首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Summary Cauliflower protoplasts were fused to determine the effect of protoplast source and pretreatment on organellar segregation in fusion products. Mitochondrial and chloroplast type were determined for over 250 calli from eight fusions between iodoacetate-treated or -irradiated leaf or hypocotyl protoplasts with fertile or Ogura cytoplasms. Organelles in fusion-derived calli were identified with five mitochondrial probes and one chloroplast probe. Mitochondrial and chloroplast segregation were independent but biased. Most calli had B. oleracea chloroplasts, but more calli had Ogura mitochondria than B. oleracea ones. Neither protoplast source nor pretreatment alone affected organelle segregation. However, iodoacetate treatment of hypocotyl protoplasts reduced their mitochondrial contribution to the fusion products although it did not affect chloroplast segregation. Over half of the calli had mitochondrial genomes distinct from those of either fusion partner; many of these contained the complete mitochondrial genome of one partner along with some mitochondrial DNA from the other. Out of 258 calli, 83 showed evidence of mitochondrial recombination, most commonly by formation of a novel 11-kb PstI fragment near the atp9 region.  相似文献   

2.
Twenty-one cold-tolerant, male sterile Brassica napus somatic hybrids were produced by protoplast fusion. The fusion partners were a coldsensitive, Ogura cytoplasmic male sterile cauliflower inbred (B. oleracea var. botrytis inbred NY7642A) and a cold-tolerant, fertile canola-type B. rapa cv. Candle. Hybridity was confirmed by morphology, isozyme expression, flow cytometry, and DNA hybridization. Organellar analyses revealed a very strong bias for Brassica over Raphanus chloroplasts. Cold tolerance was confirmed by cold chamber studies and chloroplast DNA analyses. Good female fertility with 21.4 ± 3.1 seeds/pod was observed in the field using natural pollination vectors. Total seed yield was significantly greater for the atrazine-sensitive somatic hybrids produced in this study than for atrazine-resistant isolines.Abbreviations CMS cytoplasmic male sterility - IA iodoacetate - cpDNA chloroplast DNA  相似文献   

3.
Summary Fusion of leaf protoplasts from an inbred line of Brassica oleracea ssp. botrytis (cauliflower, n=9) carrying the Ogura (R1) male sterile cytoplasm with hypocotyl protoplasts of B. campestris ssp. oleifera (cv Candle, n=10) carrying an atrazine-resistant (ATR) cytoplasm resulted in the production of synthetic B. napus (n=19). Thirty-four somatic hybrids were produced; they were characterized for morphology, phosphoglucose isomerase isoenzymes, ribosomal DNA hybridization patterns, chromosome numbers, and organelle composition. All somatic hybrids carried atrazine-resistant chloroplasts derived from B. campestris. The mitochondrial genomes in 19 hybrids were examined by restriction endonuclease and Southern blot analyses. Twelve of the 19 hybrids contained mitochondria showing novel DNA restriction patterns; of these 12 hybrids, 5 were male sterile and 7 were male fertile. The remaining hybrids contained mitochondrial DNA that was identical to that of the ATR parent and all were male fertile.  相似文献   

4.
Nearly 1000 plants have been regenerated from leaf protoplasts of two cauliflower (Brassica oleracea ssp.botrytis) alloplasmic inbred lines. One line (7642A) carried the Ogura (R1) cms cytoplasm derived from radish; the other line (7642B) carried a normalBrassica cytoplasm and was the fertile maintainer for the cms line. The majority of regenerated plants displayed normal vegetative morphology; they formed normal cauliflower heads and retained the floral characteristics of seed-grown plants from which they were derived. We found no change in either male sterility or in the low temperature-induced chlorosis associated with the 7642A line. Mitochondrial DNA analysis by hybridization with five cloned mtDNA probes revealed no apparent alteration in 75 regenerated plants of both lines. These results indicate that cytoplasmic traits inBrassica oleracea are stable after one cycle of in vitro culture and regeneration.  相似文献   

5.
Summary Cytoplasts isolated from hypocotyl protoplasts of Raphanus sativus cv Kosena (cms line) by ultracentrifugation through Percoll/mannitol discontinuous gradient were fused with iodoacetamide(IOA)-treated protoplasts of Brassica napus cv Westar. Seventeen randomly selected regenerated plants were characterized for morphology and chromosome numbers. All of the regenerated plants had morphology identical to B. napus and 10 of them possessed the diploid chromosome number of B. napus. The remaining plants had chimeric or aneuploid chromosome numbers. The mitochondrial genomes in the 10 fusion products possessing the diploid chromosome numbers of B. napus were examined by Southern hybridization analysis. Four of the 10 plants contained mitochondrial DNA showing novel hybridization patterns. Of these 4 plants, 1 was male sterile, and 3 were male fertile. The remaining plants showed mitochondrial DNA patterns identical to B. napus and were male fertile.  相似文献   

6.
Menczel  Laszlo  Morgan  Alison  Brown  Stacey  Maliga  Pal 《Plant cell reports》1987,6(2):98-101
X-irradiated protoplasts of a Brassica napus line carrying the Ogura Raphanus sativus male sterile cytoplasm were fused to protoplasts of male fertile B. napus cv. Olga. Plants were regenerated from six out of 34 randomly selected clones. In one clone, Bn(RS)26, a plant with male sterile flowers was obtained. Mitochondria of this plant are non-parental as revealed by DNA-DNA hybridization using a species specific probe. Its chloroplasts, however, derive from the fertile parent which results in loss of the sensitivity to low temperatures associated with R. sativus plastids in the male sterile parent. The novel cytoplasm of the Bn(RS)26 cybrid was transmitted through seed.Abbreviations CMS cytoplasmic male sterile - PEG polyethylene glycol - mtDNA mitochondrial DNA - cpDNA chloroplast DNA  相似文献   

7.
New types of cytoplasmic male sterility (CMS) in Brassica oleracea would be useful for F1 hybrid seed production. The `Anand' cytoplasm derives from the wild species B. tournefortii. Rapid cycling stocks of B. rapa and B. oleracea were used in cybridization experiments as donor and recipient of `Anand' (=`tour') CMS, respectively. Prior to fusion with PEG, donor protoplasts were inactivated with 30 krad γ-rays and recipient ones with 3 mM iodoacetate, respectively. No calli were obtained from the pre-treated protoplasts. The frequency of shoot regeneration was 21–43% in untreated B. oleracea controls, but only 0–0.5% in `Anand' B. rapa. Putative cybrids were regenerated from about 3% of the calli from fused protoplasts. Regenerated plants were analyzed for nuclear DNA content, plant and flower morphology, pollen production, female fertility, cold tolerance, and organelle composition. Eighty-one percent of the regenerated controls and 63% of fusion-derived plants were diploid. The rest showed DNA contents corresponding to 2x–4x, 4x, or higher ploidy levels, presumably due to somatic doubling in vitro and/or fusions in which the donor nucleus was not completely eliminated. Sixty-four percent of the cybrids had stamens and petals varying in size and shape and were male-sterile, with indehiscent anthers. Their phenotype was otherwise similar to that of B. oleracea. The remaining plants had normal flowers and were male-fertile. Data from crosses with fertile pollinators indicated good female fertility in some of the sterile lines, both after hand and insect pollinations in cages. Mitochondrial (mt) segregation in the cybrids was slightly biased towards `Anand' mitochondria, and the presence of `Anand' mtDNA fragments was strongly associated with male sterility. Evidence of mtDNA rearrangements was obtained in some cybrids. Segregation of chloroplasts was slightly biased towards B. oleracea. The presence of `Anand' chloroplasts with a B. oleracea nucleus did not result in cold temperature chlorosis, as seen in `Ogura' CMS plants. Received: 22 February 1996 / Accepted: 10 May 1996  相似文献   

8.
Summary Brassica cybrids were obtained after fusing protoplasts of fertile and cytoplasmic male sterile (CMS) B. napus lines carrying the original b. napus, and the Ogura Raphanus sativus cytoplasms, respectively. Iodoacetate treatment of the fertile line and X-irradiation of the CMS line prevented colony formation from the parental protoplasts. Colony formation, however, was obtained after protoplast fusion. Hybrid cytoplasm formation was studied in 0.5 g to 5.0 g calli grown from a fused protoplast after an estimated 19 to 22 cell divisions. Chloroplasts and mitochondria were identified in the calli by hybridizing appropriate DNA probes to total cellular DNA. Out of the 42 clones studied 37 were confirmed as cybrids. Chloroplast segregation was complete at the time of the study. Chloroplasts in all of the cybrid clones were found to derive from the fertile parent. Mitochondrial DNA (mtDNA) segregation was complete in some but not all of the clones. In the cybrids, mtDNA was different from the parental plants. Physical mapping revealed recombination in a region which is not normally involved in the formation of subgenomic mtDNA circles. The role of treatments used to facilitate the recovery of cybrids, and of organelle compatibility in hybrid cytoplasm formation is discussed.  相似文献   

9.
Summary Broccoli (Brassica oleracea L. italica) hypocotyl protoplasts were fused with mesophyll protoplasts of two B. napus lines, one carrying the Ogura (ogu) cms cytoplasm, and the other carrying a hybrid cytoplasm consisting of ogu mitochondria combined with triazine-tolerance-conferring chloroplasts from ctr cytoplasm. Two male-sterile somatic hybrids were recovered from the fusion of broccoli protoplasts with those of ogu/ctr cybrid B. napus. The ogu mtDNAs and ctr cpDNAs were not altered in these hybrids. Four male-sterile plants were recovered from the somatic hybridization of broccoli with ogu cms B. napus. Three of these possessed mitochondrial genomes that appeared to have resulted from recombination between the ogu and normal B. oleracea (ole) mtDNAs, while the fourth possessed an unrearranged ogu mtDNA. All four of these plants had B. oleracea cpDNA, and none displayed the seedling chlorosis associated with ogu chloroplasts. Most of the plants recovered from these fusions had the chromosome number expected of B. oleracea + B. napus hybrids (2n = 56). The novel cytoplasms may prove to be useful for the molecular analysis of Brassica cms and for the production of hybrid Brassica.  相似文献   

10.
Cold tolerant cytoplasmic male-sterile (CMS) cabbage (Brassica oleracea var. capitata) was produced by the fusion of leaf protoplasts from fertile cabbage and cold-tolerant Ogura CMS broccoli lines. The cabbage lines tested showed great variation in plant regeneration from unfused protoplasts; three with high regenerability were selected as the fusion partners. Several procedures for eliminating the nuclear DNA of the broccoli fusion partner were tested. Diploid cabbage plants were identified by flow cytometry and morphological characters. Gamma-irradiation (30 krad) was the most successful procedure; isolation of cytoplasts from broccoli leaf protoplasts, followed by gamma-irradiation of the cytoplast fraction, also produced diploids. UV-irradiation of the broccoli protoplasts was less effective. PCR using primers for an Ogura CMS-specific mitochondrial DNA sequence permitted the identification of cybrids likely to be CMS. Over 200 diploid plants with the CMS-specific sequence were obtained from 66 independent fusion products and three cabbage lines. Plants were ready for transfer into soil within 8 months after fusion. The plants identified as CMS by PCR produced male-sterile flowers. Our procedures permit the transfer of a desirable male-sterile cytoplasm into cabbage much more rapidly than conventional backcrossing procedures. Received: 4 June 1996 / Accepted: 2 August 1996  相似文献   

11.
Summary An efficient procedure for obtaining somatic hybrids between B. oleracea and B. campestris has been developed. Hypocotyl protoplasts of B. oleracea were fused with mesophyll protoplasts from three different varieties of B. campestris by the polyethylene glycoldimethylsulfoxide method. The selection of somatic hybrids utilized the inactivation of B. oleracea protoplasts by iodoacetamide (IOA) and the low regeneration ability of B. campestris. The efficiency of recovery of somatic hybrids depended upon the IOA concentration, and when 15 mM IOA was used, 90% of the regenerated plants were found to be hybrid. The somatic hybrids were examined for i) leaf morphology, ii) leucine aminopeptidase (LAP) isozyme and iii) chromosome number. All the hybrids had intermediate leaf morphology and possessed LAP isozymes of both parental species. The chromosome analysis revealed a considerable variation in chromosome number of somatic hybrids, showing the occurrence of multiple fusion and chromosome loss during the culture. Some of the hybrids flowered and set seeds.  相似文献   

12.
Summary An atrazine-resistant, male-fertile Brassica napus plant was synthesized by fusion of protoplasts from the diploid species B. oleracea and B. campestris. Leaf protoplasts from B. oleracea var. italica carrying the Ogura male-sterile cytoplasm derived from Raphanus sativus were fused with etiolated hypocotyl protoplasts of atrazine-resistant B. campestris. The selection procedure was based on the inability of B. campestris protoplasts to regenerate in the media used, and the reduction of light-induced growth of B. oleracea tissue by atrazine. A somatic hybrid plant that differed in morphology from both B. oleracea and B. campestris was regenerated on medium containing 50 M atrazine. Its chromosome number was 36–38, approximately that of B. napus. Furthermore, nuclear ribosomal DNA from this hybrid was a mixture of both parental rDNAs. Southern blot analyses of chloroplast DNA and an assay involving tetrazolium blue indicated that the hybrid contained atrazine-resistant B. campestris chloroplasts. The hybrid's mitochondrial genome was recombinant, containing fragments unique to each parent, as well as novel fragments carrying putative crossover points. Although the plant was female-sterile, it was successfully used to pollinate B. napus.  相似文献   

13.
Summary Restoration of male fertility was achieved by fusing protoplasts from male sterile (CMS) Nicotiana sylvestris plants with X-irradiated protoplasts derived from fertile N. tabacum plants. The CMS N. sylvestris plants were derived from a previous somatic hybridization experiment and contained alien (Line 92) cytoplasm. About one quarter of the regenerated plants were found to be cybrids. i.e. they consisted of N. sylvestris nuclei combined with all or some components of N. tabacum cytoplasm. In one half of these cybrids male fertility was restored to different levels. The chloroplasts of the two parental donors differ in respect to tentoxin sensitivity: chloroplasts of CMS N. sylvestris are sensitive while those of N. tabacum are insensitive. It could therefore be demonstrated that there was an independent segregation of chloroplast type and male fertility/sterility: several somatic cybrids were male fertile but tentoxin sensitive and others were tentoxin insensitive yet they were male sterile. Only in about one half of the somatic cybrids was male fertility restored together with restoration to tentoxin insensitivity.  相似文献   

14.
Summary X-irradiated protoplasts of Daucus carota L., 28A1, carrying cytoplasmic male sterile (CMS) cytoplasm and iodoacetamide-treated protoplasts of a fertile carrot cultivar, K5, were fused with polyethylene glycol (PEG), and 73 plants were regenerated. Twenty-six randomly chosen regenerated plants had non-parental mitochondrial DNA (mtDNA) as revealed by XbaI restriction fragment patterns, and all of the plants investigated had diploid chromosome numbers. Of the 11 cybrid plants that showed mtDNA fragment patterns clearly different from those of the parents, 10 plants showed male sterility with brown or red anthers, and one plant possessed partially sterile yellow anthers. The mtDNA fragment patterns of the ten cybrid plants with male sterile flowers resembled that of a CMS parent, 28A1; and four fragments were identified that were common between the sterile cybrid plants and 28A1, but absent from the partially sterile cybrid plants and a fertile cultivar, K5. The results indicated that the CMS trait of the donor was efficiently transferred into the cybrid plants by donor-recipient protoplast fusion.  相似文献   

15.
Summary The goal in this experiment was to achieve direct plasmon transfer via cell fusion. Two lines were used — a normal fertile line of P. hybrida, and a cytoplasmic male sterile (cms) line with the nuclear background of P. parodii. Two plants phenotypically similar to the original male sterile line were developed from protoplasts, but instead of being cms they were male fertile. On the other hand, two plants typical of the original normal line developed from protoplasts, but they were cms instead of fertile. Chromosome counts were done and in all cases the expected diploid number (=14) was found. Genetic analysis showed that sorting out of cms and fertile segregants was evident in the first and second backcross of the cms cybrids. The fertile type cybrids were stable fertile for several generations of selfing and proper backcrossing. These results are discussed in the light of an earlier fusion experiment in which these two parental lines were involved.Contribution from the Department of Plant Genetics and Breeding, Agricultural Research Organization, The Volcani Center, Bet Dagan, Israel. No. 991-E, 1984 series  相似文献   

16.
Summary Somatic hybridization between Brassica oleracea ssp. botrytis (cauliflower, 2n=18), carrying the Ogura (R1) male-sterile cytoplasm and B. napus (2n= 38), carrying a male-fertile, atrazine-resistant (ATR) cytoplasm, yielded three hybrids (2n=56) and six cauliflower cybrids (2n=18), which were selected for resistance to the herbicide in vitro. The hybrids and cybrids were male fertile and self-compatible. They contained both chloroplasts and mitochondria from the ATR cytoplasm. We found no evidence for mtDNA recombination in any of the regenerated plants. Selfed progeny of the B. oleracea atrazine-resistant cybrids were evaluated for tolerance to the herbicide in the field. Resistant plants exposed to 0.56–4.48 kg/ha (0.5–4.0 pounds/acre) atrazine in the soil showed no damage at any herbicide level, whereas plants of a susceptible alloplasmic line were severely damaged at the lowest level of herbicide application and killed at all higher levels. These atrazine-resistant cauliflower may have potential horticultural use, especially in fields where atrazine carry over is a serious problem.  相似文献   

17.
Intertribal Brassica napus (+) Lesquerella fendleri hybrids have been produced by polyethylene glycol-induced fusions of B. napus hypocotyl and L. fendleri mesophyll protoplasts. Two series of experiments were performed. In the first, symmetric fusion experiments, protoplasts from the two materials were fused without any pretreatments. In the second, asymmetric fusion experiments, X-ray irradiation at doses of 180 and 200 Gy were used to limit the transfer of the L. fendleri genome to the hybrids. X-ray irradiation of L. fendleri mesophyll protoplasts did not suppress the proliferation rate and callus formation of the fusion products but did significantly decrease growth and differentiation of non-fused L. fendleri protoplasts. In total, 128 regenerated plants were identified as intertribal somatic hybrids on the basis of morphological criteria. Nuclear DNA analysis performed on 80 plants, using species specific sequences, demonstrated that 33 plants from the symmetric fusions and 43 plants from the asymmetric fusions were hybrids. Chloroplast and mitochondrial DNA analysis revealed a biased segregation that favoured B. napus organelles in the hybrids from the symmetric fusion experiments. The bias was even stronger in the hybrids from the asymmetric fusion experiments where no hybrids with L. fendleri organelles were found. X-ray irradiation of L. fendleri protoplasts increased the possibility of obtaining mature somatic hybrid plants with improved fertility. Five plants from the symmetric and 24 plants from the asymmetric fusion experiments were established in the greenhouse. From the symmetric fusions 2 plants could be fertilised and set seeds after cross-pollination with B. napus. From the asymmetric fusions 9 plants could be selfed as well as fertilised when backcrossed with B. napus. Chromosome analysis was performed on all of the plants but 1 that were transferred to the greenhouse. Three plants from the symmetric fusions contained 50 chromosomes, which corresponded to the sum of the parental genomes. From the asymmetric fusions, 11 hybrids contained 38 chromosomes. Among the other asymmetric hybrids, plants with 50 chromosomes and with chromosome numbers higher than the sum of the parental chromosomes were found. When different root squashes of the same plant were analysed, a total of 6 plants were found that had different chromosome numbers.  相似文献   

18.
Summary To examine the possibility of producing asymmetric somatic hybrids of Brassica having a complete genome of one species and a part of the other, we fused inactivated B. oleracea protoplasts with X-irradiated B. campestris protoplasts. The plants obtained were studied with regard to their morphology, isozymes and chromosomes. The morphology of the hybrids was similar to B. oleracea in 9 out of 22 hybrids studied and the rest showed the intermediate phenotype of the parents. Analysis of three isozymes, leucine aminopeptidase, acid phosphatase and esterase indicated that ten hybrids lost B. campestris-specific bands in one or more of the three isozymes examined. The chromosome analysis showed that 90% of the hybrids were aneuploids. In addition, abnormal chromosomes were often found in root tip cells. These results suggested that the hybrids obtained were asymmetric in nature and resulted from elimination of B. campestris chromosomes by X-ray irradiation.  相似文献   

19.
Zhao ZG  Hu TT  Ge XH  Du XZ  Ding L  Li ZY 《Plant cell reports》2008,27(10):1611-1621
Alien chromosome addition lines have been widely used for identifying gene linkage groups, assigning species-specific characters to a particular chromosome and comparing gene synteny between related species. In plant breeding, their utilization lies in introgressing characters of agronomic value. The present investigation reports the production of intergeneric somatic hybrids Brassica napus (2= 38) + Orychophragmus violaceus (2= 24) through asymmetric fusions of mesophyll protoplasts and subsequent development of B. napus-O. violaceous chromosome addition lines. Somatic hybrids showed variations in morphology and fertility and were mixoploids (2= 51–67) with a range of 19–28 O. violaceus chromosomes identified by genomic in situ hybridization (GISH). After pollinated with B. napus parent and following embryo rescue, 20 BC1 plants were obtained from one hybrid. These exhibited typical serrated leaves of O. violaceus or B. napus-type leaves. All BC1 plants were partially male fertile but female sterile because of abnormal ovules. These were mixoploids (2= 41–54) with 9–16 chromosomes from O. violaceus. BC2 plants showed segregations for female fertility, leaf shape and still some chromosome variation (2= 39–43) with 2–5 O. violaceus chromosomes, but mainly containing the whole complement from B. napus. Among the selfed progenies of BC2 plants, monosomic addition lines (2= 39, AACC + 1O) with or without the serrated leaves of O. violaceus or female sterility were established. The complete set of additions is expected from this investigation. In addition, O. violaceus plants at diploid and tetraploid levels with some variations in morphology and chromosome numbers were regenerated from the pretreated protoplasts by iodoacetate and UV-irradiation. Z. Zhao and T. Hu make equal contributions to this work.  相似文献   

20.
To establish a cytoplasmic male-sterile/restored fertility (cms-Rf) system for F1 seed production in Brassica napus, we transferred a gene from fertillity restored radish to B. napus by protoplast fusion. X-irradiated protoplasts, isolated from shoots of Raphanus sativus cv Kosena (Rf line), were fused with iodoacetamide-treated protoplasts of a B. napus cms cybrid. Among 300 regenerated plants, six were male-fertile. The fertile plants were characterized for petal color, chromosome number and the percentage of viable pollen grains. Three fertile plants had aneuploid chromosome numbers and white or cream petals, which is a dominant marker in radish. Of these three plants, one which had 2n = 47 chromosomes and white petals was used for further backcrosses. After two backcrosses, chromosome number and petal color became identical to that of B. napus. No female sterility was observed in the BC3 generations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号