首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 7 毫秒
1.
At high concentrations (10 mug/ml), actinomycin D inhibited deoxyribonucleic acid (DNA) synthesis in Bacillus subtilis. Inhibition occurred quickly (in less than 1 min) and was complete. In strain 23 thy his, inhibition of DNA synthesis by actinomycin D was followed by partial degradation of one of the two daughter strands to acid-soluble products. Degradation began at the replication point and proceeded over a distance equal to about 12% of a chromosome in length. Actinomycin D played some essential part in degradation, since exposure of the cells to other treatments or agents which inhibit growth did not lead to the above result.  相似文献   

2.
3.
The vast majority of plus strands synthesized in quail cells acutely infected with avian sarcoma virus were subgenomic in size, generally less than 3 kilobases (kb). A series of discrete species could be identified after agarose gel electrophoresis by annealing with various complementary DNAs, indicating specificity in the initiation and termination of plus strands. The first plus strand to appear (within 2 h postinfection) was similar in length to the long redundancy at the ends of linear DNA (0.35 kb), and it annealed with complementary DNAs specific for the 3' and 5' termini of viral RNA (Varmus et al., J. Mol. Biol. 120:50-82, 1978). Several subgenomic plus-strand fragments (0.94, 1.38, 2.3, and 3.4 kb) annealed with these reagents. At least the 0.94- and 1.38-kb strands were located at the same end of linear DNA as the 0.35-kb strand, indicating that multiple specific sites for initiation were employed to generate strands which overlapped on the structural map. We were unable to detect RNA liked to plus strands isolated as early as 2.5 h postinfection; thus, the primers must be short (fewer than 50 to 100 nucleotides), rapidly removed, or not composed of RNA. To determine whether multiple priming events are a general property of retroviral DNA synthesis in vivo, we also examined plus strands of mouse mammary tumor virus DNA in chronically infected rat cells after induction of RNA and subsequent DNA synthesis with dexamethasone. In this case, multiple, discrete subgenomic DNA plus strands were not found when the same methods applied to avian sarcoma virus DNA were used; instead, the plus strands present in the linear DNA of mouse mammary tumor virus fell mainly into two classes: (i) strands of ca. 1.3 kb which appeared early in synthesis and were similar in size and genetic content to the terminally repeated sequence in linear DNA; and (ii) plus strands of the same length as linear DNA. A heterogeneous population of other strands diminished with time, was not found in completed molecules, and was probably composed of strands undergoing elongation. These two retroviruses thus appear to differ with respect to both the number of priming sites used for the synthesis of plus strands and the abundance of full-length plus strands. On the other hand the major subgenomic plus strand of mouse mammary tumor virus DNA (1.3 kb) is probably the functional homolog of a major subgenomic plus strand of avian sarcoma virus DNA (0.35 kb). The significance of this plus strand species is discussed in the context of current models which hold that it is used as a template for the completion of the minus strand, thereby generating the long terminal redundancy.  相似文献   

4.
The concentration of adenosine 3′,5′-cyclic monophosphate (cAMP) was measured in the parotid gland of the mouse after intraperitoneal injection of a beta-adrenergic drug, isoproterenol. A marked elevation of cAMP was observed 10 min after the administration, followed by a return to the control level within 40 min. A small peak was found around 14 h, onset of the stimulated DNA synthesis being observed at 20 h. A close relationship was found between the cAMP level at 10 min and the rate of DNA synthesis at 24 h in animals given different doses of the drug. However, DNA synthesis could not be induced by adrenalin in spite of a significant increase in the cAMP concentration. Furthermore, X-irradiation or certain metabolic inhibitors (actinomycin D and cycloheximide), administered prior to isoproterenol, completely inhibited the stimulated DNA synthesis without affecting the cAMP elevation at 10 min. It is concluded that the critical step in the initiation of stimulated DNA synthesis may be located at a period later than the initial cAMP elevation.  相似文献   

5.
Synthesis of ribonucleic acid by isolated rat liver mitochondria   总被引:2,自引:2,他引:0       下载免费PDF全文
Rat liver mitochondria isolated in sucrose-N-tris(hydroxymethyl)methyl-2-aminoethane-sulphonic acid (TES) incorporated [(3)H]UTP into RNA for 1h. Incorporation was inhibited 50% by 1mug of actinomycin D/ml, 1mug of acriflavine/ml and 0.5mug of ethidium bromide/ml but was insensitive to rifampicin, rifamycin SV, streptovarcin and deoxyribonuclease. After the first 10min of incubation, the synthesis was insensitive to ribonuclease. RNA synthesis by mitochondria isolated in sucrose-EDTA was insensitive to actinomycin D and sensitive to ribonuclease during the first 10min of the incubation but thereafter the sensitivities were the same as for mitochondria isolated in sucrose-TES. In a hypo-osmotic medium the relative extent of incorporation of the four ribonucleoside triphosphates into RNA was CTP>UTP=ATP>GTP. In an iso-osmotic medium the incorporation of CTP and GTP decreased. All four nucleotides were incorporated into RNA in a DNA-dependent process, as indicated by the inhibition by actinomycin D. In addition, CTP and ATP were incorporated into the CCA end of mitochondrial tRNA. ATP was also incorporated into an unidentified acid-insoluble compound, which hydrolysed in alkali to a product that was not ATP, ADP or 5'- or 2(3')-AMP. Atractyloside inhibited the incorporation of ATP into RNA with 50% inhibition at 2-3nmol/mg of protein. The [(3)H]UTP-labelled RNA had peaks of 16S and 13S characteristic of mitochondrial rRNA. In addition a peak at 20-21S was observed as well as heterogeneous RNA sedimenting throughout the gradient. The synthesis of all these species was inhibited by actinomycin D, indicating that rat liver mitochondrial DNA codes for mitochondrial rRNA as well as other as yet unidentified species.  相似文献   

6.
7.
8.
Addition of actinomycin D (or cordycepin, an alternative inhibitor of RNA synthesis) to cartilage cultures resulted in a first-order decrease in the rate of incorporation of [35S]sulphate into proteoglycan (half-life = 7.5 +/- 1.1 h). Addition of 1.0 mM-benzyl beta-D-xyloside relieved the initial inhibition of glycosaminoglycan synthesis induced by actinomycin D; however, after a lag of about 10 h the rate of xyloside-initiated glycosaminoglycan synthesis also decreased with apparent first-order kinetics (half-life = 7.1 +/- 1.8 h), which paralleled the decrease in the rate of core-protein-initiated glycosaminoglycan synthesis. The hydrodynamic size of the proteoglycans formed in the presence of actinomycin D remained essentially constant (Kav. 0.21-0.23), whereas the constituent glycosaminoglycan chains were larger than those formed by control cultures, which suggested that the core protein was substituted with fewer but larger glycosaminoglycan chains. Proteoglycans formed in the presence of beta-D-xyloside were significantly smaller (Kav. approximately 0.33) than those synthesized by control cultures, and were further diminished in size after exposure of cultures to actinomycin D. Glycosaminoglycan chains synthesized by these same cultures on to both core-protein and xyloside acceptors were also smaller than those of control cultures. The decrease in synthesis observed after exposure to actinomycin D was not reflected by any significant decrease in the activities of several glycosyltransferases involved in chondroitin sulphate synthesis (galactosyltransferase-I, galactosyltransferase-II, N-acetylgalactosaminyltransferase and glucuronosyltransferase-II).  相似文献   

9.
In vitro incorporation of [Me-3H] thymidine and [5-3H] uridine into human platelets was demonstrated. Thymidine incorporation was inhibited by three specific inhibitors of DNA synthesis: hydroxyurea, cytosine arabinoside and daunomycin. The effect was dose-dependent. Uridine uptake by platelets was found to be inhibited by specific inhibitors of RNA synthesis such as actinomycin D, rifampicin and vincristine, the effect of actinomycin D being dose dependent. The drug also led to a time-dependent inhibition of protein synthesis when preincubated with platelets. The platelet RNA profile on polyacrylamide gel was demonstrated to be similar to that of embryonic mouse erythroblast RNA. Synthesis of all three fractions, 28 S, 18 S and 4 S, was inhibited by actinomycin D. These findings show that human platelets are capable of DNA and RNA synthesis, and that these activities play a role in controlling protein synthesis in these cells. Detectable amounts of DNA have been found in whole human platelets, and in isolated mitochondria derived from these cells. Isolated platelet mitochondria incorporated [3H] thymidine and [3H] uridine into their macromolecules. These activities were inhibited by daunomycin and by both rifampicin and actinomycin D, respectively. These results support the assumption that DNA and RNA synthesis found in intact cell preparations takes place most probably in platelet mitochondria.  相似文献   

10.
The rate of [35S]cystine incorporation into hepatic zinc-thionein (a metallothionein) was stimulated, with a maximum of 5-6h, after parenteral administration of 2mg of Zn2+ containing 65Zn. The binding of 65Zn to zinc-thionein was measurable by 2-1/2h and reached a plateau by 18h after the injection. A net increase in the hepatic 65Zn content was observed subsequent to the decrease in the rate of zinc-thionein synthesis. The incorporation of both 65Zn and [35S]cystine into zinc-thionein was inhibited by prior administration of either actinomycin D or cordycepin. A second injection of Zn2+, 20h after the initial injection, yielded a 4.9-fold greater increase in zinc-thionein synthesis compared with that after only one injection; however, this synthesis was also inhibitable by actinomycin D. These data support the concept that hepatic zinc-thionein synthesis responds quickly to changes in Zn2+ status and that Zn2+ is bound subsequent to synthesis of nascent thionein chains. The mechanism of control of zinc-thionein synthesis by Zn2+ appears to involve changes in the amounts of a short-lived, poly(A)-containing RNA whose translation can be derepressed by additional exposure to Zn2+.  相似文献   

11.
Qi Y  Ding B 《The Plant cell》2003,15(11):2566-2577
The wide variety of RNAs produced in the nucleus must be localized correctly to perform their functions. However, the mechanism of this localization is poorly understood. We report here the differential subnuclear localization of RNA strands of opposite polarity derived from the replicating Potato spindle tuber viroid (PSTVd). During replication, (+)- and (-)-strand viroid RNAs are produced. We found that in infected cultured cells and plants, the (-)-strand RNA was localized in the nucleoplasm, whereas the (+)-strand RNA was localized in the nucleolus as well as in the nucleoplasm with distinct spatial patterns. Furthermore, the presence of the (+)-PSTVd in the nucleolus caused the redistribution of a small nucleolar RNA. Our results support a model in which (1) the synthesis of the (-)- and (+)-strands of PSTVd RNAs occurs in the nucleoplasm, (2) the (-)-strand RNA is anchored in the nucleoplasm, and (3) the (+)-strand RNA is transported selectively into the nucleolus. Our results imply that the eukaryotic cell has a machinery that recognizes and localizes the opposite strands of an RNA, which may have broad ramifications in the RNA regulation of gene expression and the infection cycle of pathogenic RNAs and in the development of RNA-based methods to control gene expression as well as pathogen infection.  相似文献   

12.
The replication initiator protein (gene II protein (gpII] of bacteriophage f1 is a multifunctional protein that plays central roles in initiation and termination of phage DNA replication. It introduces a nick at a specific site on the (+)-strand of supercoiled replicative form DNA. The 3'-hydroxyl end of the nick serves as the primer for (+)-strand rolling-circle replication. Upon completion of a round of synthesis, gpII cleaves and circulaizes the displaced single strand. When Mn2+ is included in the buffer instead of Mg2+, gpII cleaves both strands. In this paper, we investigate the mechanism of the Mn2+-dependent double-strand cleavage activity of gpII. This reaction, unlike nicking in the presence of Mg2+, does not require superhelicity. The reaction proceeds in two kinetic steps: first nicking of the (+)-strand, and then cleavage of the (-)-strand. The nucleotide sequence requirement for nicking is reduced compared to that in the presence of Mg2+. The product of the double-strand cleavage has an unusual structure. The left end is a telomere-like hairpin since the (+)- and (-)-strands are joined, as demonstrated by base sequencing. The right end has a onebase 3'-overhang. This reaction probably reflects the cleavage-joining activity of gpII in the termination event.  相似文献   

13.
Replicating transforming functions of Rauscher leukemia virus (RLV) and the RLV pseudotype of Moloney sarcoma virus in mouse embryo fibroblasts were found to be most sensitive to inhibition by cytosine arabinoside (ara-C) 30 to 90 min after infection. The initiation of intracellular RLV DNA synthesis was detected by nucleic acid hybridization within this time interval. Treatment of infected cells with cytosine arabinoside abolished RLV DNA synthesis. Peak synthesis of the DNA complementary to the infecting RLV genome, the (-) strand, occurred 40 to 60 min after infection. During this interval two s two species of DNA were observed with estimated molecular weights of 0.5 X 10(5) to 1.0 X 10(5) and 3 X 10(6). Peak synthesis of the (+) strand viral DNA occurred 50 to 70 min after infection. The initial species detected had a molecular weight of 1.5 X 10(5) to 4.0 X 10(5) which shifted as a function of time to 3 X 10(6). Both (+) strand species were initially detected in the cytoplasm followed by a rapid (10-min interval) appearance of the faster-sedimenting species in the nucleus. The virus-specific (-) and (+) strand DNA species are presumably unintegrated intermediates in provirus formation.  相似文献   

14.
15.
Hydroxyurea treatment of 3T6 mouse fibroblast cells infected with polyoma virus resulted within 15 min in more than a 20-fold reduction of the rate of both viral and cellular DNA synthesis. After the initial rapid inhibition, the rate of DNA synthesis remained essentially constant for at least 2 h. In the inhibited cells viral DNA accumulated as short chains with a sedimentation coefficient of about 4S (hydroxyurea fragments). A variable proportion of these fragments was released from the template strands when the viral DNA was extracted by the Hirt procedure. Reannealing experiments demonstrated that hydroxyurea fragments were polyoma-specific and probably synthesized on both parental strands at the replication forks.  相似文献   

16.
Platelet-derived growth factor-modulated translatable mRNAs.   总被引:8,自引:3,他引:5       下载免费PDF全文
The treatment of density-arrested BALB/c 3T3 cells with electrophoretically homogeneous or highly purified preparations of the platelet-derived growth factor (PDGF) stimulated the rapid and selective accumulation of several species of abundant mRNA identified by cell-free translation. These translatable mRNAs appeared long before entry into the S phase. Less PDGF was required for selective mRNA accumulation than for PDGF-modulated DNA synthesis. The translatable mRNAs also accumulated after addition of the epidermal growth factor but not after addition of insulin or platelet-poor plasma. Their selective accumulation was blocked by addition of actinomycin D. Three classes of PDGF-modulated mRNAs were defined. An early (primary) RNA appeared within 30 to 60 min of PDGF addition; its accumulation was not blocked by cycloheximide. Another early mRNA also appeared within 60 min, but treatment with both PDGF and cycloheximide was required for optimal accumulation. A third class, secondary RNAs, began to accumulate later at 90 to 120 min; the appearance of this class was inhibited by cycloheximide. One- and two-dimensional gel electrophoresis of translation products demonstrated that a spontaneously transformed BALB/c 3T3 (ST2-3T3) cell line, which does not require PDGF or epidermal growth factor for growth, constitutively accumulated the secondary growth factor-regulated mRNAs. The accumulation of these translatable mRNAs may be required for PDGF-modulated DNA synthesis.  相似文献   

17.
Restored DNA synthesis in mammalian gamma-, UV-irradiation and action of FdUrd was shown to be resistant to gamma- and UV-irradiation or heating. This correlates well with changes in chromatin structure and perhaps depends on the modification of the latter. For studying possible inducible characteristics of restored process of DNA synthesis the irradiated cells were incubated with cycloheximide (1 or 10 micrograms ml-1) or actinomycin D (0.05 ug ml-1). It was shown that in the presence of cycloheximide or actinomycin D restoration of DNA synthesis did not occur. A high rate of postreplicative DNA repair in UV-irradiated HeLa cells occurs after the previous action of FdUrd or UV-irradiation. Under these conditions daughter DNA strands have few gaps. Two-dimensional gel electrophoresis of proteins from the cells with resistant DNA synthesis demonstrates higher level some of these and lower one of the other proteins.  相似文献   

18.
19.
Rabbit antiserum hyperimmune to herpes simplex virus type 1 was used to study the expression of herpes simplex virus type-common surface antigens (CSA) by indirect immunofluorescence tests in three representative cell clones isolated from a herpes simplex virus type 2-transformed hamster line, 155-4. These three clones showed different phenotypes with respect to CSA expression: (i) a CSA-positive type (clone (155-4-213), in which the antigens increased soon (5 h) after seeding at 37 degrees C, but not after treatment with actinomycin D; (ii) a CSA-inducible type (clone 155-4-03), in which the antigens increased after treatment with actinomycin D (2 micrograms/ml) for 20 h, but not after seeding only; and (iii) a CSA-negative type (clone 155-4-16), in which the antigens did not increase after seeding or after actinomycin D treatment. CSA expression in the CSA-positive type was inhibited by 2-deoxy-D-glucose, but not by puromycin, suggesting that the expression required glycosylation, but not active protein synthesis. CSA expression in this type was insensitive to the protease inhibitors antipain and p-nitrophenyl-p'-guanidinobenzoate. On the other hand, actinomycin D-induced CSA expression in the CSA-inducible type was inhibited by both 2-deoxy-D-glucose and puromycin, suggesting that the induced expression required both glycosylation and protein synthesis. CSA expression induced in this type was sensitive to the two protease inhibitors at concentrations having little effect on overall cellular metabolism or cell viability. These results indicate that CSA expressions in the CSA-positive type and the CSA-inducible type are enhanced by different mechanisms.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号