首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
MicroRNAs represent a class of short (approximately 22 nt), noncoding regulatory RNAs involved in development, differentiation, and metabolism. We describe a novel microarray platform for genome-wide profiling of mature miRNAs (miChip) using locked nucleic acid (LNA)-modified capture probes. The biophysical properties of LNA were exploited to design probe sets for uniform, high-affinity hybridizations yielding highly accurate signals able to discriminate between single nucleotide differences and, hence, between closely related miRNA family members. The superior detection sensitivity eliminates the need for RNA size selection and/or amplification. MiChip will greatly simplify miRNA expression profiling of biological and clinical samples.  相似文献   

2.
Microarrays to examine the global expression levels of microRNAs (miRNAs) in a systematic in-parallel manner have become important tools to help unravel the functions of miRNAs and to understand their roles in RNA-based regulation and their implications in human diseases. We have established a novel miRNA-specific microarray platform that enables the simultaneous expression analysis of both known and predicted miRNAs obtained from human or mouse origin. Chemically modified 2′-O-(2-methoxyethyl)-(MOE) oligoribonucleotide probes were arrayed onto Evanescent Resonance (ER) microchips by robotic spotting. Supplementing the complementary probes against miRNAs with carefully designed mismatch controls allowed for accurate sequence-specific determination of miRNA expression profiles obtained from a panel of mouse tissues. This revealed new expression signatures of known miRNAs as well as of novel miRNAs previously predicted using bioinformatic methods. Systematic confirmation of the array data with northern blotting and, in particular, real-time PCR suggests that the described microarray platform is a powerful tool to analyze miRNA expression patterns with rapid throughput and high fidelity.  相似文献   

3.

Background  

MicroRNAs (miRNA) are a novel class of small, non-coding, gene regulatory RNA molecules that have diverse roles in a variety of eukaryotic biological processes. High-throughput detection and differential expression analysis of these molecules, by microarray technology, may contribute to a greater understanding of the many biological events regulated by these molecules. In this investigation we compared two different methodologies for the preparation of labelled miRNAs from mouse CNS tissue for microarray analysis. Labelled miRNAs were prepared either by a procedure involving linear amplification of miRNAs (labelled-aRNA) or using a direct labelling strategy (labelled-cDNA) and analysed using a custom miRNA microarray platform. Our aim was to develop a rapid, sensitive methodology to profile miRNAs that could be adapted for use on limited amounts of tissue.  相似文献   

4.

Background

MicroRNAs (miRNAs) are short non-coding RNA molecules which are proved to be involved in mammalian spermatogenesis. Their expression and function in the porcine germ cells are not fully understood.

Methodology

We employed a miRNA microarray containing 1260 unique miRNA probes to evaluate the miRNA expression patterns between sexually immature (60-day) and mature (180-day) pig testes. One hundred and twenty nine miRNAs representing 164 reporter miRNAs were expressed differently (p<0.1). Fifty one miRNAs were significantly up-regulated and 78 miRNAs were down-regulated in mature testes. Nine of these differentially expressed miRNAs were validated using quantitative RT-PCR assay. Totally 15919 putative miRNA-target sites were detected by using RNA22 method to align 445 NCBI pig cDNA sequences with these 129 differentially expressed miRNAs, and seven putative target genes involved in spermatogenesis including DAZL, RNF4 gene were simply confirmed by quantitative RT-PCR.

Conclusions

Overall, the results of this study indicated specific miRNAs expression in porcine testes and suggested that miRNAs had a role in regulating spermatogenesis.  相似文献   

5.
Comparison of normalization methods with microRNA microarray   总被引:3,自引:0,他引:3  
Hua YJ  Tu K  Tang ZY  Li YX  Xiao HS 《Genomics》2008,92(2):122-128
MicroRNAs (miRNAs) are a group of RNAs that play important roles in regulating gene expression and protein translation. In a previous study, we established an oligonucleotide microarray platform to detect miRNA expression. Because it contained only hundreds of probes, data normalization was difficult. In this study, the microarray data for eight miRNAs extracted from inflamed rat dorsal root ganglion (DRG) tissue were normalized using 15 methods and compared with the results of real-time polymerase chain reaction. It was found that the miRNA microarray data normalized by the print-tip loess method were the most consistent with results from real-time polymerase chain reaction. Moreover, the same pattern was also observed in 14 different types of rat tissue. This study compares a variety of normalization methods and will be helpful in the preprocessing of miRNA microarray data.  相似文献   

6.
7.
MicroRNAs (miRNAs) are key biological regulators and promising disease markers whose detection technologies hold great potentials in advancing fundamental research and medical diagnostics. Currently, miRNAs in biological samples have to be labeled before being applied to most high-throughput assays. Although effective, these labeling-based approaches are usually labor-intensive, time-consuming and liable to bias. Besides, the cross-hybridization of co-existing miRNA precursors (pre-miRNAs) is not adequately addressed in most assays that use total RNA as input. Here, we present a hybridization-triggered fluorescence strategy for label-free, microarray-based high-throughput miRNA expression profiling. The total RNA is directly applied to the microarray with a short fluorophore-linked oligonucleotide Universal Tag which can be selectively captured by the target-bound probes via base-stacking effects. This Stacking-Hybridized Universal Tag (SHUT) assay has been successfully used to analyze as little as 100 ng total RNA from human tissues, and found to be highly specific to homogenous miRNAs. Superb discrimination toward single-base mismatch at the 5' or 3' end has been demonstrated. Importantly, the pre-miRNAs generated negligible signals, validating the direct use of total RNA.  相似文献   

8.
9.
MicroRNAs (miRNAs) are small, noncoding RNAs that regulate gene expression in both plants and animals. miRNA genes have been implicated in a variety of important biological processes, including development, differentiation, apoptosis, fat metabolism, viral infection, and cancer. Similar to protein-coding messenger RNAs, miRNA expression varies between tissues and developmental states. To acquire a better understanding of global miRNA expression in tissues and cells, we have developed isolation, labeling, and array procedures to measure the relative abundance of all of the known human mature miRNAs. The method relies on rapid isolation of RNA species smaller than ~40 nucleotides (nt), direct and homogenous enzymatic labeling of the mature miRNAs with amine modified ribonucleotides, and hybridization to antisense DNA oligonucleotide probes. A thorough performance study showed that this miRNA microarray system can detect subfemtomole amounts of individual miRNAs from <1 mug of total RNA, with 98% correlation between independent replicates. The system has been applied to compare the global miRNA expression profiles in 26 different normal human tissues. This comprehensive analysis identified miRNAs that are preferentially expressed in one or a few related tissues and revealed that human adult tissues have unique miRNA profiles. This implicates miRNAs as important components of tissue development and differentiation. Taken together, these results emphasize the immense potential of microarrays for sensitive and high-throughput analysis of miRNA expression in normal and disease states.  相似文献   

10.
11.
The robust and reliable detection of small microRNAs (miRNAs) is important to understand the functional significance of miRNAs. Several methods can be used to quantify miRNAs. Selectively quantifying mature miRNAs among miRNA precursors, pri-miRNAs, and other miRNA-like sequences is challenging because of the short length of miRNAs. In this study, we developed a two-step miRNA quantification system based on pincer probe capture and real-time PCR amplification. The performance of the method was tested using synthetic mature miRNAs and clinical RNA samples. Results showed that the method demonstrated dynamic range of seven orders of magnitude and sensitivity of detection of hundreds of copies of miRNA molecules. The use of pincer probes allowed excellent discrimination of mature miRNAs from their precursors with five Cq (quantification cycle) values difference. The developed method also showed good discrimination of highly homologous family members with cross reaction less than 5%. The pincer probe-based approach is a potential alternative to currently used methods for mature miRNA quantification.  相似文献   

12.
13.
14.
MicroRNA (miRNA) expression profiling has proven useful in diagnosing and understanding the development and progression of several diseases. Microarray is the standard method for analyzing miRNA expression profiles; however, it has several disadvantages, including its limited detection of miRNAs. In recent years, advances in genome sequencing have led to the development of next-generation sequencing (NGS) technologies, which significantly advance genome sequencing speed and discovery. In this study, we compared the expression profiles obtained by next generation sequencing (NGS) with the profiles created using microarray to assess if NGS could produce a more accurate and complete miRNA profile. Total RNA from 14 hepatocellular carcinoma tumors (HCC) and 6 matched non-tumor control tissues were sequenced with Illumina MiSeq 50-bp single-end reads. Micro RNA expression profiles were estimated using miRDeep2 software. As a comparison, miRNA expression profiles for 11 out of 14 HCCs were also established by microarray (Agilent human microRNA microarray). The average total sequencing exceeded 2.2 million reads per sample and of those reads, approximately 57% mapped to the human genome. The average correlation for miRNA expression between microarray and NGS and subtraction were 0.613 and 0.587, respectively, while miRNA expression between technical replicates was 0.976. The diagnostic accuracy of HCC, p-value, and AUC were 90.0%, 7.22×10−4, and 0.92, respectively. In summary, NGS created an miRNA expression profile that was reproducible and comparable to that produced by microarray. Moreover, NGS discovered novel miRNAs that were otherwise undetectable by microarray. We believe that miRNA expression profiling by NGS can be a useful diagnostic tool applicable to multiple fields of medicine.  相似文献   

15.
MicroRNAs (miRNAs) play important regulatory roles in animals and plants by targeting mRNAs for cleavage or translational repression. They have diverse expression patterns and might regulate various developmental and physiological processes. Profiling miRNA expression is very helpful for studying biological functions of miRNAs. We report a novel miRNA profiling microarray, in which miRNAs were directly labeled at the 3′ terminus with biotin and hybridized with complementary oligo-DNA probes immobilized on glass slides, and subsequently detected by measuring fluorescence of quantum dots labeled with streptavidin bound to miRNAs through streptavidin–biotin interaction. The detection limit of this microarray for miRNA was ~0.4 fmol, and the detection dynamic range spanned about 2 orders of magnitude. We made a model microarray to profile 11 miRNAs from leaf and root of rice (Oryza sativa L. ssp. indica) seedlings. The analysis results of the miRNAs had a good reproducibility and were consistent with the northern blot result. To avoid using high-cost detection equipment, colorimetric detection, a method based on nanogold probe coupled with silver enhancement, was also successfully introduced into miRNA profiling microarray detection.  相似文献   

16.
Locked nucleic acids (LNA) are being applied in hybridization studies, but current locked nucleotides cannot be transcribed into RNA probes. Here, the authors report the use of a new synthetic locked nucleotide, locMeCytidine-5'-triphosphate (LNA-mCTP), for hybridization study. This synthetic LNA-mCTP can be transcribed into a short ( approximately 30-nt) RNA probe. Dot blot hybridization on nylon membrane suggested that the short (33)P-LNA RNA probes had strong binding affinity to target oligonucleotides and its detection sensitivity was approximately approximately 1000 miRNAs in a 20- to 30-mum (diameter) dot area. On tissue sections, the differential expression pattern of mir-124 within different tissue regions revealed by short (33)P- LNA RNA probes correlated well to that analyzed by real-time RT-PCR. In addition, the specific cellular distribution of vasoactive intestinal polypeptide mRNAs in the mouse brain was the same using a 30-nt (33)P-LNA RNA probe and a 1.5-kb (33)P-RNA probe. These results suggested the high hybridization specificity of the small LNA-RNA probes to target small RNAs. Finally, the authors applied (33)P-LNA probes to detect miRNA let-7C expression in human cancer tissues. Let-7C was clearly present in lung, prostate, and colon cancers but undetectable in ovary and thyroid cancer samples. These results suggested that this miRNA detection method provides an alternative tool to study the cellular distribution of miRNAs in tissues.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号