首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Peroxidase oxidation of o-dianisidine, 3,3′,5,5′-tetramethylbenzidine, and o-phenylenediamine in the presence of sodium dodecyl sulfate (SDS), an anionic surfactant, was spectrophotometrically studied. It was found that 0.1–100 mM SDS concentrations stabilize intermediates formed in the peroxidase oxidation of these substrates. The cause of the stabilization is an electrostatic interaction between positively charged intermediates and negatively charged surfactant.  相似文献   

2.
The kinetics of coupled peroxidation of 3,3',5,5'-tetramethylbenzidine and 1-amino-2-naphtol-4-sulfonic acid (ANSA) or its polydisulfide (poly(ADSNSA)) was studied in 0.01 M phosphate buffer (pH 6.4) at 20 degrees C. Both ANSA and poly(ADSNSA) strongly inhibited the TMB oxidation resulting in a marked delay in the product formation. Stoichiometric inhibition coefficients f, i.e., the average numbers of free-radical particles terminated by one inhibitor molecule, were estimated. The free-radical trapping effect of poly(ADSNSA) was 7.5 times greater than that of ANSA. Kinetics of coupled o-phenylenediamine (PhDA) and ANSA or poly(ADSNSA) oxidation was studied in phosphate-citrate buffers at pH 3 to 7. No lag periods in oxidation product accumulation were observed under any of the reaction conditions. A weak activation of PhDA conversion depending on pH and PhDA/ANSA ratios was observed at low ANSA concentrations, whereas increased ANSA or poly(ADSNSA) concentrations were inhibitory. The degree of PhDA inhibition was maximal in acid media, reached minimum at pH 5 to 6, and than again increased at pH above 6. Tentative mechanism of coupled aromatic amine phenol bi-substrate system peroxidation is discussed.  相似文献   

3.
4.
The steady-state kinetics of the horseradish peroxidase (HRP)-catalyzed oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) has been studied in the presence of 2-amino-4-nitrophenol (ANP), gallic acid (GA) or 4,4'-dihydroxydiphenylsulfone (DDS) and their polydisulfides poly(ADSNP), poly(DSGA), poly(DSDDS) at 20 degrees C in 10 mM phosphate buffer, pH 6.4, supplemented with 5-10% dimethylformamide. The second-order rate constants for the reactions of ANP, GA, poly(DSGA) and poly(DSDDS) with HRP-Compound I (k2) and Compound II (k3) have been determined at 25 degrees C in 10 mM phosphate buffer, pH 6.0 by stopped-flow spectrophotometry. ANP, GA and their polydisulfides strongly inhibited HRP-catalyzed TMB oxidation. Inhibition constants (Ki) and stoichiometric coefficients of inhibition (f) have been determined for these reactions. The most effective inhibitor was poly(DSGA) (Ki=1.3 microM, f=35.6). The oxidation of substrate pairs by HRP, i.e., TMB-DDS and TMB-poly(DSDDS) at pH 7.2 resulted in a approximately 8- and approximately 12-fold stimulation of TMB oxidation rates, respectively. The mechanisms of the HRP-catalyzed co-oxidation of TMB-phenol pairs are discussed.  相似文献   

5.
A comparative study of the kinetics of peroxidase-catalyzed oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) in the presence of 2,4-dinitrosoresorcinol (DNR), its polydisulfide derivative [poly(DNRDS)], and resorcinol polydisulfide [poly(RDS)], substances that competitively inhibit the formation of TMB conversion product, was carried out. The inhibition constants, Ki for DNR, poly(DNRDS), and poly(RSD) were determined at 20 degrees C and pH 6.4 to be 110, 13.5, and 0.78 microM, respectively. The stoichiometric coefficients of inhibition were calculated to be 0.38 and 76 for poly(DNRDS) and poly(RDS), respectively. In the pH range 6.4-7.0, the initial rates of the peroxidative oxidation of TMB, and its mixtures with DNR and poly(DNRDS) and the Ki value for poly(RDS) substantially decreased with increasing pH. The kinetic parameters of poly(RDS) (Ki 0.22-0.78 microM and f76) suggest that it is the most efficient inhibitor of peroxidase oxidation of TMB: in micromolar concentrations, it completely stops this process and can be used in EIA.  相似文献   

6.
A comparative kinetic study on the poly(gallic acid disulfide) (poly(DSGA)) inhibition of the iodide ion oxidation and on the 2-hydroxy-3,5-di-tert-butyl-N-phenylaniline (butaminophene) inhibition of 3,3',5,5'-tetramethylbenzidine (TMB) oxidation involving human thyroid peroxidase (hTPO) and horseradish peroxidase (HRP) was performed. The inhibition processes were characterized with the inhibition constants Ki and stoichiometric inhibition coefficients f, indicating the number of radical particles perishing on one inhibitor molecule. In the case of poly(DSGA), the Ki values for the I- oxidation were 0.60 and 0.04 microM, and the coefficients f were 13.6 and 16.5 for hTPO and HRP, respectively, which evidences the regeneration and high effectiveness of the polymeric inhibitor. In the case of butaminophene, the Ki values for TMB oxidation were 38 and 46 microM for hTPO and HRP, respectively. The coefficients f were 1.33 and 1.47, respectively, to reveal that butaminophene does not regenerate. The inhibition mechanisms for I- and TMB oxidation involving the two peroxidases are discussed.  相似文献   

7.
In horseradish peroxidase (EC: 1.11.1.7)-dependent immunoblot assays, particulate 3,3',5,5'-tetramethylbenzidine (TMB) is shown to be a more efficient immunoblot substrate than the standard substrate 3,3'-diaminobenzidine (DAB), because TMB is easily prepared, stable, and less carcinogenic than is DAB. Assays of antibody in a serially diluted human immunodeficiency virus (HIV) control serum (CDC reference CAT# VS2151) have the same sensitivity limits with both DAB and TMB (1:312,500). Complete, working substrate solutions of H2O2/TMB/enhancer and of H2O2/DAB were stored at room temperatures and at 48 degrees C respectively. Periodic tests showed the TMB substrate system to be functional after four weeks at 48 degrees C and after eight weeks at room temperature, while the DAB system was functional after one week at 48 degrees C and after four weeks at room temperature. The stability, safety, and convenience of the commercially available TMB kits make this substrate ideal for immunoblot tests.  相似文献   

8.
5-Aminosalicylic acid (5-ASA) inhibited by a mixed mechanism the peroxidase catalyzed oxidation of tetramethylbenzidine (TMB) in 0.015 M phosphate-citrate buffer (pH 6.4) supplemented with 5% DMSO and 5% DMF. Poly(salicylic acid 5-aminodisulfide) (poly(SAADS)) in 0.01 M phosphate buffer (pH 6.2-7.4) supplemented with 5% DMSO and 5% DMF effectively activated the peroxidase-catalyzed oxidation of TMB. The activation was quantitatively characterized by coefficients (M–1) determined at different pH values: increased linearly with increase in pH up to the maximal value of 2.44·105 M–1 at pH 7.0. The activating effect of poly(SAADS) on the peroxidase-catalyzed oxidation of TMB is explained by the activator properties of polyelectrolyte, with its anionic form interacting with peroxidase sites responsible for the acid-base catalysis.  相似文献   

9.
The quantitative determination of hemoglobin employing 3,3′,5,5′-tetramethylbenzidine dihydrochloride (TMB-d) is described. This agent can also be used for staining myeloperoxidase-containing granules in granulocytes. TMB-d is at least as sensitive a reagent as benzidine but, unlike benzidine and diaminobenzidine, it is not a carcinogen.  相似文献   

10.
A kinetic study of o-dianisidine oxidation by hydrogen peroxide in the presence of horseradish peroxidase within the pH range of 3.7-9.0 has been carried out. It was shown that the reaction of o-dianisidine peroxidase oxidation obeys the Michaelis--Menten kinetics; the kcat and Km values within the pH range used were determined. The optimum of peroxidase catalytic activity during o-dianisidine oxidation was observed at pH 5.0-6.0. The kinetic pattern of the reaction is discussed. It was demonstrated that deprotonation of the group at pK 6.5 decreases the kcat value 60 times. At pH greater than 8.0 an additional ionogenic group controls the enzyme activity.  相似文献   

11.
12.
This report describes the relationship between the amount of sodium dodecyl sulfate present in a sample solution and the electrophoretic mobility of the protein-dodecyl sulfate complexes. In order to determine the extent of any conformational changes in the proteins and to establish a correlation between any of these structural changes and the electrophoretic behavior, visible absorption spectra and circular dichroism spectra were obtained for heme proteins in the presence of the same amounts of surfactants as used in electrophoresis.From the results obtained, it is apparent that the amount of sodium dodecyl sulfate present in the sample solution must be taken into consideration when performing a separation. Optimum experimental conditions are chosen for attaining enhanced separation and a maximized linear range of molecular weights of proteins that can be accurately determined.  相似文献   

13.
The steady-state kinetics of horseradish peroxidase-catalyzed oxidation of hydroquinone was studied. Hydroquinone was shown to be a rapidly oxidizable substrate of the peroxidase. Values of kcat and Km for this substrate were determined in the pH range 4-7. The oxidation of hydroquinone and o-dianisidine was distinguished when both were present in the reaction mixture. o-Dianisidine was not oxidized until hydroquinone was completely converted. The rate of hydroquinone oxidation by peroxidase in the presence of o-dianisidine was 3-10 times higher than the rate of its individual oxidation. The activator decreased the Km for hydroquinone oxidation.  相似文献   

14.
The structure and protein-detergent interactions of apolipoprotein C-II (apoC-II) in the presence of SDS micelles have been investigated using circular dichroism and heteronuclear NMR techniques applied to (15)N-labeled protein. Micellar SDS, a commonly used mimetic of the lipoprotein surface, inhibits the aggregation of apoC-II and induces a stable structure containing approximately 60% alpha-helix as determined by circular dichroism. NMR reveals the first 12 residues of apoC-II to be structurally heterogeneous and largely disordered, with the rest of the protein forming a predominantly helical structure. Three regions of helical conformation, residues 16-36, 50-56, and 63-77, are well-defined by NMR-derived constraints, with the intervening regions showing more loosely defined helical conformation. The structure of apoC-II is compared to that determined for other apolipoproteins in a similar environment. Our results shed light on the lipid interactions of apoC-II and its mechanism of lipoprotein lipase activation.  相似文献   

15.
《Analytical biochemistry》1986,155(2):371-375
We developed procedures for the restoration of peroxidatic activity in native horseradish peroxidase (HRP) and HRP conjugated to wheat germ agglutinin (WGA-HRP) following electrophoresis in SDS-polyacrylamide gels (SDS-PAGE). After extraction of SDS with isopropanol from gels containing HRP and WGA-HRP, the peroxidatic activity in these probes could be demonstrated by tetramethylbenzidine (TMB) chemistry. This procedure also showed HRP enzyme activity in electrophoresed tissue homogenates containing HRP. Both free HRP as well as WGA-HRP preparations contain several molecular weight species that display peroxidatic activity. These findings are important for cell biological studies utilizing these substances as molecular probes. The procedures described here should be useful for the analysis of the enzymatically active molecular forms of these frequently used markers in vitro and in vivo.  相似文献   

16.
Glutathione S-transferase (GST) is widely used to prepare and purify GSTtagged fusion proteins. Although GST improves protein solubility, detergents must often be used to achieve protein solubilization from bacterial lysates. However, purification of GST by affinity chromatography cannot be achieved in the presence of even low concentrations of the detergent sodium dodecyl sulfate (SDS). Here we show that 2-methyl-2,4-pentanediol (MPD) can prevent SDS from interfering with purification of GST, thus enabling purification of proteins that require SDS to improve their solubility.  相似文献   

17.
In indirect ELISA using protein A-horseradish peroxidase (HRP) as enzyme conjugate and 3,3′, 5,5′-tetramethylbenzidine (TMB) as substrate, extracts of roots of all cucumber, Chenopodium quinoa and Petunia hybrida plants previously inoculated with virus or buffer produced A450 values up to seven-fold greater than those for comparable shoots or for extracts of roots from undisturbed, uninoculated plants, irrespective of the virus antiserum used for detection. This effect was also produced in tests in which no HRP conjugate was used, indicating that root extracts from virus-infected or physically injured plants, but not healthy uninjured plants, contain high levels of a factor able to oxidise TMB. The HRP conjugate/TMB substrate version of ELISA is therefore not reliable for detecting viruses in root extracts of herbaceous plants. In contrast, non-specific reactions were not obtained with root extracts, and viruses were reliably detected, when protein A-alkaline phosphatase was used as conjugate and p-nitrophenyl phosphate as substrate.  相似文献   

18.
The growth of Enterobacter cloacae in 25% sodium dodecyl sulfate is described. The bacteria appeared to tolerate sodium dodecyl sulfate rather than metabolize it. The process was energy dependent, and cell lysis occurred during stationary phase. Extreme detergent resistance may be characteristic of the genus Enterobacter.  相似文献   

19.
Hydrogenases catalyze the reversible activation of dihydrogen. We have previously demonstrated that the purified hydrogenase from the nitrogen-fixing microorganism Azotobacter vinelandii is an alpha beta dimer (98,000 Da) with subunits of 67,000 (alpha) and 31,000 (beta) daltons and that this enzyme contains iron and nickel. The enzyme can be purified anaerobically in the presence of dithionite in a fully active state that is irreversibly inactivated by exposure to O2. Analysis of this hydrogenase by sodium dodecyl sulfate (SDS) polyacrylamide gel electrophoresis (PAGE) following boiling in SDS yields two protein staining bands corresponding to the alpha and beta subunits. However, when this enzyme was treated with SDS (25-65 degrees C) for up to 30 min under anaerobic/reductive conditions and then analyzed by anaerobic SDS-PAGE, a protein staining band corresponding to an apparent molecular mass of 58,000 Da was observed that stained for hydrogenase activity. Analysis of the 58,000-Da activity staining band by a Western immunoblot or a second aerobic SDS-polyacrylamide gel revealed that this protein actually consisted of both the alpha and beta subunits. Thus, the activity staining band (apparent 58,000 Da) represents the 98,000-Da dimer migrating abnormally on SDS-PAGE. Treatment of the anaerobically purified hydrogenase with SDS under aerobic conditions or under anaerobic conditions with electron acceptors prior to electrophoresis resulted in no activity staining band and the separated alpha and beta subunits. A. vinelandii hydrogenase was also purified under aerobic conditions in an inactive O2 stable form that can be activated by removal of oxygen followed by addition of reductant. This enzyme (as isolated), the activated form, and the reoxidized form were analyzed for their stability toward denaturation by SDS. We conclude that the dissociation of the A. vinelandii hydrogenase subunits in SDS is controlled by the redox state of the enzyme suggesting an important role of one or more redox sites in controlling the structure of this enzyme.  相似文献   

20.
Interactions between sodium dodecyl sulfate (SDS) and horse heart myoglobin (Mb) at surfactant concentrations below the critical micelle concentration have been studied using steady-state and transient absorption spectroscopies and photoacoustic calorimetry. SDS binding to Mb induces a heme transition from high-spin five-coordinate to low-spin six-coordinate in met- and deoxyMb, with the distal His residue likely to be the sixth ligand. The transition is complete at an SDS concentration of approximately 350 microM and approximately 700 microM for met- and deoxyMb, respectively. DeltaG(H(2)O) and m values determined from equilibrium SDS-induced unfolding curves indicate similar stability of met- and deoxyMb toward unfolding; however, the larger m value for the deoxyMb equilibrium intermediate indicates that its structure differs from that of metMb. Results from transient absorption spectroscopy show that CO rebinding to Fe(2+)-Mb in the presence of SDS is a biphasic process with the rate constant of the first process approximately 5.5 x 10(3) s(-1), whereas the second process displays a rate similar to that for CO rebinding to native Mb (k(obs) = 7.14 x 10(2) s(-1)) at 1 mM CO. Results of photoacoustic calorimetry show that CO dissociation from deoxyMb occurs more than 10 times faster in the presence of SDS than in native Mb. These data suggest that the heme binding pocket is more solvent-exposed in the SDS-induced equilibrium intermediate relative to native Mb, which is likely due to the electrostatic and hydrophobic interactions between surfactant molecules and the protein matrix.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号