首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The tumor suppressor p53 is activated by phosphorylation and/or acetylation. We constructed 14 non-phosphorylated, 11 phospho-mimetic, and 1 non-acetylated point p53 mutations and compared their transactivation ability in U-87 human glioblastoma cells by the luciferase reporter assay. Despite mutations at the phosphorylation sites, only the p53-K120R and p53-S9E mutants had marginally reduced activities. On the other hand, the Nuclear factor of activated T-cells (NFAT)-luciferase reporter was more potently activated by p53-K120R than by wild-type p53 and other mutants in glioblastoma, hepatoma and esophageal carcinoma cells. This suggests that acetylation at Lys-120 of p53 negatively regulates a signaling pathway leading to NFAT activation.  相似文献   

2.
Orai1-dependent Ca2+ entry plays an essential role in inflammatory response through regulating T cell and macrophage activation and neutrophil infiltration. However, whether Orai1 Ca2+ entry contributes to endothelial activation, one of the early steps of vascular inflammation, remains elusive. In the present study, we observed that knockdown of Orai1 reduced, whereas overexpression of Orai1 potentiated, TNFα-induced expression of adhesion molecules such as ICAM-1 and VCAM-1 in HUVECs, and subsequently blocked adhesion of monocyte to HUVECs. In vivo, Orai1 downregulation attenuated TNFα-induced ICAM-1 and VCAM-1 expression in mouse aorta and the levels of pro-inflammatory cytokines in the serum. In addition, Orai1 knockdown also dramatically decreased the expression of pro-inflammatory cytokines and neutrophil infiltration in the lung after TNFα treatment, and thus protected lung tissue injury. Notably, among all isoforms of nuclear factor of activated T cells (NFATs), TNFα only triggered NFATc4 nuclear accumulation in HUVECs. Knockdown of Orai1 or inhibition of calcineurin prevented TNFα-induced NFATc4 nuclear translocation and reduced ICAM-1 and VCAM-1 expression in HUVECs. Overexpression of NFATc4 further enhanced ICAM-1 and VCAM-1 expression induced by TNFα. Our study demonstrates that Orai1-Ca2+-calcineurin-NFATc4 signaling is an essential inflammatory pathway required for TNFα-induced endothelial cell activation and vascular inflammation. Therefore, Orai1 may be a potential therapeutic target for treatment of inflammatory diseases.  相似文献   

3.
4.
Intermedilysin (ILY) is a cholesterol-dependent cytolysin produced by Streptococcus intermedius, which is associated with human brain and liver abscesses. Although intrahepatic bile duct cells play a valuable role in the pathogenesis of liver abscess, the molecular mechanism of ILY-treated intrahepatic bile duct cells remains unknown. In this study, we report that ILY induced a nuclear accumulation of intracellular calcium ([Ca2+]i) in human cholangiocellular cells HuCCT1. We also demonstrate that 10 ng/ml ILY induced NFAT1 dephosphorylation and its nuclear translocation in HuCCT1 cells. In contrast to the result that ILY induced NF-κB translocation in human hepatic HepG2 cells, ILY did not affect NF-κB localization in HuCCT1 cells. Dephosphorylation and nuclear translocation of NFAT1 caused by ILY were prevented by [Ca2+]i calcium chelator, BAPTA/AM, and calcineurin inhibitors, cyclosporine A and tacrolimus. ILY induced early growth response-1 (EGR-1) expression and it was inhibited by the pre-treatment with cyclosporine A, indicating that the calcineurin/NFAT pathway was involved in EGR-1 expression in response to ILY. ILY-induced calcineurin/NFAT1 activation and sequential EGR-1 expression might be related to the pathogenesis of S. intermedius in human bile duct cells.  相似文献   

5.
活化T细胞核因子(nuclear factor of activated T cell,NFAT)作为细胞信号转导中的一类重要因子,最早被认为是一种能结合和上调T细胞中IL-2基因启动子的诱导性核因子,现发现它不仅在免疫系统中发挥功能,在肿瘤发生、发展中也起着关键性作用。近年来,越来越多的研究显示NFAT与人类皮肤疾病的发生、发展密切相关。在多种皮肤疾病患者真表皮成分中,NFAT异常表达,促进T细胞活化、表皮细胞增殖及自身免疫反应的形成,甚至促进肿瘤形成和浸润转移。本文旨在阐述研究发现的NFAT在皮肤疾病中发挥的重要作用,涉及T细胞活化、自身免疫反应形成、肿瘤形成及其浸润转移,以及NFAT在皮肤疾病中作用机制,预测这些研究结果对于皮肤病的治疗有着重要意义。  相似文献   

6.
7.
目的:通过观察NFAT1和TWEAK在正常宫颈鳞状上皮、宫颈鳞状上皮上皮内瘤变、宫颈鳞癌中表达,探讨NFAT1和TWEAK表达情况在宫颈鳞癌发生和临床发展中的意义。方法:研究组织病例为档案病理蜡块,应用免疫组织化学技术检测NFAT1和TWEAK的表达;对宫颈鳞癌进行临床分期,分析NFAT1和Tweak表达与临床分期的相关性。结果:免疫组化结果显示,NFAT1阳性表达率在正常宫颈鳞状上皮、cINI级、CINII级、cINIIl级、鳞癌中分别为24.4%,24.5%,29.2%,72.7%,78.4%,各纽总体阳性表达率存在显著性差异,cINIII级与宫颈鳞癌中NFAT1表达率较宫颈正常上皮,CINI级,CINII级与cINIII级显著增高。TWEAK阳性表达率在正常宫颈鳞状上皮、CINI级、CINII级、cINⅢ级、鳞癌中分别为73.4%,66%,73.1%20.4%,19.6%,各组总体阳性表达率存在显著性差异。宫颈正常,CINI级,CINII级与CINIIIN.较CINⅢ与宫颈鳞癌中TWEAK表达率显著增高。NFATI和TWEAK表达相关性具有统计学意义。结论:NFAT1和TWEAK在正常宫颈上皮、宫颈上皮内瘤变、宫颈鳞癌中的表达存在差异且两者间表达存在相关性,NFAT1表达增加与宫颈鳞癌发生和肿瘤进展有关而TWEAK表达与宫颈癌发生呈负相关。  相似文献   

8.
9.
Since T cell activation is central to the development of autoimmune diseases, we screened a natural product library comprising 1400 samples of medicinal herbal extracts, to identify compounds that suppress T cell activity. Punicalagin (PCG) isolated from the fruit of Punica granatum was identified as a potent immune suppressant, based on its inhibitory action on the activation of the nuclear factor of activated T cells (NFAT). PCG downregulated the mRNA and soluble protein expression of interleukin-2 from anti-CD3/anti-CD28-stimulated murine splenic CD4+ T cells and suppressed mixed leukocytes reaction (MLR) without exhibiting cytotoxicity to the cells. In vivo, the PCG treatment inhibited phorbol 12-myristate 13-acetate (PMA)-induced chronic ear edema in mice and decreased CD3+ T cell infiltration of the inflamed tissue. These results suggest that PCG could be a potential candidate for the therapeutics of various immune pathologies.  相似文献   

10.
The potency of UVA radiation, representing 90% of solar UV light reaching the earth׳s surface, to induce human skin cancer is the subject of continuing controversy. This study was undertaken to investigate the role of reactive oxygen species in DNA damage produced by the exposure of human cells to UVA radiation. This knowledge is important for better understanding of UV-induced carcinogenesis. We measured DNA single-strand breaks and alkali-labile sites in human lymphocytes exposed ex vivo to various doses of 365-nm UV photons compared to X-rays and hydrogen peroxide using the comet assay. We demonstrated that the UVA-induced DNA damage increased in a linear dose-dependent manner. The rate of DNA single-strand breaks and alkali-labile sites after exposure to 1 J/cm2 was similar to the rate induced by exposure to 1 Gy of X-rays or 25 μM hydrogen peroxide. The presence of either the hydroxyl radical scavenger dimethyl sulfoxide or the singlet oxygen quencher sodium azide resulted in a significant reduction in the UVA-induced DNA damage, suggesting a role for these reactive oxygen species in mediating UVA-induced DNA single-strand breaks and alkali-labile sites. We also showed that chromatin relaxation due to hypertonic conditions resulted in increased damage in both untreated and UVA-treated cells. The effect was the most significant in the presence of 0.5 M Na+, implying a role for histone H1. Our data suggest that the majority of DNA single-strand breaks and alkali-labile sites after exposure of human lymphocytes to UVA are produced by reactive oxygen species (the hydroxyl radical and singlet oxygen) and that the state of chromatin may substantially contribute to the outcome of such exposures.  相似文献   

11.
Emerging evidence suggests that plasma membrane calcium ATPases (PMCAs) play a key role as regulators of calcium-triggered signal transduction pathways via interaction with partner proteins. PMCAs regulate these pathways by targeting specific proteins to cellular sub-domains where the levels of intracellular free calcium are kept low by the calcium ejection properties of PMCAs. According to this model, PMCAs have been shown to interact functionally with the calcium-sensitive proteins neuronal nitric oxide synthase, calmodulin-dependent serine protein kinase, calcineurin and endothelial nitric oxidase synthase. Transgenic animals with altered expression of PMCAs are being used to evaluate the physiological significance of these interactions. To date, PMCA interactions with calcium-dependent partner proteins have been demonstrated to play a crucial role in the pathophysiology of the cardiovascular system via regulation of the nitric oxide and calcineurin/nuclear factor of activated T cells pathways. This new evidence suggests that PMCAs play a more sophisticated role than the mere ejection of calcium from the cells, by acting as modulators of signaling transduction pathways.  相似文献   

12.
13.
Tocotrienols have been shown to possess antioxidant, antitumor, cardioprotective, and antiproliferative effects. This report describes novel immunomodulatory effects of tocotrienols in murine lymphocytes. γ-Tocotrienol (GT) was more effective in suppressing concanavalin A (Con A)-induced T cell proliferation and cytokine production compared to α-tocotrienol (AT) when present continuously in the culture. GT inhibited T cell activation markers and costimulatory molecule. GT modulated intracellular glutathione in lymphocytes, and the suppressive effects of GT could not be abrogated by thiol or nonthiol antioxidants, indicating a poor link between anti-inflammatory properties of tocotrienols and cellular redox status. It was also observed that GT suppressed Con A-induced activation of NF-κB, AP-1, and NF-κB-dependent gene expression. Cellular uptake studies with tocotrienols showed higher accumulation of GT compared to AT. Similar immunosuppressive effects of GT were also observed when administered to mice. In contrast, transient exposure of lymphocytes to GT (4 h) resulted in higher survival and proliferation of lymphocytes in vitro and in vivo in syngeneic and allogeneic hosts. This was attributed to the ability of GT to induce NF-κB, AP-1, and mTOR activation in lymphocytes upon transient exposure. Our results demonstrated that antioxidants such as tocotrienols may exhibit pleiotropic effects by activating multiple mechanisms in cells.  相似文献   

14.
The airway epithelium is exposed to a range of irritants in the environment that are known to trigger inflammatory response such as asthma. Transient receptor potential vanilloid 1 (TRPV1) is a Ca2+-permeable cation channel critical for detecting noxious stimuli by sensory neurons. Recently increasing evidence suggests TRPV1 is also crucially involved in the pathophysiology of asthma on airway epithelium in human. Here we report that in airway epithelial cells TRPV1 activation potently induces allergic cytokine thymic stromal lymphopoietin (TSLP) release. TSLP induction by protease-activated receptor (PAR)-2 activation is also partially mediated by TRPV1 channels.  相似文献   

15.
(–)-Epigallocatechin-3-gallate (EGCG) has been reported to possess a wide range of biological and pharmacological properties. In this study, we investigated the effects of EGCG on IL-13 gene expression in human basophilic KU812 cells. The IL-13 mRNA expression level was dose-dependently increased by treatment with EGCG (5–20 μM) for 1 h and additional incubation in a medium for 23 h. EGCG significantly increased the intracellular peroxide level as detected by the peroxide-sensitive probe 2′,7′-dichlorodihydrofluorescein diacetate. A pharmacological experiment using catalase and a structure–activity relationship study revealed that the exogenously produced H2O2 significantly, but partially, contributed to the IL-13 expression as well as the intracellular oxidative status. Furthermore, EGCG at the concentration required for IL-13 up-regulation activated c-Jun NH2-terminal kinase (JNK), but not extracellular signal-regulated protein kinase or p38 mitogen-activated protein kinase in KU812 cells. Transfection of a JNK-specific siRNA as well as treatment with a JNK-specific inhibitor, SP600125, significantly reduced the EGCG-induced IL-13 mRNA expression, by 47.1 and 44.6%, respectively. In addition, we observed the nuclear translocation, mRNA up-regulation, and activation of DNA binding with the IL-13 promoter of nuclear factor of activated T cells (NFATc1) in the EGCG-treated cells. These data provide biological evidence that EGCG induces IL-13 mRNA expression via the JNK-dependent NFATc1 pathway in KU812 cells.  相似文献   

16.
17.
Radiation-induced bystander effects are various types of responses displayed by nonirradiated cells induced by signals transmitted from neighboring irradiated cells. This phenomenon has been well studied after ionizing radiation, but data on bystander effects after UV radiation are limited and so far have been reported mainly after UVA and UVB radiation. The studies described here were aimed at comparing the responses of human dermal fibroblasts exposed directly to UV (A, B, or C wavelength range) and searching for bystander effects induced in unexposed cells using a transwell co-incubation system. Cell survival and apoptosis were used as a measure of radiation effects. Additionally, induction of senescence in UV-exposed and bystander cells was evaluated. Reactive oxygen species (ROS), superoxide radical anions, and nitric oxide inside the cells and secretion of interleukins 6 and 8 (IL-6 and IL-8) into the medium were assayed and evaluated as potential mediators of bystander effects. All three regions of ultraviolet radiation induced bystander effects in unexposed cells, as shown by a diminution of survival and an increase in apoptosis, but the pattern of response to direct exposure and the bystander effects differed depending on the UV spectrum. Although UVA and UVB were more effective than UVC in generation of apoptosis in bystander cells, UVC induced senescence both in irradiated cells and in neighbors. The level of cellular ROS increased significantly shortly after UVA and UVB exposure, suggesting that the bystander effects may be mediated by ROS generated in cells by UV radiation. Interestingly, UVC was more effective at generation of ROS in bystanders than in directly exposed cells and induced a high yield of superoxide in exposed and bystander cells, which, however, was only weakly associated with impairment of mitochondrial membrane potential. Increasing concentration of IL-6 but not IL-8 after exposure to each of the three bands of UV points to its role as a mediator in the bystander effect. Nitric oxide appeared to play a minor role as a mediator of bystander effects in our experiments. The results demonstrating an increase in intracellular oxidation, not only in directly UV-exposed but also in neighboring cells, and generation of proinflammatory cytokines, processes entailing cell damage (decreased viability, apoptosis, senescence), suggest that all bands of UV radiation carry a potential hazard for human health, not only due to direct mechanisms, but also due to bystander effects.  相似文献   

18.
19.
Linoleates are required for normal mammalian health and development, but they are also prone to oxidation, resulting in biologically active metabolites such as hydroxyoctadecadienoic acids (HODEs). To investigate the biological activity of 9-EZ-HODE, 10-EZ-HODE, 12-ZE-HODE, and 13-ZE-HODE, the metabolites of singlet-oxygen-derived products from linoleates, we assessed adaptive cytoprotection in HaCaT skin cells. Treating HaCaT cells with sublethal concentrations of 10-EZ-HODE and 12-ZE-HODE, which are singlet-oxygen-mediated specific oxidation metabolites of linoleates, but not 9-EZ-HODE and 13-ZE-HODE, caused resistance to hydrogen peroxide-induced oxidative damage. Microarray analysis of HaCaT cells revealed that 10-EZ-HODE and 12-ZE-HODE induced cellular antioxidant genes that are responsive to nuclear factor-erythroid 2 p45-related factor 2 (Nrf2), such as heme oxygenase-1 and glutathione synthesis enzymes. Although 10-EZ-HODE and 12-ZE-HODE did not induce Nrf2 mRNA, treatment with these metabolites increased the intranuclear expression of Nrf2. These results suggest that 10-EZ-HODE and 12-ZE-HODE initiate adaptive responses that reduce the damage caused by oxidative stress.  相似文献   

20.
Podocyte injury is sufficient to cause glomerulosclerosis and proteinuria, eventually leading to kidney failure. Previous studies found that podocytes and neurons had similar biological characteristics. Growth-associated protein-43 (GAP-43) is a growth cone protein in neurons, and a marker of axonal and synaptic growth. However, it is not known whether GAP-43 is expressed in podocytes. Compared with normal glomerular podocytes, GAP-43 was significantly reduced in patients with glomerular diseases. GAP-43 also significantly reduced in lipopolysaccharide (LPS)-treated podocytes. We found that the decreased expression of nephrin, the cell marker of the podocyte, was significantly recovered with GAP-43 overexpression. In contrast, the migration ability in LPS-treated podocyte was reduction after GAP-43 overexpressing. Moreover, overexpression of GAP-43 attenuated podocyte apoptosis by up-regulating the ratio of Bcl-2/Bax with LPS treatment. Finally, Plaue and Rcan1 which are downstream target gene of NFATc1 decreased with overexpression of GAP-43 podocytes. We concluded that GAP-43 attenuated podocyte injury by inhibiting calcineurin/NFATc1 signaling. The findings may provide a promising treatment for podocyte injury-related diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号