首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Glomeruli within the antennal lobe (AL) of moths are convergence sites for a large number of olfactory receptor neurons (ORNs). The ORNs target single glomeruli. In the male-specific cluster of glomeruli, the macroglomerular complex (MGC), the input is chemotypic in that each glomerulus of the MGC receives information about a specific component of the conspecific female sex pheromone. Little is known about how neurons that detect other odorants arborize in and amongst glomeruli. The present study focuses on how sex pheromones and biologically relevant semiochemicals are represented in the ALs of both sexes of the moth Spodoptera littoralis. To assess this, we optically measured odour-evoked changes of calcium concentration in the ALs. Foci of calcium increase corresponded in size and shape with anatomical glomeruli. More than one glomerulus was normally activated by a specific non-pheromonal odorant and the same glomerulus was activated by several odorants. All odorants and pheromone components tested evoked unique patterns of glomerular activity that were highly reproducible at repeated stimulations within an individual. Odour-evoked patterns were similar between individuals for a given odorant, implicating a spatial olfactory code. In addition, we demonstrated that activity patterns evoked by host-plant related volatiles are similar between males and females.  相似文献   

2.
Lin da Y  Shea SD  Katz LC 《Neuron》2006,50(6):937-949
Natural odorants are complex mixtures of diverse chemical compounds. Monomolecular odorants are represented in the main olfactory bulb by distinct spatial patterns of activated glomeruli. However, it remains unclear how individual compounds contribute to population representations of natural stimuli, which appear to be unexpectedly sparse. We combined gas chromatography and intrinsic signal imaging to visualize glomerular responses to natural stimuli and their fractionated components. While whole stimuli activated up to 20 visible glomeruli, each fractionated component activated only one or few glomeruli, and most glomeruli were activated by only one component. Thus, responses to complex mixtures reflected activation by multiple components, with each contributing only a small part of the overall representation. We conclude that the population response to a complex stimulus is largely the sum of the responses to its individual components, and activation of an individual glomerulus independently signals the presence of a specific component.  相似文献   

3.
Stimulation with odours has been shown to elicit characteristic patterns of activated glomeruli in the antennal lobe (AL) of honeybees. In this study we show that these patterns are dynamic in a time window of 2-3 s after stimulus onset. We measured changes in the averaged membrane potential of all cells in the glomerular neuropil by optical imaging of the voltage-sensitive dye RH795 using a slow scan CCD camera (3 frames/s). The four substances 1-hexanol, hexanal, citral and clove-oil as well as the binary mixtures hexanol+hexanal and hexanol+citral were used as stimuli (2 s stimulus duration). We found that: (1) every odour elicited an odour-specific activity pattern, and conversely every glomerulus had a characteristic odour response profile; (2) some glomeruli had a tonic, some a phasic-tonic, and some a slow phasic response pattern; (3) the difference between the glomerular response patterns increased within 2 s of stimulus presentation, which suggests that odour representations became more characteristic over stimulus time; and (4) the responses to odorant mixtures were complex and glomerulus-dependent: some responses correspond to the sum of the compounds' responses, some to the response of one of the components.  相似文献   

4.
Odours are received by olfactory receptors, which send their axons to the first sensory neuropils, the antennal lobes (in insects) or the olfactory bulb (in vertebrates). From here, processed olfactory information is relayed to higher-order brain centres. A striking similarity in olfactory systems across animal phyla is the presence of glomeruli in this first sensory neuropil. Various experiments have shown that odours elicit a mosaic of activated glomeruli, suggesting that odour quality is coded in an 'across-glomeruli' activity code. In recent years, studies using optical recording techniques have greatly improved our understanding of the resulting 'across-glomeruli pattern', making it possible to simultaneously measure responses in several, often identifiable, glomeruli. For the honeybee Apis mellifera, a functional atlas of odour representation is being created: in this atlas, the glomeruli that are activated by different odorants are named. However, several limitations remain to be investigated. In this paper, we review what optical recording of odour-evoked glomerular activity patterns has revealed so far, and discuss the necessary next steps, with emphasis on the honeybee.  相似文献   

5.
M Wachowiak  L B Cohen 《Neuron》2001,32(4):723-735
To visualize odorant representations by receptor neuron input to the mouse olfactory bulb, we loaded receptor neurons with calcium-sensitive dye and imaged odorant-evoked responses from their axon terminals. Fluorescence increases reflected activation of receptor neuron populations converging onto individual glomeruli. We report several findings. First, five glomeruli were identifiable across animals based on their location and odorant responsiveness; all five showed complex response specificities. Second, maps of input were chemotopically organized at near-threshold concentrations but, at moderate concentrations, involved many widely distributed glomeruli. Third, the dynamic range of input to a glomerulus was greater than that reported for individual receptor neurons. Finally, odorant activation slopes could differ across glomeruli, and for different odorants activating the same glomerulus. These results imply a high degree of complexity in odorant representations at the level of olfactory bulb input.  相似文献   

6.
The primary olfactory centre, the antennal lobe of Heliothis virescens moths, contains 62 glomeruli which process plant odour information and four male-specific glomeruli which form the macroglomerular complex, involved in processing information about pheromone and interspecific signals. Using calcium imaging, we recorded the spatio-temporal activity pattern of the glomeruli in the anterior antennal lobe during stimulation with odorants produced by plants or insects. Each odorant elicited specific excitatory responses in one or a few glomeruli: the major pheromone component did so exclusively in the large glomerulus of the macroglomerular complex and the plant odours exclusively in the ordinary glomeruli. Eight glomeruli, with corresponding plant odour responses and positions, were identified within each sex. Glomeruli responded specifically to linalool, beta-ocimene/beta-myrcene or germacrene D/alpha-farnesene. Responses to two essential plant oils covered the response areas of their major constituents, as well as activating additional glomeruli. Stronger activation in the AL due to increased odour concentration was expressed as increased response strength within the odorant-specific glomeruli as well as recruitment of less sensitive glomeruli.  相似文献   

7.
In different moth species, the number and spatial arrangement of olfactory glomeruli in the antennal lobe (AL) vary widely, but the spatial map within a species is thought to be invariant, making it possible to identify single glomeruli across individuals. We investigated the relationship between the physiological tuning of pheromone-selective interneurons and their association with specific, identified glomeruli in the macroglomerular complex (MGC) of the noctuid moth, Heliothis subflexa. Three odorants that are required for pheromone-source location in this species were tested individually and in blends. Recordings from 27 pheromone-specific projection neurons (PNs) indicated that the majority (48%) were selectively activated by the major pheromone component of this species, Z-11-hexadecenal (Z11-16:Ald), with 33% primarily tuned to Z-9-hexadecenal and 19% to Z-11-hexadecenol. Intracellular staining revealed that the dendrites of PNs tuned to Z11-16:Ald always branched within the largest glomerulus of the MGC, the cumulus. Similarly, each of the other two classes of PN was associated with a different 'satellite' glomerulus in the MGC. The spatial configuration of the four-glomerulus H. subflexa MGC was indistinguishable from that previously reported in the closely related species, Heliothis virescens. Hence, as these two species diverged, changes in the association of satellite MGC glomeruli with particular odorants have occurred without a measurable change in the anatomical arrangement of the glomerular array.  相似文献   

8.
The primary olfactory centres share striking similarities across the animal kingdom. The most conspicuous is their subdivision into glomeruli, which are spherical neuropil masses in which synaptic contacts between sensory and central neurons occur. Glomeruli have both an anatomical identity (being invariant in location, size and shape) and a functional identity (each glomerulus receiving afferents from olfactory receptor neurons that express the same olfactory receptor). Identified glomeruli offer a favourable system for analysing quantitatively the constancy and variability of the neuronal circuits, an important issue for understanding their function, development and evolution. The noctuid moth Spodoptera littoralis with its well-studied pheromone communication system has become a model species for olfaction research. We analyse here its glomerular organisation based on ethyl-gallate-stained and synapsin-stained preparations. Although we have confirmed that the majority of glomeruli can be individually identified in various antennal lobes, we have recognised several types of biological variability. Some glomeruli are absent, possibly indicating the lack of the corresponding receptor neuron type or its misrouting during development. The antennal lobes vary in global shape and, consequently, the spatial location of the glomerular changes. Although they do not prevent glomerulus identification when quantitative analysis methods are used, these variations place limits on the straightforward identification of glomeruli in functional studies, e.g. calcium-imaging or single-cell staining, when using conventional three-dimensional maps of individual antennal lobes. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorised users. This work was supported by research grants from INRA (Projet Jeune Equipe and Projet S.P.E.) to S.A. and J.P.R. and from ANR-BBSRC 07 BSYS 006 (Pherosys) to J.P.R. and S.A. and by a PhD grant from INRA Departments M.I.A. and S.P.E. to L.C.  相似文献   

9.
Optical imaging of odorant representations in the mammalian olfactory bulb.   总被引:27,自引:0,他引:27  
B D Rubin  L C Katz 《Neuron》1999,23(3):499-511
We adapted the technique of intrinsic signal imaging to visualize how odorant concentration and structure are represented spatially in the rat olfactory bulb. Most odorants activated one or more glomeruli in the imaged region of the bulb; these optically imaged responses reflected the excitation of underlying neurons. Odorant-evoked patterns were similar across animals and symmetrical in the two bulbs of the same animal. The variable sensitivity of individual glomeruli produced distinct maps for different odorant concentrations. Using a series of homologous aldehydes, we found that glomeruli were tuned to detect particular molecular features and that maps of similar molecules were highly correlated. These characteristics suggest that odorants and their concentrations can be encoded by distinct spatial patterns of glomerular activation.  相似文献   

10.
Each olfactory (antennal) lobe of the moth Manduca sexta contains a single serotonin (5-HT) immunoreactive neuron whose processes form tufted arbors in the olfactory glomeruli. To extend our present understanding of the intercellular interactions involved in glomerulus development to the level of an individual, identified antennal lobe neuron, we first studied the morphological development of the 5-HT neuron in the presence and absence of receptor axons. Development of the neuron's glomerular tufts depends, as it does in the case of other multiglomerular neurons, on the presence of receptor axons. Processes of the 5-HT neuron are excluded from the region in which the initial steps of glomerulus construction occur and thus cannot provide a physical scaffolding on which the array of glomeruli is organized. Because the neuron's processes are present in the antennal lobe neuropil throughout postembryonic development, 5-HT could provide signals that influence the pattern of development in the lobe. By surgically producing 5-HT-depleted antennal lobes, we also tested the importance of 5-HT in the construction of olfactory glomeruli. Even in the apparent absence of 5-HT, the glomerular array initiated by the receptor axons was histologically normal, glial cells migrated to form glomerular borders, and receptor axons formed terminal branches in their normal region within each glomerulus. In some cases, 5-HT-immunoreactive processes from abnormal sources entered the lobe and formed the tufted intraglomerular branches typical of most antennal lobe neurons, suggesting that local cues strongly influence the branching patterns of developing antennal lobe neurons. © 1995 John Wiley & Sons, Inc.  相似文献   

11.
In male moths, the primary olfactory integration centre, the antennal lobe, consists of two systems. The macroglomerular complex processes pheromone information, while the ordinary glomeruli process plant odour information. Females lack a macroglomerular complex. We measured the spatial representation of odours using in-vivo optical recording. We found that: (1) pheromone substances elicited activity exclusively in the MGC. No response was found in female antennal lobes. (2) Plant odours elicited combinatorial activity patterns in the ordinary glomeruli in both males and females. No response was found in the MGC of male moths. (3) A clean air puff often led to activity, in both males and females, suggesting that mechano-sensory information is also processed in the antennal lobe. (4) With an interstimulus interval of 5 or 10 s, strongly activated glomeruli were able to follow the temporal structure of the stimulus, while others lost their phase-locking. Some glomeruli showed "off" responses. These properties were odour dependent. This confirms and extends previous studies, showing the functional significance of the two subsystems for processing olfactory information. Pheromones are coded in a combinatorial manner within the macroglomerular complex, with each glomerulus corresponding to one information channel. Plant odours are coded in an across-glomeruli code in the ordinary glomeruli.  相似文献   

12.
Odor information is coded in the insect brain in a sequence of steps, ranging from the receptor cells, via the neural network in the antennal lobe, to higher order brain centers, among which the mushroom bodies and the lateral horn are the most prominent. Across all of these processing steps, coding logic is combinatorial, in the sense that information is represented as patterns of activity across a population of neurons, rather than in individual neurons. Because different neurons are located in different places, such a coding logic is often termed spatial, and can be visualized with optical imaging techniques. We employ in vivo calcium imaging in order to record odor‐evoked activity patterns in olfactory receptor neurons, different populations of local neurons in the antennal lobes, projection neurons linking antennal lobes to the mushroom bodies, and the intrinsic cells of the mushroom bodies themselves, the Kenyon cells. These studies confirm the combinatorial nature of coding at all of these stages. However, the transmission of odor‐evoked activity patterns from projection neuron dendrites via their axon terminals onto Kenyon cells is accompanied by a progressive sparsening of the population code. Activity patterns also show characteristic temporal properties. While a part of the temporal response properties reflect the physical sequence of odor filaments, another part is generated by local neuron networks. In honeybees, γ‐aminobutyric acid (GABA)‐ergic and histaminergic neurons both contribute inhibitory networks to the antennal lobe. Interestingly, temporal properties differ markedly in different brain areas. In particular, in the antennal lobe odor‐evoked activity develops over slow time courses, while responses in Kenyon cells are phasic and transient. The termination of an odor stimulus is reflected by a decrease in activity within most glomeruli of the antennal lobe and an off‐response in some glomeruli, while in the mushroom bodies about half of the odor‐activated Kenyon cells also exhibit off‐responses.  相似文献   

13.
W M Getz  A Lutz 《Chemical senses》1999,24(4):351-372
A central problem in olfaction is understanding how the quality of olfactory stimuli is encoded in the insect antennal lobe (or in the analogously structured vertebrate olfactory bulb) for perceptual processing in the mushroom bodies of the insect protocerebrum (or in the vertebrate olfactory cortex). In the study reported here, a relatively simple neural network model, inspired by our current knowledge of the insect antennal lobes, is used to investigate how each of several features and elements of the network, such as synapse strengths, feedback circuits and the steepness of neural activation functions, influences the formation of an olfactory code in neurons that project from the antennal lobes to the mushroom bodies (or from mitral cells to olfactory cortex). An optimal code in these projection neurons (PNs) should minimize potential errors by the mushroom bodies in misidentifying the quality of an odor across a range of concentrations while maximizing the ability of the mushroom bodies to resolve odors of different quality. Simulation studies demonstrate that the network is able to produce codes independent or virtually independent of concentration over a given range. The extent of this range is moderately dependent on a parameter that characterizes how long it takes for the voltage in an activated neuron to decay back to its resting potential, strongly dependent on the strength of excitatory feedback by the PNs onto antennal lobe intrinsic neurons (INs), and overwhelmingly dependent on the slope of the activation function that transforms the voltage of depolarized neurons into the rate at which spikes are produced. Although the code in the PNs is degraded by large variations in the concentration of odor stimuli, good performance levels are maintained when the complexity of stimuli, as measured by the number of component odorants, is doubled. When excitatory feedback from the PNs to the INs is strong, the activity in the PNs undergoes transitions from initial states to stimulus-specific equilibrium states that are maintained once the stimulus is removed. When this PN-IN feedback is weak the PNs are more likely to relax back to a stimulus-independent equilibrium state, in which case the code is not maintained beyond the application of the stimulus. Thus, for the architecture simulated here, strong feedback from the PNs onto the INs, together with step-like neuronal activation functions, could well be important in producing easily discriminable odor quality codes that are invariant over several orders of magnitude in stimulus concentration.  相似文献   

14.
The antennal lobe (AL) is the first center for processing odors in the insect brain, as is the olfactory bulb (OB) in vertebrates. Both the AL and the OB have a characteristic glomerular structure; odors sensed by olfactory receptor neurons are represented by patterns of glomerular activity. Little is known about when and how an odor begins to be perceived in a developing brain. We address this question by using calcium imaging to monitor odor-evoked neural activity in the ALs of bees of different ages. We find that odor-evoked neural activity already occurs in the ALs of bees as young as 1 or 2 days. In young bees, the responses to odors are relatively weak and restricted to a small number of glomeruli. However, different odors already evoke responses in different combinations of glomeruli. In mature bees, the responses are stronger and are evident in more glomeruli, but continue to have distinct odor-dependent signatures. Our findings indicate that the specific glomerular patterns for odors are conserved during the development, and that odor representations are fully developed in the AL during the first 2 weeks following emergence.  相似文献   

15.
The insect antennal lobe is the first brain structure to process olfactory information. Like the vertebrate olfactory bulb the antennal lobe is substructured in olfactory glomeruli. In insects, glomeruli can be morphologically identified, and have characteristic olfactory response profiles. Local neurons interconnect glomeruli, and output (projection) neurons project to higher-order brain centres. The relationship between their elaborate morphology and their physiology is not understood. We recorded electrophysiologically from antennal lobe neurons, and iontophoretically injected a calcium-sensitive dye. We then measured their spatio-temporal calcium responses to a variety of odours. Finally, we confocally reconstructed the neurons, and identified the innervated glomeruli. An increase or decrease in spiking frequency corresponded to an intracellular calcium increase or decrease in the cell. While intracellular recordings generally lasted between 10 and 30 min, calcium imaging was stable for up to 2 h, allowing a more detailed physiological analysis. The responses indicate that heterogeneous local neurons get input in the glomerulus in which they branch most strongly. In many cases, the physiological response properties of the cells corresponded to the known response profile of the innervated glomerulus. In other words, the large variety of response profiles generally found when comparing antennal lobe neurons is reduced to a more predictable response profile when the innervated glomerulus is known.Abbreviations ACT antenno-cerebralis-tract - AL antennal lobe - AP action potential - l-ACT lateral ACT - LN local neuron - LPL lateral protocerebral lobe - m-ACT medial ACT - MB mushroom body - OSN olfactory sensory neuron - PN projection neuron - T1 tract 1 of the antennal nerve  相似文献   

16.
We used single sensillum recordings to define male Helicoverpa zea olfactory receptor neuron physiology followed by cobalt staining to trace the axons to destination glomeruli of the antennal lobe. Receptor neurons in type A sensilla that respond to the major pheromone component, (Z)-11-hexadecenal, projected axons to the cumulus of the macroglomerular complex (MGC). In approximately 40% of these sensilla a second receptor neuron was stained that projected consistently to a specific glomerulus residing in a previously unrecognized glomerular complex with six other glomeruli stationed immediately posterior to the MGC. Cobalt staining corroborated by calcium imaging showed that receptor neurons in type C sensilla sensitive to (Z)-9-hexadecenal projected to the dorsomedial posterior glomerulus of the MGC, whereas the co-compartmentalized antagonist-sensitive neurons projected to the dorsomedial anterior glomerulus. We also discovered that the olfactory receptor neurons in type B sensilla exhibit the same axonal projections as those in type C sensilla. Thus, it seems that type B sensilla are anatomically type C with regard to the projection destinations of the two receptor neurons, but physiologically one of the receptor neurons is now unresponsive to everything except (Z)-9-tetradecenal, and the other responds to none of the pheromone-related odorants tested.  相似文献   

17.
An open question in olfactory coding is the extent of interglomerular connectivity: do olfactory glomeruli and their neurons regulate the odorant responses of neurons innervating other glomeruli? In the olfactory system of the moth Manduca sexta, the response properties of different types of antennal olfactory receptor cells are known. Likewise, a subset of antennal lobe glomeruli has been functionally characterized and the olfactory tuning of their innervating neurons identified. This provides a unique opportunity to determine functional interactions between glomeruli of known input, specifically, (1) glomeruli processing plant odors and (2) glomeruli activated by antennal stimulation with pheromone components of conspecific females. Several studies describe reciprocal inhibitory effects between different types of pheromone-responsive projection neurons suggesting lateral inhibitory interactions between pheromone component-selective glomerular neural circuits. Furthermore, antennal lobe projection neurons that respond to host plant volatiles and innervate single, ordinary glomeruli are inhibited during antennal stimulation with the female’s sex pheromone. The studies demonstrate the existence of lateral inhibitory effects in response to behaviorally significant odorant stimuli and irrespective of glomerular location in the antennal lobe. Inhibitory interactions are present within and between olfactory subsystems (pheromonal and non-pheromonal subsystems), potentially to enhance contrast and strengthen odorant discrimination.  相似文献   

18.
Inhibitory local interneurons (LNs) play a critical role in shaping the output of olfactory glomeruli in both the olfactory bulb of vertebrates and the antennal lobe of insects and other invertebrates. In order to examine how the complex geometry of LNs may affect signaling in the antennal lobe, we constructed detailed multi-compartmental models of single LNs from the sphinx moth, Manduca sexta, using morphometric data from confocal-microscopic images. Simulations clearly revealed a directionality in LNs that impeded the propagation of injected currents from the sub-micron-diameter glomerular dendrites toward the much larger-diameter integrating segment (IS) in the coarse neuropil. Furthermore, the addition of randomly-firing synapses distributed across the LN dendrites (simulating the noisy baseline activity of afferent input recorded from LNs in the odor-free state) led to a significant depolarization of the LN. Thus the background activity typically recorded from LNs in vivo could influence synaptic integration and spike transformation in LNs through voltage-dependent mechanisms. Other model manipulations showed that active currents inserted into the IS can help synchronize the activation of inhibitory synapses in glomeruli across the antennal lobe. These data, therefore, support experimental findings suggesting that spiking inhibitory LNs can operate as multifunctional units under different ambient odor conditions. At low odor intensities, (i.e. subthreshold for IS spiking), they participate in local, mostly intra-glomerular processing. When activated by elevated odor concentrations, however, the same neurons will fire overshooting action potentials, resulting in the spread of inhibition more globally across the antennal lobe. Modulation of the passive and active properties of LNs may, therefore, be a deciding factor in defining the multi-glomerular representations of odors in the brain.  相似文献   

19.
The sphinx moth Manduca sexta is a well-studied insect with regard to central olfactory functions. Until now, the innervation patterns of olfactory receptor neurons into the array of olfactory glomeruli in the antennal lobe have, however, been unclear. Using optical imaging to visualize calcium dynamics within the antennal lobe we demonstrate specific patterns elicited by sex pheromone components and plant-derived odours. These patterns mainly reflect receptor neuron activity. Within the male-specific macroglomerular complex the two major pheromone components evoke stereotyped activity in either of two macroglomerular complex glomeruli. Based on previous knowledge of output neuron specificity, our results suggest a matching of information between input and output in the macroglomerular complex. Plant odours evoked activity in the sexually isomorphic glomeruli. Two major results were obtained: (1). terpenes and aromatic compounds activate different clusters of glomeruli with only minor overlapping, and (2). the position of certain key glomeruli is fixed in both males and females, which suggests that host-plant related odorants are processed in a similar way in both sexes.  相似文献   

20.
The neurophysiology and antennal lobe projections of olfactory receptor neurons housed within short trichoid sensilla of female Heliothis virescens F. (Noctuidae: Lepidoptera) were investigated using a combination of cut-sensillum recording and cobalt-lysine staining techniques. Behaviorally relevant odorants, including intra- and inter-sexual pheromonal compounds, plant and floral volatiles were selected for testing sensillar responses. A total of 184 sensilla were categorized into 25 possible sensillar types based on odor responses and sensitivity. Sensilla exhibited both narrow (responding to few odors) and broad (responding to many odors) response spectra. Sixty-six percent of the sensilla identified were stimulated by conspecific odors; in particular, major components of the male H. virescens hairpencil pheromone (hexadecanyl acetate and octadecanyl acetate) and a minor component of the female sex pheromone, (Z)-9-tetradecenal. Following characterization of the responses, olfactory receptor neurons within individual sensilla were stained with cobalt lysine (N=39) and traced to individual glomeruli in the antennal lobe. Olfactory receptor neurons with specific responses to (Z)-9-tetradecenal, a female H. virescens sex pheromone component, projected to the female-specific central large female glomerulus (cLFG) and other glomeruli. Terminal arborizations from sensillar types containing olfactory receptor neurons sensitive to male hairpencil components and plant volatiles were also localized to distinct glomerular locations. This information provides insight into the representation of behaviorally relevant odorants in the female moth olfactory system. Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号