首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
一个新的古菌类群———奇古菌门(Thaumarchaeota)   总被引:7,自引:0,他引:7  
基于16S rRNA基因的系统发育关系,古菌域(Archaea)被分为两个主要类群:广古菌门(Euryarchaeota)和泉古菌门(Crenarchaeota)。近20年来,微生物分子生态学技术的快速发展和应用显示,在中温环境中广泛存在着大量的未培养古菌,而且它们可能在自然界重要元素(N、C)的生物地球化学循环中发挥着重要作用。最初,这些未培养古菌因在16S rRNA基因系统发育上与泉古菌关系较密切而被称作中温泉古菌(non-thermophilic Crenarchaeota)。而近年来,对更多新发现的中温古菌核糖体RNA基因序列和其它分子标记物进行的分析均不支持中温泉古菌由嗜热泉古菌进化而来的假设,而揭示其可能代表古菌域中一个独立的系统发育分支。基因组学、生理生态特征等分析也显示中温泉古菌与泉古菌具有明显不同的特征。因而专家建议将这些古菌(中温泉古菌)划分为一个新的门,成为古菌域的第三个主要类群—Thaumarchaeota(意译为奇古菌门)。这一新古菌门提出后得到其他研究证据的支持和认可。本文对目前已知的奇古菌门的分类地位演化、基因组学、多样性和生理代谢特征等作一简要综述。  相似文献   

2.
Crenarchaeotes found in mesophilic marine environments were recently placed into a new phylum of Archaea called the Thaumarchaeota. However, very few molecular characteristics of this new phylum are currently known which can be used to distinguish them from the Crenarchaeota. In addition, their relationships to deep-branching archaeal lineages are unclear. We report here detailed analyses of protein sequences from Crenarchaeota and Thaumarchaeota that have identified many conserved signature indels (CSIs) and signature proteins (SPs) (i.e., proteins for which all significant blast hits are from these groups) that are specific for these archaeal groups. Of the identified signatures 6 CSIs and 13 SPs are specific for the Crenarchaeota phylum; 6 CSIs and >250 SPs are uniquely found in various Thaumarchaeota (viz. Cenarchaeum symbiosum, Nitrosopumilus maritimus and a number of uncultured marine crenarchaeotes) and 3 CSIs and ~10 SPs are found in both Thaumarchaeota and Crenarchaeota species. Some of the molecular signatures are also present in Korarchaeum cryptofilum, which forms the independent phylum Korarchaeota. Although some of these molecular signatures suggest a distant shared ancestry between Thaumarchaeota and Crenarchaeota, our identification of large numbers of Thaumarchaeota-specific proteins and their deep branching between the Crenarchaeota and Euryarchaeota phyla in phylogenetic trees shows that they are distinct from both Crenarchaeota and Euryarchaeota in both genetic and phylogenetic terms. These observations support the placement of marine mesophilic archaea into the separate phylum Thaumarchaeota. Additionally, many CSIs and SPs have been found that are specific for different orders within Crenarchaeota (viz. Sulfolobales—3 CSIs and 169 SPs, Thermoproteales—5 CSIs and 25 SPs, Desulfurococcales—4 SPs, and Sulfolobales and Desulfurococcales—2 CSIs and 18 SPs). The signatures described here provide novel means for distinguishing the Crenarchaeota and the Thaumarchaeota and for the classification of related and novel species in different environments. Functional studies on these signature proteins could lead to discovery of novel biochemical properties that are unique to these groups of archaea.  相似文献   

3.
Because archaea are generally associated with extreme environments, detection of nonthermophilic members belonging to the archaeal division Crenarchaeota over the last decade was unexpected; they are surprisingly ubiquitous and abundant in nonextreme marine and terrestrial habitats. Metabolic characterization of these nonthermophilic crenarchaeotes has been impeded by their intractability toward isolation and growth in culture. From studies employing a combination of cultivation and molecular phylogenetic techniques (PCR-single-strand conformation polymorphism, sequence analysis of 16S rRNA genes, fluorescence in situ hybridization, and real-time PCR), we present evidence here that one of the two dominant phylotypes of Crenarchaeota that colonizes the roots of tomato plants grown in soil from a Wisconsin field is selectively enriched in mixed cultures amended with root extract. Clones recovered from enrichment cultures were found to group phylogenetically with sequences from clade C1b.A1. This work corroborates and extends our recent findings, indicating that the diversity of the crenarchaeal soil assemblage is influenced by the rhizosphere and that mesophilic soil crenarchaeotes are found associated with plant roots, and provides the first evidence for growth of nonthermophilic crenarchaeotes in culture.  相似文献   

4.
5.
Archaeal viruses, or archaeoviruses, display a wide range of virion morphotypes. Whereas the majority of those morphotypes are unique to archaeal viruses, some are more widely distributed across different cellular domains. Tailed double-stranded DNA archaeoviruses are remarkably similar to viruses of the same morphology (order Caudovirales) that infect many bacterial hosts. They have, so far, only been found in one phylum of the archaea, the Euryarchaeota, which has led to controversial hypotheses about their origin. In the present paper, we describe the identification and analysis of a putative provirus present in the genome of a mesophilic thaumarchaeon. We show that the provirus is related to tailed bacterial and euryarchaeal viruses and encodes a full complement of proteins that are required to build a tailed virion. The recently discovered wide distribution of tailed viruses in Euryarchaeota and the identification of a related provirus in Thaumarchaeota, an archaeal phylum which might have branched off before the separation of Crenarchaeota and Euryarchaeota, suggest that an association of these viruses with Archaea might be more ancient than previously anticipated.  相似文献   

6.
Motility is a common behaviour in prokaryotes. Both bacteria and archaea use flagella for swimming motility, but it has been well documented that structures of the flagellum from these two domains of life are completely different, although they contribute to a similar function. Interestingly, information available to date has revealed that structurally archaeal flagella are more similar to bacterial type?IV pili rather than to bacterial flagella. With the increasing genome sequence information and advancement in genetic tools for archaea, identification of the components involved in the assembly of the archaeal flagellum is possible. A subset of these components shows similarities to components from type?IV pilus-assembly systems. Whereas the molecular players involved in assembly of the archaeal flagellum are being identified, the mechanics and dynamics of the assembly of the archaeal flagellum have yet to be established. Recent computational analysis in our laboratory has identified conserved highly charged loop regions within one of the core proteins of the flagellum, the membrane integral protein FlaJ, and predicted that these are involved in the interaction with the assembly ATPase FlaI. Interestingly, considerable variation was found among the loops of FlaJ from the two major subkingdoms of archaea, the Euryarchaeota and the Crenarchaeota. Understanding the assembly pathway and creating an interaction map of the molecular players in the archaeal flagellum will shed light on the details of the assembly and also the evolutionary relationship to the bacterial type?IV pili-assembly systems.  相似文献   

7.
Nitrification within estuarine sediments plays an important role in the nitrogen cycle, both at the global scale and in individual estuaries. Although bacteria were once thought to be solely responsible for catalyzing the first and rate-limiting step of this process, several recent studies have suggested that mesophilic Crenarchaeota are capable of performing ammonia oxidation. Here we examine the diversity (richness and community composition) of ammonia-oxidizing archaea (AOA) and bacteria (AOB) within sediments of Bahía del Tóbari, a hypernutrified estuary receiving substantial amounts of ammonium in agricultural runoff. Using PCR primers designed to specifically target the archaeal ammonia monooxygenase alpha-subunit (amoA) gene, we found AOA to be present at five sampling sites within this estuary and at two sampling time points (January and October 2004). In contrast, the bacterial amoA gene was PCR amplifiable from only 40% of samples. Bacterial amoA libraries were dominated by a few widely distributed Nitrosomonas-like sequence types, whereas AOA diversity showed significant variation in both richness and community composition. AOA communities nevertheless exhibited consistent spatial structuring, with two distinct end member assemblages recovered from the interior and the mouths of the estuary and a mixed assemblage from an intermediate site. These findings represent the first detailed examination of archaeal amoA diversity in estuarine sediments and demonstrate that diverse communities of Crenarchaeota capable of ammonia oxidation are present within estuaries, where they may be actively involved in nitrification.  相似文献   

8.
Fluorescence in situ hybridization (FISH) in combination with polynucleotide probes revealed that the two major groups of planktonic Archaea (Crenarchaeota and Euryarchaeota) exhibit a different distribution pattern in the water column of the Pacific subtropical gyre and in the Antarctic Circumpolar Current system. While Euryarchaeota were found to be more dominant in nearsurface waters, Crenarchaeota were relatively more abundant in the mesopelagic and bathypelagic waters. We determined the abundance of archaea in the mesopelagic and bathypelagic North Atlantic along a south-north transect of more than 4,000 km. Using an improved catalyzed reporter deposition-FISH (CARD-FISH) method and specific oligonucleotide probes, we found that archaea were consistently more abundant than bacteria below a 100-m depth. Combining microautoradiography with CARD-FISH revealed a high fraction of metabolically active cells in the deep ocean. Even at a 3,000-m depth, about 16% of the bacteria were taking up leucine. The percentage of Euryarchaeota and Crenarchaeaota taking up leucine did not follow a specific trend, with depths ranging from 6 to 35% and 3 to 18%, respectively. The fraction of Crenarchaeota taking up inorganic carbon increased with depth, while Euryarchaeota taking up inorganic carbon decreased from 200 m to 3,000 m in depth. The ability of archaea to take up inorganic carbon was used as a proxy to estimate archaeal cell production and to compare this archaeal production with total prokaryotic production measured via leucine incorporation. We estimate that archaeal production in the mesopelagic and bathypelagic North Atlantic contributes between 13 to 27% to the total prokaryotic production in the oxygen minimum layer and 41 to 84% in the Labrador Sea Water, declining to 10 to 20% in the North Atlantic Deep Water. Thus, planktonic archaea are actively growing in the dark ocean although at lower growth rates than bacteria and might play a significant role in the oceanic carbon cycle.  相似文献   

9.
10.
To understand the distribution and diversity of archaea in Chinese soils, the archaeal communities in a series of topsoils and soil profiles were investigated using quantitative PCR, T-RFLP combining sequencing methods. Archaeal 16S rRNA gene copy numbers, ranging from 4.96?×?10(6) to 1.30?×?10(8) copies?g(-1) dry soil, were positively correlated with soil pH, organic carbon and total nitrogen in the topsoils. In the soil profiles, archaeal abundance was positively correlated with soil pH but negatively with depth profile. The relative abundance of archaea in the prokaryotes (sum of bacteria and archaea) ranged from 0.20% to 9.26% and tended to increase along the depth profile. T-RFLP and phylogenetic analyses revealed that the structure of archaeal communities in cinnamon soils, brown soils, and fluvo-aquic soils was similar and dominated by Crenarchaeota group 1.1b and 1.1a. These were different from those in red soils, which were dominated by Crenarchaeota group 1.3 and 1.1c. Canonical correspondence analysis indicated that the archaeal community was primarily influenced by soil pH.  相似文献   

11.
The set of conserved eukaryotic protein-coding genes includes distinct subsets one of which appears to be most closely related to and, by inference, derived from archaea, whereas another one appears to be of bacterial, possibly, endosymbiotic origin. The "archaeal" genes of eukaryotes, primarily, encode components of information-processing systems, whereas the "bacterial" genes are predominantly operational. The precise nature of the archaeo-eukaryotic relationship remains uncertain, and it has been variously argued that eukaryotic informational genes evolved from the homologous genes of Euryarchaeota or Crenarchaeota (the major branches of extant archaea) or that the origin of eukaryotes lies outside the known diversity of archaea. We describe a comprehensive set of 355 eukaryotic genes of apparent archaeal origin identified through ortholog detection and phylogenetic analysis. Phylogenetic hypothesis testing using constrained trees, combined with a systematic search for shared derived characters in the form of homologous inserts in conserved proteins, indicate that, for the majority of these genes, the preferred tree topology is one with the eukaryotic branch placed outside the extant diversity of archaea although small subsets of genes show crenarchaeal and euryarchaeal affinities. Thus, the archaeal genes in eukaryotes appear to descend from a distinct, ancient, and otherwise uncharacterized archaeal lineage that acquired some euryarchaeal and crenarchaeal genes via early horizontal gene transfer.  相似文献   

12.
Molecular chaperones are a diverse group of proteins that ensure proteome integrity by helping the proteins fold correctly and maintain their native state, thus preventing their misfolding and subsequent aggregation. The chaperone machinery of archaeal organisms has been thought to closely resemble that found in humans, at least in terms of constituent players. Very few studies have been ventured into system-level analysis of chaperones and their functioning in archaeal cells. In this study, we attempted such an analysis of chaperone-assisted protein folding in archaeal organisms through network approach using Picrophilus torridus as model system. The study revealed that DnaK protein of Hsp70 system acts as hub in protein-protein interaction network. However, DnaK protein was present only in a subset of archaeal organisms and absent from many archaea, especially members of Crenarchaeota phylum. Therefore, a similar network was created for another archaeal organism, Sulfolobus solfataricus, a member of Crenarchaeota. The chaperone network of S. solfataricus suggested that thermosomes played an integral part of hub proteins in archaeal organisms, where DnaK was absent. We further compared the chaperone network of archaea with that found in eukaryotic systems, by creating a similar network for Homo sapiens. In the human chaperone network, the UBC protein, a part of ubiquitination system, was the most important module, and interestingly, this system is known to be absent in archaeal organisms. Comprehensive comparison of these networks leads to several interesting conclusions regarding similarities and differences within archaeal chaperone machinery in comparison to humans.  相似文献   

13.
Glycerol dialkyl glycerol tetraethers (GDGTs) are core membrane lipids of the Crenarchaeota. The structurally unusual GDGT crenarchaeol has been proposed as a taxonomically specific biomarker for the marine planktonic group I archaea. It is found ubiquitously in the marine water column and in sediments. In this work, samples of microbial community biomass were obtained from several alkaline and neutral-pH hot springs in Nevada, United States. Lipid extracts of these samples were analyzed by high-performance liquid chromatography-mass spectrometry and by gas chromatography-mass spectrometry. Each sample contained GDGTs, and among these compounds was crenarchaeol. The distribution of archaeal lipids in Nevada hot springs did not appear to correlate with temperature, as has been observed in the marine environment. Instead, a significant correlation with the concentration of bicarbonate was observed. Archaeal DNA was analyzed by denaturing gradient gel electrophoresis. All samples contained 16S rRNA gene sequences which were more strongly related to thermophilic crenarchaeota than to Cenarchaeum symbiosum, a marine nonthermophilic crenarchaeon. The occurrence of crenarchaeol in environments containing sequences affiliated with thermophilic crenarchaeota suggests a wide phenotypic distribution of this compound. The results also indicate that crenarchaeol can no longer be considered an exclusive biomarker for marine species.  相似文献   

14.
Contamination, such as by heavy metals, has frequently been implicated in altering microbial community structure. However, this association has not been extensively studied for anaerobic communities, or in freshwater lake sediments. We investigated microbial community structure in the metal-contaminated anoxic sediments of a eutrophic lake that were impacted over the course of 80 years by nearby zinc-smelting activities. Microbial community structure was inferred for bacterial, archaeal and eukaryotic populations by evaluating terminal restriction fragment length polymorphism (TRFLP) patterns in near-surface sediments collected in triplicate from five areas of the lake that had differing levels of metal contamination. The majority of the fragments in the bacterial and eukaryotic profiles showed no evidence of variation in association with metal contamination levels, and diversity revealed by these profiles remained consistent even as metal concentrations varied from 3000 to 27 000 mg kg−1 total Zn, 0.125 to 11.2 μ pore water Zn and 0.023 to 5.40 μ pore water As. Although most archaeal fragments also showed no evidence of variation, the prevalence of a fragment associated with mesophilic Crenarchaeota showed significant positive correlation with total Zn concentrations. This Crenarchaeota fragment dominated the archaeal TRFLP profiles, representing between 35% and 79% of the total measured peak areas. Lake DePue 16S rRNA gene sequences corresponding to this TRFLP fragment clustered with anaerobic and soil mesophilic Crenarchaeota sequences. Although Crenarchaeota have been associated with metal-contaminated groundwater and soils, this is a first report (to our knowledge) documenting potential increased prevalence of Crenarchaeota associated with elevated levels of metal contamination.  相似文献   

15.
西藏米拉山土壤古菌16S rRNA及amoA基因多样性?分析   总被引:2,自引:0,他引:2  
摘要:【目的】硝化作用在全球土壤氮循环中具有重要的作用,虽然细菌一度被认为单独负责催化这个过程的限速步骤,但是最近一些研究结果表明泉古菌具有氨氧化的能力。本文通过构建古菌16S rRNA 基因克隆文库和氨氧化古菌amoA基因文库,分析西藏米拉山高寒草甸土壤中古菌及氨氧化古菌群落结构组成情况,为揭示青藏高原高寒草甸土壤古菌的多样性提供理论基础。【方法】采用未培养技术直接从土壤中提取微生物总DNA,分别利用通用引物构建古菌16S rRNA 基因和氨氧化古菌amoA基因克隆文库。【结果】通过构建系统发育树,表明古菌16S rRNA 基因克隆文库包括泉古菌门和未分类的古菌两大类,并且所有泉古菌均属于热变形菌纲。氨氧化古菌amoA基因克隆文库中序列均为泉古菌。通过DOTUR软件分析,古菌16S rRNA基因和古菌amoA基因克隆文库分别包括64个OTUs和 75个OTUs。【结论】西藏米拉山高寒草甸土壤中古菌多样性比较丰富,表明古菌在高寒草甸土壤的氮循环中可能具有重要的作用。所获得的一些序列与已知环境中土壤、淡水及海洋沉积物中获得的一些序列具有很高的相似性,其古菌及氨氧化古菌来自不同环境的可能性比较大,可能与青藏高原的地质历史变迁过程有关。米拉山古菌及氨氧化古菌与陆地设施土壤中相似性最高,说明与西藏米拉山高寒草甸土壤的退化有关。  相似文献   

16.
Archaea have been detected throughout the oceanic water column and are quantitatively important members of picoplankton in the deep ocean. Two common groups, group I Crenarchaeota and group II Euryarchaeota, are consistently detected in warm hydrothermal fluid and are assumed to have been drawn into the subseafloor, mixed with hydrothermal fluid and then expelled. However, because they remain resistant to cultivation, very little is known about their physiology. Here we show that cold deep-seawater from the axial valley of Endeavour Segment on the Juan de Fuca Ridge contains not only groups I and II archaea as expected, but also unique potentially archaeal nitrogenase (nifH) genes, which are required for nitrogen fixation. These nifH genes are phylogenetically distinct and have dissimilar G+C content compared with those of hydrothermal vent archaea, suggesting that they belong to non-thermophilic deep-sea archaea. Furthermore, this sample did not contain mcrA genes, which are present in methanogens, the only known archaeal nitrogen fixers. These nifH genes were not detected in upper water column samples, or in a deep-seawater sample 100 km away from the spreading axis of the Juan de Fuca Ridge. We propose that these unique nifH genes may be localized to archaea that circulate through the nitrogen-poor subseafloor at the mid-ocean ridge as part of their life cycle.  相似文献   

17.
The temporal variation in archaeal diversity in vent fluids from a midocean ridge subseafloor habitat was examined using PCR-amplified 16S rRNA gene sequence analysis and most-probable-number (MPN) cultivation techniques targeting hyperthermophiles. To determine how variations in temperature and chemical characteristics of subseafloor fluids affect the microbial communities, we performed molecular phylogenetic and chemical analyses on diffuse-flow vent fluids from one site shortly after a volcanic eruption in 1998 and again in 1999 and 2000. The archaeal population was divided into particle-attached (>3-microm-diameter cells) and free-living fractions to test the hypothesis that subseafloor microorganisms associated with active hydrothermal systems are adapted for a lifestyle that involves attachment to solid surfaces and formation of biofilms. To delineate between entrained seawater archaea and the indigenous subseafloor microbial community, a background seawater sample was also examined and found to consist only of Group I Crenarchaeota and Group II Euryarchaeota, both of which were also present in vent fluids. The indigenous subseafloor archaeal community consisted of clones related to both mesophilic and hyperthermophilic Methanococcales, as well as many uncultured Euryarchaeota, some of which have been identified in other vent environments. The particle-attached fraction consistently showed greater diversity than the free-living fraction. The fluid and MPN counts indicate that while culturable hyperthermophiles represent less than 1% of the total microbial community, the subseafloor at new eruption sites does support a hyperthermophilic microbial community. The temperature and chemical indicators of the degree of subseafloor mixing appear to be the most important environmental parameters affecting community diversity, and it is apparent that decreasing fluid temperatures correlated with increased entrainment of seawater, decreased concentrations of hydrothermal chemical species, and increased incidence of seawater archaeal sequences.  相似文献   

18.
Archaeal communities in mangrove soil characterized by 16S rRNA gene clones   总被引:1,自引:0,他引:1  
An archaeal 16S rRNA gene library was constructed from mangrove soil. Phylogenetic analysis revealed archaea in mangrove soil including the Crenarchaeota (80.4%) and Euryarchaeota (19.6%) phyla. The archaeal community in mangrove soil appears to be a mixture of organisms found in a variety of environments with the majority being of marine origin.  相似文献   

19.
Archaeal lipids     
The major archaeal membrane glycerolipids are distinguished from those of bacteria and eukaryotes by the contrasting stereochemistry of their glycerol backbones, and by the use of ether-linked isoprenoid-based alkyl chains rather than ester-linked fatty acyl chains for their hydrophobic moieties. These fascinating compounds play important roles in the extremophile lifestyles of many species, but are also present in the growing numbers of recently discovered mesophilic archaea. The past decade has witnessed significant advances in our understanding of archaea in general and their lipids in particular. Much of the new information has come from the ability to screen large microbial populations via environmental metagenomics, which has revolutionised our understanding of the extent of archaeal biodiversity that is coupled with a strict conservation of their membrane lipid compositions. Significant additional progress has come from new culturing and analytical techniques that are gradually enabling archaeal physiology and biochemistry to be studied in real time. These studies are beginning to shed light on the much-discussed and still-controversial process of eukaryogenesis, which probably involved both bacterial and archaeal progenitors. Puzzlingly, although eukaryotes retain many attributes of their putative archaeal ancestors, their lipid compositions only reflect their bacterial progenitors. Finally, elucidation of archaeal lipids and their metabolic pathways have revealed potentially interesting applications that have opened up new frontiers for biotechnological exploitation of these organisms. This review is concerned with the analysis, structure, function, evolution and biotechnology of archaeal lipids and their associated metabolic pathways.  相似文献   

20.
The tree of life is split into three main branches: eukaryotes, bacteria, and archaea. Our knowledge of eukaryotic and bacteria cell biology has been built on a foundation of studies in model organisms, using the complementary approaches of genetics and biochemistry. Archaea have led to some exciting discoveries in the field of biochemistry, but archaeal genetics has been slow to get off the ground, not least because these organisms inhabit some of the more inhospitable places on earth and are therefore believed to be difficult to culture. In fact, many species can be cultivated with relative ease and there has been tremendous progress in the development of genetic tools for both major archaeal phyla, the Euryarchaeota and the Crenarchaeota. There are several model organisms available for methanogens, halophiles, and thermophiles; in the latter group, there are genetic systems for Sulfolobales and Thermococcales. In this review, we present the advantages and disadvantages of working with each archaeal group, give an overview of their different genetic systems, and direct the neophyte archaeologist to the most appropriate model organism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号