfirmed that the regulation of K+ and Na+ uptake mechanismswas not functioning properly in the mutant. Evidence was presentedthat the difference in K+ staining between mutant and normalepidermal cells is an artefact resulting from the differencein leaf anatomy.  相似文献   

8.
The effect of NaCl salinity on growth and development of somaticembryos of Sapindus trifoliatus L. was examined. Incorporationof 25 and 50 mol m–3 NaCl into the medium greatly increasedthe growth and development of somatic embryos and both theseconcentrations favoured the production of secondary embryoids.However, supplementation of 100 mol m–3 NaCl to the mediumdid not have any significant effect on the growth and developmentof somatic embryos. On the other hand, the culturing of proembryostructures in medium containing 200 mol m–3 NaCl resultedin complete death within 7 d of salt exposure. Analysis of somatic embryos revealed that, upon salinization,they accumulated Na+ and Cl in significant amounts butthe content of Na+ was much less compared to that of Cl.Addition of NaCl (up to 50 mol m–3) in the medium resultedin a considerable increase in the K+ content of somatic embryos.The content of proline in somatic embryos, however, increasedsubstantially in response to salinization. The amount of freesterols, steryl glycosides, steryl esters, and phospholipidsalso rose to higher values in salt-affected somatic embryos.The results suggest that somatic embryos of S. trifoliatus cantolerate concentrations of NaCl up to 100 mol m–3 withoutaffecting growth and that they have sufficient cellular mechanismsto tolerate salinity at relatively high levels. Key words: Salinity, somatic embryo, sterols, phospholipids  相似文献   

9.
Ginzburg, M., and Ginzburg, B. Z., 1985. Ion and glycerol concentrationsin 12 isolates of Dunaliella.—J. exp. Bot. 36: 1064–1074. Twelve isolates of Dunaliella with average cell volumes rangingfrom 50 to 1400x10–18 m3 were grown in batch culture at0.5 M or 2.0 M NaCl. Glycerol and ions (Na+, K+, Mg2+, CI,phosphate) were measured in log-phase cultures. The contentsof Mg2+, K+ and phosphate per cell were found to be a functionof cell-volume. Cell glycerol, Na+ and Cl were functionsof cell-volume and of the NaCl concentration in the medium.Solute concentrations were calculated from the measured cell-volumesand from the 3H2O content of pellets corrected for intercellularspace using Blue Dextran. Cell glycerol was found to accountfor about one-half of the expected osmolarity, the remainderbeing largely accounted for by Na+ and CI. Key words: —Dunaliella, isolates, glycerol, ion concentrations  相似文献   

10.
11.
The patch-clamp technique was used to study and compare thecharacteristics of cation channels in the plasma membrane ofcultured lines of tobacco (Nicotiana tabacum L. cv. Bright Yellow-2)cells that were unadapted (NaCl-unadapted cells) and adaptedto 50 and 100 mM NaCl (Na50-adapted and Na100-adapted cells).In these three types of tobacco cell, the outward whole-cellcurrent activated by depolarization was dominated mainly bythe activity of the outward rectifying K+ channels with a single-channelconductance of 20 pS. The steady-state amplitude of the outwardwhole-cell currents at all the positive potentials examineddecreased in the following order: NaCl-unadapted cells>Na50-adaptedcells>Na100-adapted cells. There were no significant differencesbetween the NaCl-unadapted and the Na50-adapted cells in termsof the ratio of permeabilities of these channels to K+ and Na+ions. Furthermore, no significant differences in terms of thesingle-channel conductance of these channels were observed amongthe NaCl-unadapted, the Na50-adapted and the Na100-adapted cells.These observations suggest that adaptation to salinity of tobaccocells in suspension results in reduced permeability of the K+channels to both K+ and Na+ ions, without any change in theK+/Na+ selectivity and single-channel conductance of these channels. 1Present address: Research Laboratory of Applied Biochemistry,Tanabe Seiyaku Co., Ltd.16-89 Kashima 3-chome, Yodogawaku, Osaka,532 Japan  相似文献   

12.
Uptake and partitioning through the xylem and phloem of K+,Na+, Mg2+ , Ca2+ and Cl were studied over a 9 d intervalduring late vegetative growth of castor bean (Ricinus communisL.) plants exposed to a mean salinity stress of 128 mol m–3NaCl. Empirically based models of flow and utilization of eachion within the whole plant were constructed using informationon ion increments of plant parts, molar ratios of ions to carbonin phloem sap sampled from petioles and stem internodes andpreviously derived information on carbon flow between plantsparts in xylem and phloem in identical plant material. Salientfeatures of the plant budget for K+ were prominent depositionin leaves, high mobility of K+ in phloem, high rates of cyclingthrough leaves and downward translocation of K+ providing theroot with a large excess of K+ . Corresponding data for Na+showed marked retention in the root, lateral uptake from xylemby hypocotyl, stem internodes and petioles leading to low intakeby young leaf laminae and substantial cycling from older leavesback to the root. The partitioning of the anionic componentof NaCl salinity, Cl, contrasted to that of Na+ in thatit was not substantially retained in the root, but depositedmore or less uniformly in stem, petiole and leaf lamina tissues.The flow pattern for Mg2+ showed relatively even depositionthrough the plant but some preferential uptake by young leaves,generally lesser export than import by leaf laminae, and a returnflow of Mg2+ from shoot to root considerably less than the recordedincrement of the root. Ca2+ partitioning contrasted with thatof the other ions in showing extremely poor phloem mobility,leading to progressive preferential accumulation in leaf laminaeand negligible cycling of the element through leaves or root.Features of the response of Ricinus to salinity shown in thepresent study were discussed with data from similar modellingstudies on white lupin (Lupinus albus L.) and barley (Hordeumvulgare L.) Key words: Ricinus communis L, potassium, sodium, chloride, calcium, magnesium, phloem, xylem, transport, partitioning, salinity  相似文献   

13.
The effects of sodium chloride salinity and root oxygen deficiency(anoxia) were studied in 11-12d old maize plants (Zea mays L.cv. LG 11) in nutrient solution culture. Transport of 22Na bythe roots to the shoot in 24 h was markedly increased by anoxiawhen the external concentration of NaCl was in the range 0·1-10·9mol m–3. Anoxia severely inhibited uptake of 42K by rootsand its transport to the shoot, so that the ratio of Na+/K+moving into the shoot was increased by a factor of approximately10. When the external concentration of NaCl was increased to2.4 mol m–3, the roots showed much less ability to excludeNa+ under aerobic conditions, and anoxia caused no further increasein the movement of Na+ to the shoot. It is concluded that atthe higher concentration the ability of the roots to excludeNa+, presumably through an active mechanism in the xylem parenchymacells or in the root cortex and transporting Na+ to the outersolution, is saturated by excessive inward diffusion of Na+.The ratio of Na+/K+ transported to the shoot increased by afactor of 600 when the concentration of NaCl was increased from2·4 mol m–3 to 40 mol m–3 and roots weremade anoxic. Such imbalances in the supply of cations to theshoot, particularly when roots are oxygen-deficient, may contributeto salinity damage. Key words: Anaerobic, Anoxic, Oxygen deficiency, Roots, Salinity, Salt stress, Sodium chloride, Zea mays  相似文献   

14.
The effects of an arbuscular mycorrhizal (AM) fungus, Glomus mosseae, and a phosphate-solubilizing microorganism (PSM), Mortierella sp., and their interactions, on nutrient (N, P and K) uptake and the ionic composition of different root tissues of the halophyte Kosteletzkya virginica (L.), cultured with or without NaCl, were evaluated. Plant biomass, AM colonization and PSM populations were also assessed. Salt stress adversely affected plant nutrient acquisition, especially root P and K, resulting in an important reduction in shoot dry biomass. Inoculation of the AM fungus or/and PSM strongly promoted AM colonization, PSM populations, plant dry biomass, root/shoot dry weight ratio and nutrient uptake by K. virginica, regardless of salinity level. Ion accumulation in root tissues was inhibited by salt stress. However, dual inoculation of the AM fungus and PSM significantly enhanced ion (e.g., Na+, Cl?, K+, Ca2+, Mg2+) accumulation in different root tissues, and maintained lower Na+/K+ and Ca2+/Mg2+ ratios and a higher Na+/Ca2+ ratio, compared to non-inoculated plants under 100 mM NaCl conditions. Correlation coefficient analysis demonstrated that plant (shoot or root) dry biomass correlated positively with plant nutrient uptake and ion (e.g., Na+, K+, Mg2+ and Cl?) concentrations of different root tissues, and correlated negatively with Na+/K+ ratios in the epidermis and cortex. Simultaneously, root/shoot dry weight ratio correlated positively with Na+/Ca2+ ratios in most root tissues. These findings suggest that combined AM fungus and PSM inoculation alleviates the deleterious effects of salt on plant growth by enabling greater nutrient (e.g., P, N and K) absorption, higher accumulation of Na+, K+, Mg2+ and Cl? in different root tissues, and maintenance of lower root Na+/K+ and higher Na+/Ca2+ ratios when salinity is within acceptable limits.  相似文献   

15.
The uptake, transport and accumulation of sodium were comparedin two grasses: Pappophorum pappifervm (Lam.) O. Kuntze, a glycophyteand P. philippianum L. R. Parodi, a facultative halophyte. Atlow salinity levels, (50 mM NaCl) shoots of salt-treated P.pappiferum accumulated lower Na+ concentrations than the otherspecies. This difference does not seem to be related to Na+uptake, as in short-time experiments (< I h), whole plantsof both species showed similar rates of Na+ uptake and transport Sodium recirculation was assessed in split-root experiments.It was similar in control (previously non-salinized) plantsof both species, but in salt-treated plants it was more significantin P. pappiferum. This mechanism, along with increased lossof recently acquired Na+, could contribute to keep Na+ levelslower in shoots of P. pappiferum than in P. philippianum. Pappophorum, Gramineae, sodium recirculation, salinity  相似文献   

16.
Phaseolus vulgaris L. grown at a range of external concentrationsof NaCl (0 to 80 mM) responded differently to gaseous anaerobiosis(N2 gas) in nutrient solution or stagnant waterlogging of theroot-zone. With similar patterns of distribution of Na+ andCl- occurring in the plants with comparable NaCl treatments,and similar final concentrations of Na+ and Cl- in plants grownunder both root-zone conditions, rates of uptake of Na+ andCl- were much higher in plants with the stagnant waterloggedrootzones. After 72 h stagnant waterlogging, plant tops fromplants grown at 40 mM NaCl contained 1.42 per cent Na+ and 3.44per cent Cl- (d. wt basis) while after 9 days exposure to NaClwith gaseous anaerobiosis, leaf tissue contained 1.49 per centNa+ and 4.28 per cen Cl- (d. wt basis). Plants exposed to 40mM external NaCl were severely damaged within 72 h when grownwith stagnant waterlogged root-zones; those grown with N2 anaerobiosiscontinued growth and development over the 9 d period. Plantsgrown in nutrient solution showed changes in distribution andconcentration of Na+ and Cl- when oxygen concentration was reducedbelow 21 per cent O2 (full aeration). Phaseolus vulgaris. L., bean, mineral salt distribution, anaerobiosis, salinity, waterlogging  相似文献   

17.
The whole-cell patch-clamp technique was used to study and comparethe characteristics of K+-and Na+-transport processes acrossthe plasma membrane in two types of protoplast isolated fromNaCl-adapted and -unadapted cells of tobacco (Nicotiana tabacumL. cv. Bright Yellow-2) in suspension culture. In both typesof protoplast, with 100 mM KCl in the bathing solution and inthe pipette solution, depolarization of the plasma membranefrom the holding potential of 0 mV to a positive potential resultedin a relatively large outward current which increased with increasingpositive potential, whereas hyperpolarization to negative potentialsup to –100 mV resulted in only a small inward current.The outward current activated by depolarization was predominantlycarried by K+ ions through K+ channels. Na+ ions also had afinite ability to pass through these K+ channels. The outwardK+ and Na+ currents of the NaCl-adapted cells were considerablysmaller than those of the NaCl-unadapted cells. These resultssuggest that adaptation to salinity results in reduced permeabilityof the plasma membrane to both K+ and Na+ ions. 1Present address: Research Laboratory of Applied Biochemistry,Tanabe Seiyaku Co., Ltd., 16-89, Kashima 3-chome, Yodogawa-ku,Osaka, 532 Japan  相似文献   

18.
Osmotic and ionic regulation in Nitella   总被引:2,自引:0,他引:2  
When the osmotic value of an internodal cell of Nitella flexiliswas modified by the method of transcellular osmosis, the normalosmotic value was chiefly restored by the release or absorptionof K+. The release or uptake of Na+ was observed only when themodification of osmotic value was significant. Both the uptakeand release of K+ were linearly dependent on the degree of modificationof the osmotic value. The effectiveness of alkali metal cationsin restoring the osmotic value in cells of lower osmotic valueswas in the order K+>Rb+>Na+, Cs+>Li+. The absorptionof K+ by cells of lower osmotic values depended strongly ontemperature, while the release of K+ from cells of higher osmoticvalues did not. To clarify whether the Nitella cell regulates the osmotic valueor regulates the concentration of K+ in the vacuole, the cellsap was exchanged for artificial cell saps whose osmotic valuesand ionic concentrations were varied independent of each other.It was shown that in Nitella two regulating mechanisms are operating,one which regulates the osmotic value of the cell sap irrespectiveof the level of vacuolar K+ (0.1–140 mM) and another whichregulates the vacuolar K+-level when it is abnormaly high (>160mM). Both mechanisms are assumed to operate in order to keepthe concentration of K+ in the cytoplasm at a constant level.The presence of Na+ (0–100 mM) and Ca2+ (5–40 mM)did not affect the movement of K+ during osmoregulation. 1Present address: Sanki Engineering Limited, Nagaokakyo, Kyoto,Japan. (Received December 19, 1973; )  相似文献   

19.
Following 20 d of exposure to 75 or 150 mol m–3 NaCl Sorghumbicolor (L.) Moench plants become capable of growing in mediumcontaining 300 mol m–3 NaCl. Control plants, which havenot been pretreated, or plants pretreated for less than 20 ddie within 2 weeks when exposed to 300 mol m–3 NaCl. Weconsider this induction of a capacity to survive in and toleratea high NaCl concentration as an adaptation to salinity. We suggestthat adaptation to salinity is more than osmotic adjustmentand that it takes longer to develop than osmotic adjustment.Concomitantly with the appearance of the ability to grow inhigh salinity, adaptation also comprises the development ofa capacity to regulate internal Na+ and Cl concentrations,even when external salinity is high. Shoot mean relative growthrates are similar for both control plants and for adapted plantsgrowing in 300 mol m–3 NaCl, although their shoot Na+and Cl concentrations are quite different. Based on thesedata, we propose that adaptation of Sorghum to high salinityresults from a modulation of genome expression occurring duringextended exposure to non-lethal NaCl concentrations. Key words: Sorghum bicolor (L.) Moench, NaCl, salt tolerance, adaptation to salinity  相似文献   

20.
Ricinus communis L. (castor bean) plants were grown in the absence(control) and in the presence of 100molm–3NaCl with areciprocal split-root system, in which K+ was supplied to oneand NO3 to the other part of the root system. In theseplants shoot and, to a lesser extent, total root growth wereinhibited compared to plants with non-split roots. Without andwith NaCl, growth of roots receiving NO3 but noK+ (‘minusK/plus N-roots’) was substantially more vigorous thanunder the reverse conditions (‘plus K/minus N-roots1).100mol m–3 NaCl inhibited growth of minus K/plus N-roots1to the same extent as that of non-split roots, indicating thatexternally supplied K+ was not required for root growth undersaline conditions. In growth media without added K+ the rootdepleted the external low K + levels resulting from chemicalsdown to a minimum value Cmln (1.0 to 1.4 mmol m–3); inthe presence of 100 mol m–3 NaCl, Cmin, was higher (10–18mmol m–3) and resulted from an initial net loss of K +.Cmin, was pH-dependent The distribution of K+, Na+ and Mg2+along the root was measured. In meristematic root tissues, K+ concentrations were scarcely affected by external K+ or byNaCl, where Na + concentrations were low, but somewhat elevatedat low external K+ and/or high NaCl. In differentiated, vacuolatedtissues K + concentrations were low and Na+ concentrations high,if K + was not supplied externally and/or NaCl was present.The longitudinal distribution of ions within the root was usedto estimate cytoplasmic and vacuolar ion concentrations. Thesedata showed a narrow homoeostasis of cytoplasmic K+ concentrations(100–140 mol m–3) independent of external K + supplyeven in the presence of 100 mol m –3 NaCl. CytoplasmicNa + concentrations were maintained at remarkably low levels.Hence, external K+ concentrations above Cmin, were not requiredfor maintaining K/Na selectivity, i.e. for controlling Na+ entry.The results are discussed with regard to mechanisms of K/Naselectivity and to the importance of phloem import of K+ forsalt tolerance of roots and for cytoplasmic K+ homoeostasis. Key words: Ricinus communis, nitrate, potassium, root (split-root), salt tolerance, phloem transport  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号