首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 568 毫秒
1.
2.
Using molecular modeling, we have investigated the structure and dynamic properties of epothilone B–tubulin complexes with wild-type and mutated tubulin, aimed at identifying the molecular factors involved in the emergence of drug resistance induced by four protein mutations at Phe270Val, Thr274Ile, Arg282Gln, and Gln292Glu. Our results revealed that tubulin mutations render significant changes in the protein conformation in regions involved either in the binding of the ligand or in interdimer contacts that are relevant to the assembly of stable microtubules. In addition, point mutations induce drastic changes in the binding pose of the ligand and in the interaction networks responsible for the epothilone–tubulin association. Large ligand displacements inside the binding pocket and an overall decrease in the strength of drug-receptor polar contacts suggest a looser binding of the ligand in tubulin mutants. These results explain the loss of activity for epothilone B against cancer cells that contain tubulin mutants and provide valuable information to enhance the understanding of the atomic source of epothilones’ activity, which can be helpful to conduct further research on the rational design of more potent therapeutic tubulin-binding agents.  相似文献   

3.
Conformational rearrangements of peroxysome proliferator activated receptor (PPARγ) ligand-binding domain (LBD) that accompany the release and binding of ligands are not well understood. To determine the major events associated with the escape of the partial agonist GW0072, molecular dynamic (MD) simulations were performed using two different methods: reversed targeted molecular dynamics (TMD−1) and time-dependent distance restraints (TDR) using as restraints either the root mean square deviation from a reference structure (TMD−1) or the distance between the geometrical centers of the binding pocket and of the ligand (TDR). Both methods do not assume any a priori route for ligand extraction. To avoid artifacts, different initial simulation conditions were used and particular attention was paid for giving time to the protein to relax during the extraction process by running 10–12 ns simulations within explicit water. Two distinct exit gates A and B were found, independently of initial conditions and method. During the exit process no interaction between GW0072 and the transactivation AF-2 helix was observed. Our results suggest that the ligand uses the intrinsic flexibility of the protein to move within the receptor. Paths A and B are very similar to those found for other nuclear receptors, suggesting that these routes are a common characteristics of nuclear receptors that are used by different kinds of ligands. Finally, the knowledge of entry/exit pathways of a receptor should be very useful in discriminating between different ligands that could have been favorably docked in the binding pocket by introducing docking along these pathways into computational drug design protocols.  相似文献   

4.
The enzymatic reaction of triosephosphate isomerase (TIM) is controlled by the movement of a loop (loop6, residues 166-176). Crystal structures of TIMs from a variety of sources have revealed that the loop6, which is in an open conformation in the unliganded enzyme, adopts a closed conformation in inhibitor complexes. In contrast, structures with loop open conformation are obtained in most of the complexes of TIM from the malarial parasite Plasmodium falciparum (PfTIM). W168 is a conserved N-terminal hinge residue, involved in different sets of interactions in the "open" and "closed" forms of loop6. The role of W168 in determining the loop conformation was examined by structural studies on the mutant W168F and its complexes with ligands. The three-dimensional structures of unliganded mutant (1.8 A) and complexes with sulfate (2.8 A) and glycerol-2-phosphate (G2P) (2.8 A) have been determined. Loop6 was found disordered in these structures, reflecting the importance of W168 in stabilizing either the open or the closed states. Critical sequence differences between the Plasmodium enzyme and other TIMs may influence the equilibrium between the closed and open forms. Examination of the environment of the loop6 shows that its propensity for the open or the closed forms is influenced not only by Phe96 as suggested earlier, but also by Asn233, which occurs in the vicinity of the active site. This residue is Gly in the other TIM sequences and probably plays a crucial role in the mode of ligand binding, which in turn affects the loop opening/closing process in PfTIM.  相似文献   

5.

Abstract

CD1d is a non-polymorphic antigen-presenting glycoprotein that recognizes glycolipids as ligands. Ligands bind to the hydrophobic grooves of CD1d, and the resulting ligand-CD1d complexes activate natural killer T (NKT) cells by means of T cell receptor recognition, leading to the secretion of various cytokines. However, details of the ligand recognition mechanism of a large hydrophobic ligand binding pocket and the relationship between cytokine induction and ligand structure are unclear. We report the synthesis of α-GalCer derivatives containing a Bz amide group having various substituting groups in the ceramide moiety, and the analysis of the structure-activity relationships. The assays reveal that the Bz amide-containing CD1d ligands function as NKT cell modulators displaying Th2 cytokine biasing responses. Furthermore, molecular dynamics simulation studies suggest that the phenyl groups can interact with the aromatic amino acid residues in the lipid binding pocket of CD1d.  相似文献   

6.
Triosephosphate isomerase (TIM) has been the subject of many structural and mechanistic studies. At position 96, there is a highly conserved Ser residue, which is proximal to the catalytic site. Thus far, no specific role has been ascribed to this residue. Plasmodium falciparum TIM (PfTIM), a fully catalytically active enzyme, is unique in possessing a Phe residue at position 96. The structure of PfTIM complexed to phosphoglycolate (PG), a transition state analogue, has been determined in an effort to probe the effects of the mutation at residue 96 on the nature of inhibitor-enzyme interactions and the orientation of the critical catalytic loop (loop 6, residues 166-176) in TIM. Crystal structures of PfTIM complexed to phosphoglycolate in orthorhombic (P2(1)2(1)2(1)) and monoclinic (C2) forms were determined and refined at resolutions of 2.8 and 1.9 A, respectively. The P2(1)2(1)2(1) form contains two dimers in the asymmetric unit. In the C2 form, the molecular and crystal 2-fold axes are coincident, leading to a monomer in the asymmetric unit. The catalytic loop adopts the open state in the P2(1)2(1)2(1) form and the closed conformation in the C2 crystal. The open conformation of the loop in the P2(1)2(1)2(1) form appears to be a consequence of the Ser to Phe mutation at residue 96. The steric clash between Phe96 and Ile172 probably impedes loop closure in PfTIM-ligand complexes. The PfTIM-PG complex is the first example of a TIM-ligand complex being observed in both loop open and closed forms. In the C2 form (loop closed), Phe96 and Leu167 adopt alternative conformations that are different from the ones observed in the open form, permitting loop closure. These structures provide strong support for the view that loop closure is not essential for ligand binding and that dynamic loop movement may occur in both free and ligand-bound forms of the enzyme.  相似文献   

7.
Due to their involvement in many pathological conditions, matrix metalloproteinases (MMPs), are very attractive therapeutic targets. Our study focuses on one of them, MMP-2, which is involved in tumor progression and metastasis. Recently, the solution structure of the catalytic domain of MMP-2 complexed with a hydroxamic acid inhibitor (SC-74020) was published by Feng et al. Using the Hanessian group published binding affinity data and the structure published by Feng as a basis, we have built a binding affinity model by targeting the S(2)' pocket of the enzyme with a set of nine alpha-N-sulfonylamino hydroxamic acid derivatives. Two binding geometries of each ligand have been generated corresponding to two binding modes denoted A and B, respectively, of which the first one is targeting the S(2)' pocket and the second one the S(1) pocket. For the binding affinity model developed for mode A the computed activities show a rmsd of 0.583 kcal/mol as compared with the experimental data, and a correlation coefficient r(2) of 0.779, while in the case of the binding mode B a rmsd of 0.834 kcal/mol and correlation coefficient r(2) of 0.500, respectively, were obtained. In conclusion, our data suggest a higher probability for the Phe(76) gated S(2)' open form pocket to accommodate the substituent alpha versus the wide solvent exposed S(1) subsite, probability which some research groups could have overlooked due to extensive use in their calculations of non revealing S(2)' pocket open state crystallographic structures instead of NMR ones.  相似文献   

8.
Haemoglobin I from Lucina pectinata is a monomeric protein consisting of 142 amino acids. Its active site contains a peculiar arrangement of phenylalanine residues (PheB10, PheCD1 and PheE11) and a distal Gln at position E7. Active site mutations at positions B10, E7 and E11 were performed in deoxy haemoglobin I (HbI), followed by 10 ns molecular dynamic simulations. The results showed that the mutations induced changes in domains far from the active site producing more flexible structures than the native HbI. Distance analyses revealed that the heme pocket amino acids at positions E7 and B10 are extremely sensitive to any heme pocket residue mutation. The high flexibility observed by the E7 position suggests an important role in the ligand binding kinetics in ferrous HbI, while both positions play a major role in the ligand stabilisation processes. Furthermore, our results showed that E11Phe plays a pivotal role in protein stability.  相似文献   

9.
Inverse agonists of the constitutively active human estrogen-related receptor alpha (ERRalpha, NR3B1) are of potential interest for several disease indications (e.g. breast cancer, metabolic diseases, or osteoporosis). ERRalpha is constitutively active, because its ligand binding pocket (LBP) is practically filled with side chains (in particular with Phe(328), which is replaced by Ala in ERRbeta and ERRgamma). We present here the crystal structure of the ligand binding domain of ERRalpha (containing the mutation C325S) in complex with the inverse agonist cyclohexylmethyl-(1-p-tolyl-1H-indol-3-ylmethyl)-amine (compound 1a), to a resolution of 2.3A(.) The structure reveals the dramatic multiple conformational changes in the LBP, which create the necessary space for the ligand. As a consequence of the new side chain conformation of Phe(328) (on helix H3), Phe(510)(H12) has to move away, and thus the activation helix H12 is displaced from its agonist position. This is a novel mechanism of H12 inactivation, different from ERRgamma, estrogen receptor (ER) alpha, and ERbeta. H12 binds (with a surprising binding mode) in the coactivator groove of its ligand binding domain, at a similar place as a coactivator peptide. This is in contrast to ERRgamma but resembles the situation for ERalpha (raloxifene or 4-hydroxytamoxifen complexes). Our results explain the novel molecular mechanism of an inverse agonist for ERRalpha and provide the basis for rational drug design to obtain isotype-specific inverse agonists of this potential new drug target. Despite a practically filled LBP, the finding that a suitable ligand can induce an opening of the cavity also has broad implications for other orphan nuclear hormone receptors (e.g. the NGFI-B subfamily).  相似文献   

10.
The ecdysone receptor is a nuclear hormone receptor that plays a pivotal role in the insect metamorphosis and development. To address the molecular mechanisms of binding and selectivity, the interactions of two typical agonists Ponasterone A and 20-Hydroxyecdysone with Drosophila melanogaster (DME) and Leptinotarsa decemlineata ecdysone (LDE) receptors were investigated by homology modeling, molecular docking, molecular dynamic simulation, and thermodynamic analysis. We discover that 1) the L5-loop, L11-loop, and H12 helix for DME, L7-loop, and L11-loop for LDE are more flexible, which affect the global dynamics of the ligand-binding pocket, thus facilitating the ligand recognition of ecdysone receptor; 2) several key residues (Thr55/Thr37, Phe109/Phe91, Arg95/Arg77, Arg99/Arg81, Phe108/Leu90, and Ala110/Val92) are responsible for the binding of the proteins; 3) the binding-free energy is mainly contributed by the van der Waals forces as well as the electrostatic interactions of ligand and receptor; 4) the computed binding-free energy difference between DME-C1 and LDE-C1 is –4.65 kcal/mol, explains that C1 can form many more interactions with the DME; 5) residues Phe108/Leu90 and Ala110/Val92 have relatively position and orientation difference in the two receptors, accounting most likely for the ligand selectivity of ecdysone receptor from different orders of insects. This study underscores the expectation that different insect pests should be able to discriminate among compounds from different as yet undiscovered compounds, and the results firstly show a structural and functional relay between the agonists and receptors (DME and LDE), which can provide an avenue for the development of target-specific insecticides.

Communicated by Ramaswamy H. Sarma  相似文献   


11.
Aurora B kinase is essential in the process of mitosis, and its overexpression has been reported to be associated with a number of solid tumors. We therefore carried out molecular docking, molecular dynamics, and molecular mechanics Poisson-Boltzmann/surface area (MM-PBSA) calculations on several structurally diverse inhibitors (pentacyclic, pyrimidine, quinazoline, and pyrrolopyridine derivatives) and Aurora B kinase to explore the structural and chemical features responsible for the binding recognition mechanism. Molecular simulations reveal that the binding site mainly consists of six binding regions (sites A-F). We have identified that sites B and C are required for optimum binding in Aurora B-inhibitor complexes, sites A and F are needed to improve pharmacokinetic properties, while sites D and E lead to enhanced stability. We verified that hydrogen bonding to the hinge region and hydrophobic contact with the conserved hydrophobic pocket are of critical importance in the systems studied. Specifically, the amino acids Glu171, Phe172, and Ala173 in the hinge region and Leu99, Val107, and Leu223 in the conserved hydrophobic pocket probably account for the high binding affinities of these systems, as shown by hydrogen-bonding analysis and energy decomposition analysis. Hydrophobic contact with Phe172 is also in agreement with experimental data. In addition, the MM-PBSA calculations reveal that the binding of these inhibitors to Aurora B kinase is mainly driven by van der Waals/nonpolar interactions. The findings of this study should help to elucidate the binding pattern of Aurora B inhibitors and aid in the design of novel active ligands.  相似文献   

12.
G-protein hetero-trimers play a fundamental role in cell function. Their dynamic behavior at the atomic level remains to be understood. We have studied the Gi hetero-trimer through a combination of molecular dynamics simulations and normal mode analyses. We showed that these big proteins could undergo large-amplitude conformational changes, without any energy penalty and with an intrinsic dynamics centered on their GDP binding pocket. Among the computed collective motions, one of the modes (mode 17) was particularly able to significantly open both the base and the phosphate sides of the GDP binding pocket. This mode describing mainly a motion between the Ras-like and the helical domains of Gα was in close agreement with some available X-ray data and with many other biochemical/biophysical observations including the kink of helix α5. The use of a new protocol, which allows extraction of the GDP ligand along the computed normal modes, supported that the exit of GDP was largely coupled to an opening motion along mode 17. We propose for the first time a “concerted mechanism” model in which the opening of the GDP pocket and the kink of the α5 helix occur concomitantly and favor GDP release from Gαβγ complexes. This model is discussed in the context of the G-protein-coupled receptor/G-protein interaction close to the cell membrane.  相似文献   

13.
The NS5B RdRp polymerase is a prominent enzyme for the replication of Hepatitis C virus (HCV). During the HCV replication, the template RNA binding takes place in the “fingers” sub-domain of NS5B. The “fingers” domain is a new emerging allosteric site for the HCV drug development. The inhibitors of the “fingers” sub-domain adopt a new antiviral mechanism called RNA intervention. The details of essential amino acid residues, binding mode of the ligand, and the active site intermolecular interactions of RNA intervention reflect that this mechanism is ambiguous in the experimental study. To elucidate these details, we performed molecular docking analysis of the fingers domain inhibitor quercetagetin (QGN) with NS5B polymerase. The detailed analysis of QGN-NS5B intermolecular interactions was carried out and found that QGN interacts with the binding pocket amino acid residues Ala97, Ala140, Ile160, Phe162, Gly283, Gly557, and Asp559; and also forms π?π stacking interaction with Phe162 and hydrogen bonding interaction with Gly283. These are found to be the essential interactions for the RNA intervention mechanism. Among the strong hydrogen bonding interactions, the QGN?Ala140 is a newly identified important hydrogen bonding interaction by the present work and this interaction was not resolved by the previously reported crystal structure. Since D559G mutation at the fingers domain was reported for reducing the inhibition percentage of QGN to sevenfold, we carried out molecular dynamics (MD) simulation for wild and D559G mutated complexes to study the stability of protein conformation and intermolecular interactions. At the end of 50?ns MD simulation, the π?π stacking interaction of Phe162 with QGN found in the wild-type complex is altered into T-shaped π stacking interaction, which reduces the inhibition strength. The origin of the D559G resistance mutation was studied using combined MD simulation, binding free energy calculations and principal component analysis. The results were compared with the wild-type complex. The mutation D559G reduces the binding affinity of the QGN molecule to the fingers domain. The free energy decomposition analysis of each residue of wild-type and mutated complexes revealed that the loss of non-polar energy contribution is the origin of the resistance.

Communicated by Ramaswamy H. Sarma  相似文献   


14.
A ligand binding pocket has been created on the proximal side of the heme in porcine myoglobin by site-directed mutagenesis. Our starting point was the H64V/V68H double mutant which has been shown to have bis-histidine (His68 and His93) heme coordination [Dou, Y., Admiraal, S. J., Ikeda-Saito, M., Krzywda, S., Wilkinson, A. J., Li, T., Olson, J. S., Prince, R. C., Pickering, I. J., George, G. N. (1995) J. Biol. Chem. 270, 15993-16001]. The replacement of the proximal His93 ligand by noncoordinating Ala (H64V/V68H/H93A) or Gly (H64V/V68H/H93G) residues resulted unexpectedly in a six-coordinate low-spin species in both ferric and ferrous states. To test the hypothesis that the sixth coordinating ligand in the triple mutants was the imidazole of His97, this residue was mutated to Phe, in the quadruple mutants, H64V/V68H/H93A/H97F and H64V/V68H/H93G/H97F. The ferric quadruple mutants show a clear water/hydroxide alkaline transition and high cyanide and CO affinities, characteristics similar to those of wild-type myoglobin. The nu(Fe-CO) and nu(C-O) stretching frequencies in the ferrous-CO state of the quadruple mutants indicate that the "proximal" ligand binding heme pocket is less polar than the distal pocket in the wild-type protein. Thus, we conclude that the proximal heme pocket in the quadruple mutants has a similar affinity for exogenous ligands to the distal pocket of wild-type myoglobin but that the two pockets have different polarities. The quadruple mutants open up new approaches for developing heme chemistry on the myoglobin scaffold.  相似文献   

15.
Ligand binding may involve a wide range of structural changes in the receptor protein, from hinge movement of entire domains to small side-chain rearrangements in the binding pocket residues. The analysis of side chain flexibility gives insights valuable to improve docking algorithms and can provide an index of amino-acid side-chain flexibility potentially useful in molecular biology and protein engineering studies. In this study we analyzed side-chain rearrangements upon ligand binding. We constructed two non-redundant databases (980 and 353 entries) of "paired" protein structures in complexed (holo-protein) and uncomplexed (apo-protein) forms from the PDB macromolecular structural database. The number and identity of binding pocket residues that undergo side-chain conformational changes were determined. We show that, in general, only a small number of residues in the pocket undergo such changes (e.g., approximately 85% of cases show changes in three residues or less). The flexibility scale has the following order: Lys > Arg, Gln, Met > Glu, Ile, Leu > Asn, Thr, Val, Tyr, Ser, His, Asp > Cys, Trp, Phe; thus, Lys side chains in binding pockets flex 25 times more often then do the Phe side chains. Normalizing for the number of flexible dihedral bonds in each amino acid attenuates the scale somewhat, however, the clear trend of large, polar amino acids being more flexible in the pocket than aromatic ones remains. We found no correlation between backbone movement of a residue upon ligand binding and the flexibility of its side chain. These results are relevant to 1. Reduction of search space in docking algorithms by inclusion of side-chain flexibility for a limited number of binding pocket residues; and 2. Utilization of the amino acid flexibility scale in protein engineering studies to alter the flexibility of binding pockets.  相似文献   

16.
17.
18.
Human aldose reductase (ALR2) has evolved as a promising therapeutic target for the treatment of diabetic long-term complications. The binding site of this enzyme possesses two main subpockets: the catalytic anion-binding site and the hydrophobic specificity pocket. The latter can be observed in the open or closed state, depending on the bound ligand. Thus, it exhibits a pronounced capability for induced-fit adaptations, whereas the catalytic pocket exhibits rigid properties throughout all known crystal structures. Here, we determined two ALR2 crystal structures at 1.55 and 1.65 A resolution, each complexed with an inhibitor of the recently described naphtho[1,2-d]isothiazole acetic acid series. In contrast to the original design hypothesis based on the binding mode of tolrestat (1), both inhibitors leave the specificity pocket in the closed state. Unexpectedly, the more potent ligand (2) extends the catalytic pocket by opening a novel subpocket. Access to this novel subpocket is mainly attributed to the rotation of an indole moiety of Trp 20 by about 35 degrees . The newly formed subpocket provides accommodation of the naphthyl portion of the ligand. The second inhibitor, 3, differs from 2 only by an extended glycolic ester functionality added to one of its carboxylic groups. However, despite this slight structural modification, the binding mode of 3 differs dramatically from that of the first inhibitor, but provokes less pronounced induced-fit adaptations of the binding cavity. Thus, a novel binding site conformation has been identified in a region where previous complex structures suggested only low adaptability of the binding pocket. Furthermore, the two ligand complexes represent an impressive example of how the slight change of a chemically extended side-chain at a given ligand scaffold can result in a dramatically altered binding mode. In addition, our study emphasizes the importance of crystal structure analysis for the translation of affinity data into structure-activity relationships.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号