首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Rhodococcus ruber GIN1 (formally Rh. strain GIN1) was previously isolated on the basis of its strong adherence to coal fly ash (CFA) and titanium dioxide particles from CFA sedimentation ponds of an electrical power plant in Israel. The interaction of the bacterium with oxides has been shown to be mediated by a cell surface protein designated TiBP (titanium binding protein) involving primarily strong, non-electrostatic forces. In this work, we set forward to identify this unique exocellular protein. Sequence analysis of the purified protein by mass spectrometry (LC/MS/MS) following trypsinization revealed 11 peptides. All of them showed >90% amino acid residues identity with sequences of one of the orthologs (dldh1) of the cytosolic enzyme dihydrolipoamide dehydrogenase (DLDH), based on the genome sequence of Rhodococcus strain RHA1. This genome was selected as a reference since currently it is the only sequenced Rhodococcal genome. Altogether, these peptides covered over 25% of the 52 kDa protein molecule. N- and C-termini primers were prepared and used to sequence the paralog gene from Rh. ruber GIN1 after polymerase chain reaction (PCR) amplification. All 11 peptides showed 100% identity with the sequence of this gene. The homology of TiBP with the supposedly cytosolic DLDH raised the question of whether the exocellular TiBP possesses DLDH activity. Indeed, intact late logarithmic phase Rh. ruber GIN1 cells, previously shown to express TiBP, were found to possess such activity, while very low activity was associated with stationary phase cells which possess diminished TiBP expression on their surface. Further evidence for the exocellular location of TiBP/DLDH was achieved using specific anti-TiBP polyclonal antibodies by whole cell and protein enzyme-linked immunosorbent assay (ELISA), showing high reactivity of the logarithmic phase cell surface and substantially lower reactivity with the stationary phase cells. As expected, logarithmic phase spheroplasts were not recognized by these antibodies. Similar results were obtained by fluorescence and scanning electron microscopy. Our postulation that DLDH is located on the surface of Rh. ruber GIN1, serving as a TiO2 binding protein, is in accordance with literary evidence on DLDH in other organisms, Bacteria, Archea, and Eukaryots that suggests it is associated with the outer membranes or cell surfaces. As an exocellular protein DLDH assumes various tasks which are not related to its classical role as a 2-oxoacid dehydrogenase, including serving as an adhesion/binding protein in certain bacteria.  相似文献   

3.
This study describes the enzymatic characterization of dihydrolipoamide dehydrogenase (DLDH) from Streptococcus pneumoniae and is the first characterization of a DLDH that carries its own substrate (a lipoic acid covalently attached to a lipoyl protein domain) within its own sequence. Full-length recombinant DLDH (rDLDH) was expressed and compared with enzyme expressed in the absence of lipoic acid (rDLDH(-LA)) or with enzyme lacking the first 112 amino acids constituting the lipoyl protein domain (rDLDH(-LIPOYL)). All three proteins contained 1 mol of FAD/mol of protein, had a higher activity for the conversion of NAD(+) to NADH than for the reaction in the reverse direction, and were unable to use NADP(+) and NADPH as substrates. The enzymes had similar substrate specificities, with the K(m) for NAD(+) being approximately 20 times higher than that for dihydrolipoamide. The kinetic pattern suggested a Ping Pong Bi Bi mechanism, which was verified by product inhibition studies. The protein expressed without lipoic acid was indistinguishable from the wild-type protein in all analyses. On the other hand, the protein without a lipoyl protein domain had a 2-3-fold higher turnover number, a lower K(I) for NADH, and a higher K(I) for lipoamide compared with the other two enzymes. The results suggest that the lipoyl protein domain (but not lipoic acid alone) plays a regulatory role in the enzymatic characteristics of pneumococcal DLDH.  相似文献   

4.
二氢硫辛酰胺脱氢酶(dihydrolipoamide dehydrogenase,DLDH)是线粒体3个α-酮酸脱氢酶复合物(丙酮酸脱氢酶复合物、α-酮戊二酸脱氢酶复合物、支链氨基酸脱氢酶复合物)的关键成分,属于吡啶依赖性二硫化物氧化还原酶类,对活性氮自由基(reactive nitrogen species,RNS)和活性氧自由基(reactive oxygenspecies,ROS)造成的氧化修饰非常敏感。本研究探索由Angeli盐所产生的RNS对DLDH的修饰作用及机制。将大鼠脑线粒体分离,与不同浓度的Angeli盐作用,应用分光光度计、蓝色胶、基于二维电泳的蛋白质组学等手段,测定DLDH酶活性。结果显示,Angeli盐呈浓度依赖性方式灭活DLDH,过氧亚硝酸盐在同样条件下对DLDH酶活性无抑制作用,说明Angeli盐对DLDH的作用可能是非随机的。由于Angeli盐在生理pH条件下可分解为硝基阴离子(nitroxyl anion,HNO)和一氧化氮(nitric oxide,NO),故进一步分析了Angeli盐对DLDH的灭活作用是否由HNO引起,结果证实确实如此。最后,二维电泳Western blot结果显示,Angeli盐对DLDH的灭活伴随着DLDH蛋白质的S-亚硝基硫醇形成,提示S-亚硝基硫醇化可能是导致DLDH酶失活的原因。综上,本研究为研究Angeli盐灭活DLDH的机制提供了新证据。  相似文献   

5.
Dihydrolipoamide dehydrogenase (DLDH) is a mitochondrial enzyme that comprises an essential component of the pyruvate dehydrogenase complex. Lines of evidence have shown that many dehydrogenases possess unrelated actions known as moonlightings in addition to their oxidoreductase activity. As part of these activities, we have demonstrated that DLDH binds TiO2 as well as produces reactive oxygen species (ROS). This ROS production capability was harnessed for cancer therapy via integrin‐mediated drug‐delivery of RGD‐modified DLDH (DLDHRGD), leading to apoptotic cell death. In these experiments, DLDHRGD not only accumulated in the cytosol but also migrated to the cell nuclei, suggesting a potential DNA‐binding capability of this enzyme. To explore this interaction under cell‐free conditions, we have analyzed DLDH binding to phage lambda (λ) DNA by gel‐shift assays and analytic ultracentrifugation, showing complex formation between the two, which led to full coverage of the DNA molecule with DLDH molecules. DNA binding did not affect DLDH enzymatic activity, indicating that there are neither conformational changes nor active site hindering in DLDH upon DNA‐binding. A Docking algorithm for prediction of protein‐DNA complexes, Paradoc, identified a putative DNA binding site at the C‐terminus of DLDH. Our finding that TiO2‐bound DLDH failed to form a complex with DNA suggests partial overlapping between the two sites. To conclude, DLDH binding to DNA presents a novel moonlight activity which may be used for DNA alkylating in cancer treatment.  相似文献   

6.
The binding protein-dependent transport of ribose, galactose and maltose are reduced in several 2-oxo acids dehydrogenase mutants of Escherichia coli. The results suggest an implication of the pyruvate dehydrogenase complex and to a lesser extent of the 2-oxoglutarate dehydrogenase complex in the energization of these transport systems.  相似文献   

7.
In most cases no correlation between the virulence of S. pneumoniae and their enzymatic activity was registered in 101 S. pneumoniae strains isolated in pneumococcal infections of different localization. Pneumococcal strains belonging to different serotypes and characterized by their low virulence for mice (LD50 = 10(6) colony-forming units) had the highest neuraminidase and protease-alzolase activity in comparison with highly virulent cultures of these bacteria. In pneumococcal cultures in the R-form avirulence for mice occurred mainly in combination with low enzymatic activity.  相似文献   

8.
9.
alpha-Phosphoglucomutase (alpha-PGM) plays an important role in carbohydrate metabolism by catalyzing the reversible conversion of alpha-glucose 1-phosphate to glucose 6-phosphate. Isolation of alpha-PGM activity from cell extracts of Lactococcus lactis strain MG1363 led to the conclusion that this activity is encoded by yfgH, herein renamed pgmH. Its gene product has no sequence homology to proteins in the alpha-d-phosphohexomutase superfamily and is instead related to the eukaryotic phosphomannomutases within the haloacid dehalogenase superfamily. In contrast to known bacterial alpha-PGMs, this 28-kDa enzyme is highly specific for alpha-glucose 1-phosphate and glucose 6-phosphate and showed no activity for mannose phosphate. To elucidate the function of pgmH, the metabolism of glucose and galactose was characterized in mutants overproducing or with a deficiency of alpha-PGM activity. Overproduction of alpha-PGM led to increased glycolytic flux and growth rate on galactose. Despite several attempts, we failed to obtain a deletion mutant of pgmH. The essentiality of this gene was proven by using a conditional knock-out strain in which a native copy of the gene was provided in trans under the control of the nisin promoter. Growth of this strain was severely impaired when alpha-PGM activity was below the control level. We show that the novel L. lactis alpha-PGM is the only enzyme that mediates the interconversion of alpha-glucose 1-phosphate to glucose 6-phosphate and is essential for growth.  相似文献   

10.
Streptococcus pneumoniae forms part of the natural microbiota of the nasopharynx. For the pneumococcus to cause infection, colonization needs to occur and this process is mediated by adherence of bacteria to the respiratory epithelium. Although the capsular polysaccharide (CPS) of S. pneumoniae is known to be important for infection to occur, its role in colonization is controversial. Biofilm models are starting to emerge as a promising tool to investigate the role of CPS during nasopharyngeal carriage, which is the first step in the dissemination and initiation of a pneumococcal infection. Using a well-defined model system to analyse in vitro biofilm formation in pneumococcus, here we explore the molecular changes underlying the appearance of capsular mutants using type 3 S. pneumoniae cells. Spontaneous colony phase variants show promoter mutations, as well as duplications, deletions and point mutations in the cap3A gene, which codes for a UDP-glucose dehydrogenase (UDP-GlcDH). Increased biofilm-forming capacity could usually be correlated with a reduction both in colony size and in the relative amount of CPS present on the cell surface of each colony variant. However, a mutation in Cap3A Thr83Ile (a strictly conserved residue in bacterial UDP-GlcDHs) that resulted in very low CPS production also led to impaired biofilm formation. We propose that non-encapsulated mutants of pneumococcal type 3 strains are essentially involved in the initial stages (the attachment stage) of biofilm formation during colonization/pathogenesis.  相似文献   

11.
Major pathways of carbon metabolism were studied in strains D-402 and D-405 of freshwater colorless sulfur bacteria of the genus Beggiatoa grown organotrophically and mixotrophically. The bacteria were found to possess all the enzymes of the tricarboxylic acid (TCA) and glyoxylate cycles. When organotrophic growth changed to mixotrophic one, the activity of the TCA cycle enzymes decreased 2- to 3-fold, but the activity of enzymes of the glyoxylate cycle increased threefold. It follows that, in the oxidation of thiosulfate, organic compounds no longer play the leading part in the energy metabolism, and most of electrons that enter the electron transport chain (ETC) derive from inorganic sulfur compounds. A connection was established between the structure and kinetic characteristics of malate dehydrogenase--an enzyme of the TCA and glyoxylate cycles--and the type of carbon metabolism in the strains studied. Malate dehydrogenase in organotrophically grown cells of strains D-402 and D-405 is dimeric, whereas in strain D-402 grown mixotrophically it is tetrameric.  相似文献   

12.
13.
四种中草药对大鼠半乳糖性白内障相关酶活性的影响   总被引:6,自引:0,他引:6  
本实验测定了中草药对大鼠半乳糖性白内障延缓及治疗中五种酶活性的影响。结果表明,在白内障晶状体中,醛糖还原酶的活性明显升高;多元醇脱氢酶,己糖激酶,6磷酸葡萄糖脱氢酶及过氧化氢酶的活性明显降低。在注射半乳糖的同时,分别用黄芩、石斛、菟絲子及玉蝴蝶四种中草药水煎剂灌胃,醛糖还原酶的活性没有明显升高,其余四种酶的活性均基本恢复到正常,表明这四种中草药对半乳糖所致的酶活性异常变化有抑制或纠正作用。  相似文献   

14.
Major pathways of carbon metabolism were studied in strains D-402 and D-405 of freshwater colorless sulfur bacteria of the genus Beggiatoa grown organotrophically and mixotrophically. The bacteria were found to possess all the enzymes of the tricarboxylic acid (TCA) and glyoxylate cycles. When organotrophic growth changed to mixotrophic growth, the activity of the TCA cycle enzymes decreased 2- to 3-fold, but the activity of enzymes of the glyoxylate cycle increased threefold. It follows that, in the oxidation of thiosulfate, organic compounds no longer play the leading part in the energy metabolism, and most of electrons that enter the electron transport chain (ETC) derive from inorganic sulfur compounds. A connection was established between the structure and kinetic characteristics of malate dehydrogenase—an enzyme of the TCA and glyoxylate cycles—and the type of carbon metabolism in the strains studied. Malate dehydrogenase in organotrophically grown cells of strains D-402 and D-405 is dimeric, whereas in strain D-402 grown mixotrophically it is tetrameric.  相似文献   

15.
Streptococcus pneumoniae (pneumococcus) is able to form biofilms in vivo and previous studies propose that pneumococcal biofilms play a relevant role both in colonization and infection. Additionally, pneumococci recovered from human infections are characterized by a high prevalence of lysogenic bacteriophages (phages) residing quiescently in their host chromosome. We investigated a possible link between lysogeny and biofilm formation. Considering that extracellular DNA (eDNA) is a key factor in the biofilm matrix, we reasoned that prophage spontaneous activation with the consequent bacterial host lysis could provide a source of eDNA, enhancing pneumococcal biofilm development. Monitoring biofilm growth of lysogenic and non-lysogenic pneumococcal strains indicated that phage-infected bacteria are more proficient at forming biofilms, that is their biofilms are characterized by a higher biomass and cell viability. The presence of phage particles throughout the lysogenic strains biofilm development implicated prophage spontaneous induction in this effect. Analysis of lysogens deficient for phage lysin and the bacterial major autolysin revealed that the absence of either lytic activity impaired biofilm development and the addition of DNA restored the ability of mutant strains to form robust biofilms. These findings establish that limited phage-mediated host lysis of a fraction of the bacterial population, due to spontaneous phage induction, constitutes an important source of eDNA for the S. pneumoniae biofilm matrix and that this localized release of eDNA favors biofilm formation by the remaining bacterial population.  相似文献   

16.
1. The effect of the branched-chain amino acids, namely leucine, isoleucine and valine and their corresponding 2-oxo acids on the metabolism of 2-oxoglutarate by developing rat and human brain preparations was investigated. 2. The decarboxylation of 2-oxo[1-(14)C]glutarate to (14)CO(2) by mitochondria from adult rat brain was inhibited by the branched-chain 2-oxo acids whereas the branched-chain amino acids had no inhibitory effect on this process. 3. The activity of 2-oxoglutarate dehydrogenase complex was about 0.2unit/g of brain from 2-day-old rats and increased by about fourfold reaching an adult value by the end of the third postnatal week. 4. The K(m) value for 2-oxoglutarate of the 2-oxoglutarate dehydrogenase complex in rat and human brain was 100 and 83mum respectively. 5. The branched-chain 2-oxo acids competitively inhibited this enzyme from suckling and adult rats brains as well as from foetal and adult human brains, whereas the branched-chain amino acids had no effect on this enzyme. 6. Approximate K(i) values for the branched-chain 2-oxo acids found for this enzyme were in the range found for these 2-oxo acids in plasma from patients with maple-syrup-urine disease. 7. The possible significance of the inhibition by the branched-chain 2-oxo acids of the 2-oxoglutarate dehydrogenase complex in brains of untreated patients with maple-syrup-urine disease is discussed in relation to the energy metabolism and the biosynthesis of lipids from ketone bodies.  相似文献   

17.
Thirty years ago, a number of human inborn errors in carbohydrate metabolism were explored with specific enzymatic tests on blood samples (hemolysates). Hereditary galactosemia was the first example. When the inoperative step in galactose metabolism was specified, the basis for the diet therapy used on the galactosemic infants, namely galactose-free diet, could be shown to be securely founded. As far as galactose metabolism is concerned, the cells of the infant are faced with two problems: (i) the conversion of dietary lactose (galactosyl glucose) to glucose and its catabolites involved in energy metabolism, and (ii) the conversion of dietary glucose or lactose to galactosyl units of glycolipids and glycoprotein cell structures. Subsequent studies on microorganisms revealed several types of hereditary defect in galactose metabolism. One type which permits the bacteria to develop a normal carbohydrate pattern in their cell walls includes an enzyme defect, like that described in the cells of the galactosemic infant. Two other types, with the inability to synthesize UDPGlc or UDPGal from glucose, do not permit the bacteria to build the fabric of the normal bacterial cell wall. This is the subject for discussion.  相似文献   

18.
At 0.1 mM 2-oxo[1-14C]isocaproate or 2-oxo[1-14C]isovalerate plots of the reciprocal of the rate of 14CO2 formation by branched-chain 2-oxo acid dehydrogenase complex in mitochondria vs alpha-cyanocinamate concentration were linear up to high inhibitor concentrations, indicating that the monocarboxylate carrier-mediated transport was the rate-limiting step. At low (0.025 mM) concentration of 2-oxo[1-14C]isocaproate or 2-oxo[1-14C]isovalerate the 1/v vs I plots became nonlinear indicating that the branched-chain 2-oxo acid dehydrogenase activity determined the rate of 14CO2 formation. Inhibition of branched-chain 2-oxo acid dehydrogenase complex by clofibric acid or arsenite showed that at 0.1 mM 2-oxoisovalerate the activity of the complex became the rate-limiting step of the pathway. The availability of the 2-oxoisocaproate or 2-oxoisovalerate seems to affect the phosphorylation and the activity of the branched-chain 2-oxo acid dehydrogenase complex only at low, physiological concentrations of these substrates (less than 0.025 mM).  相似文献   

19.
Streptococcus pneumoniae produces three surface-associated exoglycosidases; a neuraminidase, NanA, a beta-galactosidase, BgaA, and a beta-N-acetylglucosaminidase, StrH. the proposed functions of NanA, which removes terminal sialic acid, include revealing receptors for adherence, affecting the function of glycosylated host clearance molecules, modifying the surface of other bacteria coinhabiting the same niche, and providing a nutrient source. However, it is unclear whether following desialylation S. pneumoniae can further deglycosylate human targets through the activity of BgaA or StrH. We demonstrate that NanA, BgaA and StrH act sequentially to remove sialic acid, galactose and N-acetylglucosamine and expose mannose on human glycoproteins that bind to the pneumococcus and protect the airway. In addition, both BgaA and NanA were shown to contribute to the adherence of unencapsulated pneumococci, to human epithelial cells. Despite these findings, triple exoglycosidase mutants colonized mice as well as their parental strains, suggesting that any effect of these genes on colonization and disease may be host species-specific. These studies highlight the importance of considering the complete ability of S. pneumoniae to deglycosylate human targets and suggest that in addition to NanA, BgaA and StrH also contribute to pneumococcal colonization and/or pathogenesis.  相似文献   

20.
E Díaz  R Lpez    J L García 《Journal of bacteriology》1992,174(17):5516-5525
The first temperate bacteriophage (EJ-1) of Streptococcus pneumoniae with Myoviridae morphotype A1 isolated from a clinical atypical strain has been purified and characterized. This phage has a double-stranded linear genome about 42 kb long, but in contrast to the other pneumococcal temperate phages that have been characterized so far, EJ-1 does not contain any protein covalently linked to it. We have sequenced a fragment of EJ-1 DNA containing the ejl gene, encoding a cell wall lytic enzyme (EJL amidase). This gene has been cloned and expressed in Escherichia coli, and the EJL enzyme was purified and biochemically characterized as an N-acetylmuramyl-L-alanine amidase that shares many similarities with the major pneumococcal autolysin. The EJL amidase is a choline-dependent enzyme that needs the process of conversion to achieve full enzymatic activity, but in contrast to the wild-type pneumococcal LYTA amidase, this process was found to be reversible. Comparisons of the primary structure of this new lytic enzyme with that of the other cell wall lytic enzymes of S. pneumoniae and its bacteriophages characterized so far provided new insights as to the evolutionary relationships between phages and bacteria. The nucleotide sequences of the attachment site (attP) on the phage genome and one of the junctions created by the insertion of the prophage were determined. Interestingly, the attP site was located near the ejl gene, as previously observed for the pneumococcal temperate bacteriophage HB-3 (A. Romero, R. López, and P. García, J. Virol. 66:2860-2864, 1992). A stem-and-loop structure, some adjacent direct and inverted repeats, and two putative integration host factor-binding sites were found in the att sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号