首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
PHD1-3 (prolyl hydroxylases 1-3) catalyse the hydroxylation of HIF (hypoxia-inducible factor)-alpha subunit that triggers the substrate ubiquitination and subsequent degradation. The RING (really interesting new gene) finger E3 ligase Siah2 preferentially targets PHD3 for degradation. Here, we identify the requirements for such selective targeting. Firstly, PHD3 lacks an N-terminal extension found in PHD1 and PHD2; deletion of this domain from PHD1 and PHD2 renders them susceptible to degradation by Siah2. Secondly, PHD3 can homo- and hetero-multimerize with other PHDs. Consequently, PHD3 is found in high-molecular-mass fractions that were enriched in hypoxia. Interestingly, within the lower-molecular-mass complex, PHD3 exhibits higher specific activity towards hydroxylation of HIF-1alpha and co-localizes with Siah2, suggesting that Siah2 limits the availability of the more active form of PHD3. These findings provide new insight into the mechanism underlying the regulation of PHD3 availability and activity in hypoxia by the E3 ligase Siah2.  相似文献   

3.
Prolyl-hydroxylation of HIF-1α is a prerequisite for pVHL binding to HIF-1α, which results in degradation of HIF-1α by the ubiquitin-proteasome pathway. Hydroxylation of HIF-1α is mediated by the family of prolyl-hydroxylase proteins (PHD). In hypoxia, HIF-1α is stabilized as a result of inhibition of HIF-1α hydroxylation, which in part is achieved by decreased activity of PHD enzymes at very low oxygen concentrations. We recently demonstrated that in hypoxia the stability of 2 of 3 PHDs (1 and 3) is regulated by the E3 ligases Siah1/2. Consequently, in hypoxia Siah determines the availability of PHD1/3, which otherwise modify HIF-1α to enable its association-dependent degradation by pVHL. These findings define a newly discovered layer in the regulation of HIF-1α in hypoxia. The roles of Siah activities in hypoxia responses are discussed.  相似文献   

4.
The E3 ubiquitin ligase Siah2 has been implicated in the regulation of the hypoxia response, as well as in the control of Ras, JNK/p38/NF‐κB signaling pathways. Both Ras/mitogen‐activated protein kinase (MAPK) and hypoxia pathways are important for melanoma development and progression, pointing to the possible use of Siah2 as target for treatment of this tumor type. In the present study, we have established a high‐throughput electro‐chemiluninescent‐based assay in order to screen and identify inhibitors of Siah2 ubiquitin ligase activity. Of 1840 compounds screened, we identified and characterized menadione (MEN) as a specific inhibitor of Siah2 ligase activity. MEN attenuated Siah2 self‐ubiquitination, and increased expression of its substrates PHD3 and Sprouty2, with concomitant decrease in levels of HIF‐1α and pERK, the respective downstream effectors. MEN treatment no longer affected PHD3 or Sprouty2 in Siah‐KO cells, pointing to its Siah‐dependent effects. Further, MEN inhibition of Siah2 was not attenuated by free radical scavenger, suggesting it is ROS‐independent. Significantly, growth of xenograft melanoma tumors was inhibited following the administration of MEN or its derivative. These findings reveal an efficient platform for the identification of Siah inhibitors while identifying and characterizing MEN as Siah inhibitor that attenuates hypoxia and MAPK signaling, and inhibits melanoma tumorigenesis.  相似文献   

5.
Activation of either the phosphatidylinositol 3-kinase (PI 3-kinase)/Akt or the p38 mitogen-activated protein kinase (MAPK) signaling pathways accelerates myogenesis but only when the reciprocal pathway is functional. We therefore examined the hypothesis that cross-activation between these signaling cascades occurs to orchestrate myogenesis. We reveal a novel and reciprocal cross-talk and activation between the PI 3-kinase/Akt and p38 MAPK pathways that is essential for efficient myoblast differentiation. During myoblast differentiation, Akt kinase activity correlated with S473 but not T308 phosphorylation and occurred 24 h after p38 activation. Inhibition or activation of p38 with SB203580, dominant-negative p38, or MKK6EE regulated Akt kinase activity. Analysis of Akt isoforms revealed a specific increase in Akt2 protein levels that coincided with AktS473 phosphorylation during myogenesis and an enrichment of S473-phosphorylated Akt2. Akt2 promoter activity and protein levels were regulated by p38 activation, thus providing a mechanism for communication. Subsequent Akt activation by S473 phosphorylation was PI 3-kinase dependent and specific for Akt2 rather than Akt1. Complementary to p38-mediated transactivation of Akt, activation or inhibition of PI 3-kinase regulated p38 activity upstream of MKK6, demonstrating reciprocal communication and positive feedback characteristic of myogenic regulation. Our findings have identified novel communication between p38 MAPK and PI 3-kinase/Akt via Akt2.  相似文献   

6.
7.
Lung epithelial cells produce increased reactive oxygen species (ROS) after hypoxia exposure, and they are more susceptible after hypoxia to injury by agents that generate superoxide [O2-; e.g., 2,3-dimethoxy-1,4-naphthoquinone (DMNQ)]. Cellular GSH and MnSOD both decrease in hypoxic lung epithelial cells, altering the redox state. Because ROS participate in signaling pathways involved in cell death or survival, we tested the hypothesis that mitogen-activated protein kinases (MAPK) were involved in a protective response against cellular injury during reoxygenation. Human lung epithelial A549 cells were incubated in hypoxia (<1% O2 for 24 h) and then reoxygenated by return to air. p38mapk and MKK3 phosphorylation both decreased after hypoxia. During reoxygenation, cells were incubated with DMNQ (0-50 microM), a redox cycling quinone that produces O2-. Hypoxia preexposure significantly increased epithelial cell lysis resulting from DMNQ. Addition of the p38mapk inhibitors SB-202190 or SB-203580 markedly increased cytotoxicity, as did the mitogen/extracellular signal-regulated kinase (MEK) 1/2 inhibitor PD-98059 (all 10 microM), suggesting a protective effect of downstream molecules activated by the kinases. Transfection of A549 cells with a dominant active MKK3 plasmid (MKK3[Glu]) partially inhibited cytolysis resulting from DMNQ, whereas the inactive MKK3 plasmid (MKK3[Ala]) had less evident protective effects. Stress-related signaling pathways in epithelial cells are modulated by hypoxia and confer protection from reoxygenation, since hypoxia and chemical inhibition of p38mapk and MEK1/2 similarly increase cytolysis resulting from O2-.  相似文献   

8.
The internalization and degradation of vascular endothelial growth factor receptor 2 (VEGFR-2), a potent angiogenic receptor tyrosine kinase, is a central mechanism for the regulation of the coordinated action of VEGF in angiogenesis. Here, we show that VEGFR-2 is ubiquitinated in response to VEGF, and Lys 48-linked polyubiquitination controls its degradation via the 26S proteosome. The degradation and ubiquitination of VEGFR-2 is controlled by its PEST domain, and the phosphorylation of Ser1188/Ser1191 is required for the ubiquitination of VEGFR-2. F-box-containing β-Trcp1 ubiquitin E3 ligase is recruited to S1188/S1191 VEGFR-2 and mediates the ubiquitination and degradation of VEGFR-2. The PEST domain also controls the activation of p38 mitogen-activated protein kinase (MAPK) through phospho-Y1173. The activation of p38 stabilizes VEGFR-2, and its inactivation accelerates VEGFR-2 downregulation. The VEGFR-2-mediated activation of p38 is established through the protein kinase A (PKA)/MKK6 pathway. PKA is recruited to VEGFR-2 through AKAP1/AKAP149, and its phosphorylation requires Y1173 of VEGFR-2. The study has identified a unique mechanism in which VEGFR-2 stability and degradation is modulated. The PEST domain acts as a dual modulator of VEGFR-2; the phosphorylation of S1188/S1191 controls ubiquitination and degradation via β-Trcp1, where the phosphorylation of Y1173 through PKA/p38 MAPK controls the stability of VEGFR-2.  相似文献   

9.
Under pathological conditions such as ischemia-reperfusion, Nrf2 acts as a key regulator of cellular oxidative response. Provided that Nrf2 is sensitive to hypoxia during ischemia, Nrf2 may affect reactive oxygen species metabolism during reoxygenation. In this study, hypoxia suppressed Nrf2 protein, and its hypoxic suppression was not recovered with knockdown of the Nrf2 repressor Keap1. Moreover, an Nrf2 mutant lacking the Keap1 binding domain was suppressed under hypoxia, suggesting that Keap1 does not contribute to hypoxic Nrf2 suppression. HIF-1α and Siah2 are both key regulators of hypoxic responses. Hypoxia induced the Siah2 protein. Although inhibition or knockdown of Siah2 prevented the suppression of Nrf2, knockdown of HIF-1α did not. Moreover, Siah2 interacted with Nrf2 through a binding motif, suggesting that Siah2 contributes to the suppression of Nrf2. Some cytosolic kinases also play important roles in Nrf2 regulation. In this study, PKC phosphorylates serine residues of Nrf2 during hypoxia. Knockdown of Siah2 rescued hypoxic decreases in an Nrf2 mutant that mimicked phosphorylation at serine 40 or lacked this phosphorylation site, suggesting that Siah2 contributes to the degradation of Nrf2 irrespective of its phosphorylation status. Moreover, knockdown of Siah2 attenuated ubiquitination of the Nrf2 mutant, suggesting that association of Siah2 with Nrf2 causes proteasome-mediated degradation of Nrf2.  相似文献   

10.
MEKK1 is a MAPK kinase kinase that is activated in response to stimuli that alter the cytoskeleton and cell shape. MEKK1 phosphorylates and activates MKK1 and MKK4, leading to ERK1/2 and JNK activation. MEKK1 has a plant homeobox domain (PHD) that has been shown to have E3 ligase activity. (Lu, Z., Xu, S., Joazeiro, C., Cobb, M. H., and Hunter, T. (2002) Mol. Cell 9, 945-956). MEKK1 kinase activity is required for ubiquitylation of MEKK1. MEKK1 ubiquitylation is inhibited by mutation of cysteine 441 to alanine (C441A) within the PHD. The functional consequence of MEKK1 ubiquitylation is the inhibition of MEKK1 catalyzed phosphorylation of MKK1 and MKK4 resulting in inhibition of ERK1/2 and JNK activation. The C441A mutation within the PHD of MEKK1 prevents ubiquitylation and preserves the ability of MEKK1 to catalyze MKK1 and MKK4 phosphorylation. MEKK1 ubiquitylation represents a mechanism for inhibiting the ability of a protein kinase to phosphorylate substrates and regulate downstream signaling pathways.  相似文献   

11.
12.
Exposure to anthrax causes life-threatening disease through the action of the toxin produced by the Bacillus anthracis bacteria. Lethal factor (LF), an anthrax toxin component which causes severe vascular leak and edema, is a protease which specifically degrades MAP kinase kinases (MKK). We have recently shown that p38 MAP kinase activation leading to HSP27 phosphorylation augments the endothelial permeability barrier. We now show that treatment of rat pulmonary microvascular endothelial cells with anthrax lethal toxin (LeTx), which is composed of LF and the protective antigen, increases endothelial barrier permeability and gap formation between endothelial cells through disrupting p38 signaling. LeTx treatment increases MKK3b degradation and in turn decreases p38 activity at baseline as well as after activation of p38 signaling. Consequently, LeTx treatment decreases activation of the p38 substrate kinase, MK2, and the phosphorylation of the latter's substrate, HSP27. LeTx treatment disrupts other signaling pathways leading to suppression of Erk-mediated signaling, but these effects do not correlate with LeTx-induced barrier compromise. Overexpressing phosphomimicking (pm)HSP27, which protects the endothelial permeability barrier against LeTx, blocks LeTx inactivation of p38 and MK2, but it does not block MKK3b degradation or Erk inactivation. Our results suggest that LeTx might cause vascular leak through inactivating p38-MK2-HSP27 signaling and that activating HSP27 phosphorylation specifically restores p38 signaling and blocks anthrax LeTx toxicity. The fact that barrier integrity could be restored by pmHSP27 overexpression without affecting degradation of MKK3b, or inactivation of Erk, suggests a specific and central role for p38-MK2-HSP27 in endothelial barrier permeability regulation.  相似文献   

13.
14.
All four members of the mammalian p38 mitogen-activated protein kinase (MAPK) family (p38α, p38β, p38γ and p38δ) are activated by dual phosphorylation in the TGY motif in the activation loop. This phosphorylation is mediated by three kinases, MKK3, MKK6 and MKK4, at least in vitro. The role of these MKK in the activation of p38α has been demonstrated in studies using fibroblasts that lack MKK3 and/or MKK6. Nonetheless, the physiological upstream activators of the other p38MAPK isoforms have not yet been reported using MKK knockout cells. In this study, we examined p38β, γ and δ activation by MKK3 and MKK6, in cells lacking MKK3, MKK6 or both. We show that MKK3 and MKK6 are both essential for the activation of p38γ and p38β induced by environmental stress, whereas MKK6 is the major p38γ activator in response to TNFα. In contrast, p38δ activation by ultraviolet radiation, hyperosmotic shock, anisomycin or by TNFα is mediated by MKK3. Moreover, in response to osmotic stress, MKK3 and MKK6 are crucial in regulating the phosphorylation of the p38γ substrate hDlg and its activity as scaffold protein. These data indicate that activation of distinct p38MAPK isoforms is regulated by the selective and synchronized action of two kinases, MKK3 and MKK6, in response to cell stress.  相似文献   

15.
16.
17.
Mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase kinase kinase 3 (MEKK3) activates the c-Jun NH2-terminal kinase (JNK) pathway, although no substrates for MEKK3 have been identified. We have examined the regulation by MEKK3 of MAPK kinase 7 (MKK7) and MKK6, two novel MAPK kinases specific for JNK and p38, respectively. Coexpression of MKK7 with MEKK3 in COS-7 cells enhanced MKK7 autophosphorylation and its ability to activate recombinant JNK1 in vitro. MKK6 autophosphorylation and in vitro activation of p38alpha were also observed following coexpression of MKK6 with MEKK3. MEKK2, a closely related homologue of MEKK3, also activated MKK7 and MKK6 in COS-7 cells. Importantly, immunoprecipitates of either MEKK3 or MEKK2 directly activated recombinant MKK7 and MKK6 in vitro. These data identify MEKK3 as a MAPK kinase kinase specific for MKK7 and MKK6 in the JNK and p38 pathways. We have also examined whether MEKK3 or MEKK2 activates p38 in intact cells using MAPK-activated protein kinase-2 (MAPKAPK2) as an affinity ligand and substrate. Anisomycin, sorbitol, or the expression of MEKK3 in HEK293 cells enhanced MAPKAPK2 phosphorylation, whereas MEKK2 was less effective. Furthermore, MAPKAPK2 phosphorylation induced by MEKK3 or cellular stress was abolished by the p38 inhibitor SB-203580, suggesting that MEKK3 is coupled to p38 activation in intact cells.  相似文献   

18.
Interleukin 1beta (IL-1beta) induces expression of the inducible nitric-oxide synthase (iNOS) with concomitant release of nitric oxide (NO) from glomerular mesangial cells. These events are preceded by activation of the c-Jun NH(2)-terminal kinase/stress-activated protein kinase (JNK/SAPK) and p38(MAPK). Our current study demonstrates that overexpression of the dominant negative form of JNK1 or p54 SAPKbeta/JNK2 significantly reduces the iNOS protein expression and NO production induced by IL-1beta. Similarly, overexpression of the kinase-dead mutant form of p38alpha(MAPK) also inhibits IL-1beta-induced iNOS expression and NO production. In previous studies we demonstrated that IL-1beta can activate MKK4/SEK1, MKK3, and MKK6 in renal mesangial cells; therefore, we examined the role of these MAPK kinases in the modulation of iNOS induced by IL-1beta. Overexpression of the dominant negative form of MKK4/SEK1 decreases IL-1beta-induced iNOS expression and NO production with inhibition of both SAPK/JNK and p38(MAPK) phosphorylation. Overexpression of the kinase-dead mutant form of MKK3 or MKK6 demonstrated that either of these two mutant kinase inhibited IL-1beta-induced p38(MAPK) (but not JNK/SAPK) phosphorylation and iNOS expression. Interestingly overexpression of wild type MKK3/6 was associated with phosphorylation of p38(MAPK); however, in the absence of IL-1beta, iNOS expression was not enhanced. This study suggests that the activation of both SAPK/JNK and p38alpha(MAPK) signaling cascades are necessary for the IL-1beta-induced expression of iNOS and production of NO in renal mesangial cells.  相似文献   

19.
To look for regulators of the mitogen-activated protein kinase (MAPK) kinase 6 (MKK6), a yeast two-hybrid screen was initiated using MKK6 as bait. p150(Glued) dynactin, a key component of the cytoplasmic dynein-dynactin motor complex, was found to specifically interact with MKK6 and its close homologue MKK3. Silencing of p150(Glued) expression by small interference RNA reduced the stimulus-induced phosphorylation of MKK3/6 and p38 MAPKs. The similar adverse effect was also seen when the cytoplasmic dynein motor was disrupted by other means. Like p150(Glued), MKK3/6 directly associate with microtubules. Disruption of microtubules prior to cell stimulation specifically inhibits the stimulus-induced phosphorylation of both MKK3/6 and p38 MAPKs. Our unexpected findings reveal a specific requirement for p150(Glued)/dynein/functional microtubules in activation of MKK3/6 and p38 MAPKs in vivo.  相似文献   

20.
The p38alpha MAPK participates in a variety of biological processes. Activation of p38alpha is mediated by phosphorylation on specific regulatory tyrosine and threonine sites, and the three dual kinases, MAPK kinase 3 (MKK3), MKK4, and MKK6, are known to be the upstream activators of p38alpha. In addition to activation by upstream kinases, p38alpha can autoactivate when interacting with transforming growth factor-beta-activated protein kinase 1-binding protein 1 (TAB1). Here we used MKK3 and MKK6 double knock-out (MKK3/6 DKO) and MKK4/7 DKO mouse embryonic fibroblast (MEF) cells to examine activation mechanisms of p38alpha. We confirmed that the MKK3/6 pathway is a primary mechanism for p38alpha phosphorylation in MEF cells, and we also showed the presence of other p38alpha activation pathways. We show that TAB1-mediated p38alpha phosphorylation in MEF cells did not need MKK3/4/6, and it accounted for a small portion of the total p38alpha phosphorylation that was induced by hyperosmolarity and anisomycin. We observed that a portion of peroxynitrite-induced phospho-p38alpha is associated with an approximately 85-kDa disulfide complex in wild-type MEF cells. Peroxynitrite-induced phosphorylation of p38alpha in the approximately 85-kDa complex is independent from MKK3/6 because only phospho-p38alpha not associated with the disulfide complex was diminished in MKK3/6 DKO cells. In addition, our data suggest interference among different pathways because TAB1 had an inhibitory effect on p38alpha phosphorylation in the peroxynitrite-induced approximately 85-kDa complex. Mutagenesis analysis of the cysteines in p38alpha revealed that no disulfide bond forms between p38alpha and other proteins in the approximately 85-kDa complex, suggesting it is a p38alpha binding partner(s) that forms disulfide bonds, which enable it to bind to p38alpha. Therefore, multiple mechanisms of p38alpha activation exist that can influence each other, be simultaneously activated by a given stimulus, and/or be selectively used by different stimuli in a cell type-specific manner.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号