首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
5 alpha-Dihydrotestosterone (DHT) metabolism into 5 alpha-androstane-3 alpha, 17 beta-diol (alpha-diol) and 5 alpha-androstane-3 beta, 17 beta-diol (beta-diol) was studied in monolayer cultures of distinct cell populations from prepubertal male rats pituitaries. Cells were characterized through immunocytochemistry with the various antihormone antisera. Centrifugal elutriation was used to prepare a gonadotrope-enriched population "G" and a gonadotrope-depleted population "L", containing most lactotropes and somatotropes. Using centrifugation on Percoll gradient, two sub-populations, P1 and P2, were prepared by further fractionation of the "L" population. Cells were incubated for 48 h with [3H]DHT (1 microM, sp. act. 0.9 Ci/mmol) and metabolites extracted from the whole cell and medium. DHT was metabolized to about the same extent (30-40%) in all cell fractions. Compared with unfractionated population, the conversion of DHT into alpha-diol increased significantly in the P1 fraction, consisting of lactotropes, somatotropes and highly depleted in gonadotropes. This increase was lower in the somatotrope-enriched P2 fraction in which the amount of lactotropes was similar to P1 but that of gonadotropes slightly higher. In contrast, the conversion of DHT into alpha-diol decreased significantly in the "G" population compared with total or "L" fractions, whereas androstanedione formation, low in every population, increased significantly. The increase in alpha-diol formation could be related either to the decrease of gonadotropes or to a role of non-immunoreactive cells. As the beta-diol formation was constant in all cell types, the beta-diol/alpha-diol amount increased significantly in gonadotropes. Then, beta-diol and DHT could be both active steroids in gonadotrope regulation inasmuch as specific binding sites were identified for these two steroids. It can be concluded that DHT action at the pituitary level is subject to complex control mechanisms involving a specific balance of its metabolites in each particular cell type.  相似文献   

2.
Rat ventral prostate and liver were investigated for the binding in vitro to particulate fractions and for the metabolism of 5 alpha-androstane-3 beta, 17 beta-diol. Comparative investigations were carried out on the metabolism of 5 alpha-androstane-3 alpha, 17 beta-diol. Preparations of the liver were investigated in order to establish the organ specificity of the method. In the prostate, the bulk of the metabolites of 5 alpha-androstane-3 beta, 17 beta-diol was present as steroids of high polarity. Of the less polar metabolites, 17 beta-hydroxy-5 alpha-androstan-3-one, 3 beta-hydroxy-5 alpha-androstan, 17-one and 5 alpha-androstane-3 alpha, 17 beta-diol were detectable. The binding of a 5 alpha-androstane-3 beta, 17 beta-diol to mitochondria and microsomes was unspecific. In the liver, among the less polar metabolites, 3 beta-hydroxy-5 alpha-androstan-17-one was the main metabolite, and the binding was unspecific. The main metabolite in the prostate homogenate of 5 alpha-androstane-3 alpha, 17 beta-diol was 17 beta-hydroxy-5 alpha-androstan-3-one. The portion of highly polar steroids was very low. The portion of unmetabolized hormone was distributed almost equally among the different cell preparations except the nuclei, in which 17 beta-hydroxy-5 alpha-androstan-3-one was higher and 5 alpha-androstane-3 alpha, 17 beta-diol was lower than in the remaining cell fractions.  相似文献   

3.
In the male rat pituitary, 5alpha-androstane-3beta, 17beta-diol (3beta-diol) is extensively metabolized into polar steroids. They were identified as 5alpha-androstane-3beta, 6alpha-17beta-triol (6alpha-triol) and 5alpha-androstane-3beta, 7alpha, 17beta-triol (7alpha-triol). 6-alpha-Triol represents 53% and 7alpha-Triol 28% of the total 3beta-diol metabolites. The remaining percentage is related to 6beta and 7beta isomers. The biological role of triols is still unknown.  相似文献   

4.
Radiolabelled methyltrienolone, dihydrotestosterone and estradiol were used as ligands to identify and quantify androgen and estrogen receptors in freshly dispersed cells from the canine prostate. Soluble extracts (cytosols) were obtained from secretory and non-secretory epithelial cells separated on the basis of their density in Percoll gradients. For both cell types, as well as for the whole prostate, Scatchard plot analyses were linear and showed a single class of high affinity binding sites: Kd values of 3.6 +/- 2.2 X 10(-9) M and 3.0 +/- 1.2 X 10(-10) M were measured for the androgen and estrogen receptors, respectively. The number of binding sites for the cytosolic androgen receptor, expressed per mg of protein or per mg of DNA, was 2.4- to 6.7-fold higher in the non-secretory cells compared to the secretory cells. However, these two cell types contained a similar number of specific sites for the estrogens. The specificities of the androgen and estrogen receptors were shown to be identical for the two cell types: the binding of [3H]R1881 was strongly inhibited by unlabelled R1881, 5 alpha-androstane-3 alpha, 17 beta-diol and dihydrotestosterone, while 5 alpha-androstane-3 beta, 17 beta-diol, estradiol and estrone did not displace bound R1881. The addition of triamcinolone acetonide did not alter the binding of R1881 in extracts of either cell type or in the whole prostate. The binding of [3H]estradiol to the estrogen receptor was highly specific since a strong displacement was only observed with estradiol (83%).  相似文献   

5.
A gas chromatographic-mass spectrometric (GC-MS) method for analysis of unconjugated steroids in a rat testis is described. A combined solvent-solid extraction procedure, utilizing Lipidex 1000 and Sep-Pak C18, gives a 25-fold purified extract. Steroids in this extract are fractionated by straight phase high-performance liquid chromatography (HPLC) on a LiChrosorb DIOL column in n-hexane-2-propanol, 92:8 (v/v). Four fractions are collected and the steroids are converted to tert-butyldimethylsilyl (TBDMS), 3-enol-TBDMS, and mixed TBDMS-trimethylsilyl (TMS) derivatives using TBDMS- and TMS-imidazole with sodium formate as catalyst under conditions suitable for the steroids present in the respective fractions. The derivatives are purified by reversed phase HPLC in 100% methanol and are analyzed by GC-MS, using selected ion monitoring of the major ions of high mass. For quantification, a mixture of known amounts of ten 14C-labelled steroids, [3H]estradiol and [2H3]estradiol are added to the testis homogenate. The mean concentrations (ng/g wet wt) of the twelve steroids determined were: 4-androstene-3, 17-dione, 4.0; testosterone, 127; 17 beta-hydroxy-5 alpha-androstan-3-one, 4.5; 5 alpha-androstane-3 alpha, 17 beta-diol, 5.7; 5 alpha-androstane-3 beta, 17 beta-diol, 1.5; progesterone, 5.5; 17 alpha-hydroxyprogesterone, 14.4; 3 beta-hydroxy-5-androsten-17-one, 0.07; 5-androstene-3 beta, 17 beta-diol, 0.25; 3 beta-hydroxy-5-pregnen-20-one, 10.3; 3 beta, 17 beta-dihydroxy-5-pregnen-20-one, 0.95; and estradiol, 0.025. Variations between animals were large whereas testes from the same animal in most cases had similar steroid concentrations.  相似文献   

6.
M Matsui  Y Kinuyama  M Hakozaki 《Steroids》1975,25(5):637-648
Following intraperitoneal injection of a mixture of testosterone-7-3-H-17-sulfate and testosterone-4-14-C into male and female rats with bile fistulas, biliary metabolites were separated and purified by a combination of column chromatography, enzymic hydrolysis or solvolysis of the conjugate fractions and identification of the liberated aglycones. The injected steroids were extensively metabolized and excreted predominantly in the bile. The major portion of the 3H was excreted in the disulfate fraction in both sexes. Solvolysis of the disulfate revealed the sex-specific aglycone pattern: 5alpha-Androstane-3beta,17beta-diol was the major metabolite in the male rat, whereas 5alpha-androstane-3alpha,17beta-diol and polar steroids were found in the female. In marked contrast, testosterone was metabolized in a different way than testosterone sulfate. 14-C radioactivity was distributed in monoglucosiduronate, monosulfate, and diconjugate fractions. Analysis of the aglycones showed that polar steroids were the main metabolites in the male. In the female, testosterone was metabolized to polar steroids, androsterone, and 5alpha-androstane-3alpha,17beta-diol.  相似文献   

7.
The unusual estrogen-binding protein (UEBP) found in a male rat liver is a sex dependent protein which differs from other known receptor and transport proteins by the high lability of its complexes with estradiol (E2) and also the unique specificity of affinity for hormones. In this work values of relative binding affinity (RBA) of the UEBP for 57 steroids and their analogs were determined. The affinity of steroids was characterised by the amount of the unlabeled compound needed for 50% inhibition of [3H]-E2 binding with the UEBP. A number of derivatives of estrane and androstane possess an ability to interact with this protein, in contrast to the derivatives of pregnane, stilbene and triphenylethane. Characterized by RBA values, natural steroids are found to have the following order: estriol larger than or equal to E2 greater than 16 alpha-hydroxyestrone = 2 alpha-hydroxytestosterone greater than 16-epiestriol greater than or equal to estetrol greater than or equal to 17-epiestriol greater than or equal to 2-methoxyestradiol greater than or equal to 5 alpha-androstane-3 alpha,17 beta-diol greater than or equal to estrone greater than testosterone greater than or equal to 2 beta-hydroxytestosterone greater than 5 alpha-dihydrotestosterone. Affinity of estrogens and androgens for the UEBP diminishes abruptly after removal of 3- and 17-hydroxy groups, masking of these by ether bonds or changing of 17 beta-hydroxyl to 17 alpha. All the investigated 17 oxo-C19-steroids, 5 beta-derivatives of testosterone, its 6 beta- and 16 alpha-hydroxy metabolites as well as 5 alpha-androstane-3 beta,17 beta-diol and 19-nortestosterone exhibit no essential affinity for the protein. On the basis of the results obtained it is suggested that the binding sites for estrogens and androgens in the UEBP molecule overlap but do not completely coincide.  相似文献   

8.
This study has characterized two new enzymatic hydroxylase activities specific for 5 alpha-androstane-3 beta, 17 beta-diol (3 beta-diol) in the rat ventral prostate: 5 alpha-androstane-3 beta, 17 beta-diol 6 alpha-hydroxylase (6 alpha-hydroxylase) and 5 alpha-androstane-3 beta, 17 beta-diol 7 alpha-hydroxylase (7 alpha-hydroxylase). Both of these irreversible hydroxylase activities require NADPH and are localized in the microsomal fraction of the prostate. The apparent Km for 3 beta-diol is 2.5 microM for both the 6 alpha- and 7 alpha-hydroxylase activities. The apparent Km for NADPH is 7.6 microM for the 6 alpha-hydroxylase and 7.0 microM for the 7 alpha-hydroxylase. The pH optimum for both activities is 7.4. Several steroid inhibitors of these hydroxylase activities in vitro were identified including cholesterol, progesterone, and estradiol. Estradiol was found in vitro to be a noncompetitive inhibitor (Ki = 5 microM). Injection of estradiol into intact male rats, simultaneously receiving exogenous testosterone, also produced a significant lowering of the 6 alpha-plus 7 alpha-hydroxylase activities. Both the 6 alpha- and 7 alpha-hydroxylase were found to be androgen sensitive. Following castration there is a rapid decrease in both activities.  相似文献   

9.
The androgen receptor content in the prostate has been usually evaluated using subcellular fractions without taking into account cellular and functional heterogeneity of the gland. Using enriched populations of immature canine prostatic epithelial cells cultured in primary monolayers, a whole cell assay system was developed to measure androgen receptors. Tritiated dihydrotestosterone (DHT) and/or methyltrienolone (R1881) in serum-free medium were used as ligands and Triamcinolone acetonide (0.5 microM) was added to prevent the binding of R1881 to other types of receptors. The amount of radiolabelled ligand specifically bound to the cells was determined at equilibrium. Specific binding was proportional to the number of cells seeded. Scatchard analysis revealed the presence of at least two types of binding sites. The Kd for the high affinity binding site was 2 x 10(-9) M. Competition studies indicated that this component was specific for androgens; Methyltrienolone, Mibolerone and the antiandrogen RU 23908 were the most efficient competitors. They were followed by DHT, 5 alpha-androstane-3 alpha, 17 beta-diol, testosterone, estradiol and estrone. Progesterone, 5 alpha-androstane-3 beta, 17 beta-diol and epitestosterone were not inhibitors. The level of specific binding was 11.0 +/- 7.6 fmol of bound R1881 per 10(6) cells (n = 34) or 2075 +/- 1434 fmol per mg of DNA; these values correspond to an average of 6624 +/- 4577 sites per cell. Thus, using this whole cell assay system, specific and androgen receptors were detected in immature prostatic epithelial cells in culture. This assay will therefore be useful to study the interrelationship between androgen binding activity and specific cell functions.  相似文献   

10.
S M Ho  P Ofner 《Steroids》1986,47(1):21-34
The goal of the present research was characterization of the interaction of 5 alpha-androstane-3 beta, 17 beta-diol (3 beta-diol) with prostatic estradiol-17 beta(E2) binding sites to address the role of this 5 alpha-dihydrotestosterone(DHT)a metabolite in prostatic regulation. Using dextran-charcoal assay we demonstrated specific 3 beta-diol and E2 binding sites in rat ventral prostate cytosol (RVPC) and dog prostate cytosol (DPC). In both cytosols, E2 binding is of high affinity (Ka congruent to 10(9) M-1; RVPC:68 fmol/mg protein), DPC:170 fmol/mg protein), and 3 beta-diol binding is of moderate affinity (Ka congruent to 10(8) M-1; RVPC:62 fmol/mg protein, DPC:165 fmol/mg protein). Unlabeled 3 beta-diol competes effectively for cytosolic 3H-E2 binding sites, whereas unlabeled DHT, 5 alpha-androstane-3 alpha, 17 beta-diol (3 alpha-diol) and testosterone (T) are poor competitors for 3H-E2 binding sites. Using DNA-cellulose column chromatography, we separated prostatic androgen and estrogen binding activities. The E2 binding activity which adhered to DNA-cellulose was displaced by 100-fold excess 3 beta-diol but not by DHT. Thus data from two assay procedures show competition of 3 beta-diol for 3H-E2 binding sites in rat and dog prostate.  相似文献   

11.
The metabolism and binding of [1, 2, 6, 7-3H] testosterone in male and female rat brain has been studied in an attempt to find an explanation for the relative androgen unresponsiveness characterizing the female hypothalamo-pituitary axis involved in regulation of hepatic steroid metabolism. The most significant sex differences in the pattern of [3H] testosterone metabolites recovered from several brain regions (including pituitary, pineal gland, and hypothalamus) after intraperitoneal administration of [3H] testosterone were the predominance of testosterone and androstenedione in male brain compared to the quantitative importance of 5alpha-androstane-3alpha, 17beta-diol, 5alpha-androstane-3beta, 17beta-diol, epitestosterone, and dihydroepitestosterone in female brain. One possible explanation for the androgen unresponsiveness of female rats is, therefore, the faster metabolism of testosterone to inactive compounds in female brain. Experiments both in vivo and in vitro showed the presence of high affinity, low capacity binding sites for [3H] testosterone in male pituitary, pineal gland, and hypothalamus (Kd values in the region of 1 X 10(-10) to 1 X 10(-9) M and number of binding sites 1.0 to 1.4 X 10(-14) mol per mg of protein). The steroid - macromolecular complexes generally had a pI of 5.1, were excluded from Sephadex G-200, were heat-labile, and were sensitive to protease. Competition experiments indicated the following order of ligand affinities: testosterone is greater than 5alpha-dihydrotestosterone and estradiol is greater than androstenedione is greater than corticosterone. No steroid-binding proteins of similar nature were found in pituitary, pineal gland, or hypothalamus from female rats. On the basis of these results it is suggested that the androgen unresponsiveness of female rats referred to above relates to the absence of receptor protein for androgens in female rat brain. In support of this hypothesis, 28-day-old female rats, which are known to be affected by androgens with regard to liver enzyme activities, were shown to contain receptor proteins for androgen in the brain. In conclusion, the relative androgen unresponsiveness of the female hypothalamo-pituitary axis is probably explained by the absence of receptor proteins for androgen in female hypothalamus and pituitary. The fast metabolism of testosterone in female rat brain also serves to decrease the availability of active androgen to potential receptor sites. It may be speculated that the presence of androgen receptors in male brain is the result of neonatal programming ("imprinting") by testicular androgen.  相似文献   

12.
B J Danzo  B C Eller 《Steroids》1984,44(5):435-445
We examined the influences of steroids present in the epididymis on androgen metabolism by epididymal tissue and on the binding of androgen metabolites to the epididymal androgen receptor in castrated adult rabbit epididymides under in vitro conditions. The conversion of [3H]testosterone to [3H]17 beta-hydroxy-5 alpha-androstan-3-one (5 alpha-DHT) and to [3H]5 alpha-androstane-3 alpha (beta), 17 beta-diol was inhibited by unlabeled steroids in the following manner progesterone greater than testosterone greater than estradiol. Unlabeled 5 alpha-DHT did not inhibit [3H]testosterone metabolism indicating that product inhibition is not an important regulatory event. The antiandrogen cyproterone acetate did not inhibit the formation of 5 alpha-reduced metabolites of [3H]testosterone. All of the compounds used inhibited androgen binding to the classically defined cytoplasmic and nuclear androgen receptor.  相似文献   

13.
5 alpha-Androstane-3 alpha,17 beta-diol (3 alpha-diol) and 5 alpha-androstane-3 beta,17 beta-diol (3 beta-diol) were measured in human peripheral plasma by radioimmunoassay using celite microcolumn purification. The antisera used for the assay were obtained by immunization of rabbits with 3 alpha,17 beta-dihydroxy-5 alpha-androstane-6-(O-carboxymethyl) oxime: BSA for 3 alpha-diol and 3 beta,17 beta-dihydroxy-5 alpha-androstane-15 alpha-carboxymethyl: BSA for 3 beta-diol. The concentrations (pg/ml +/- SD) of the two diols in normal male and female plasma are respectively: 216 +/- 51 and 49 +/- 32 for 3 alpha-diol, 239 +/- 76 and 82 +/- 45 for 3 beta-diol. Comparison of these results with published ones shows that 3 beta diol concentrations were significantly lower. The high specificity of the assay is due to chromatography on celite microcolumns, allowing elimination of 5-androstene-3 beta,17 beta-diol from the plasma sample.  相似文献   

14.
The four possible isomers 16beta-hydroxymethyl-5alpha-androstane-3beta,17beta-diol 1, 16alpha-hydroxymethyl-5alpha-androstane-3beta,17beta-diol 2, 16beta-hydroxymethyl-5alpha-androstane-3beta,17alpha-diol 3 and 16alpha-hydroxymethyl-5alpha-androstane-3beta,17alpha-diol 4 with proven configuration were converted into the corresponding 16beta-methyl-5alpha-androstane-3beta,17beta-diol 5, 16alpha-methyl-5alpha-androstane-3beta,17beta-diol 6, 16beta-methyl-5alpha-androstane-3beta,17alpha-diol 7, 16alpha-methyl-5alpha-androstane-3beta,17alpha-diol 8, furthermore into the 16beta-methyl-17beta-hydroxy-5alpha-androstane-3-one 13, 16alpha-methyl-17beta-hydroxy-5alpha-androstan-3-one 14, 16beta-methyl-17alpha-hydroxy-5alpha-androstan-3-one 15 and 16alpha-methyl-17alpha-hydroxy-5alpha-androstan-3-one 16. The steric structures of the resulting epimers were determined by means of 1H-, and 13C-NMR spectroscopy. In this way, comparison was possible with the C-16 epimers 5, 6 and 13, 14 prepared earlier by a different route, and the series of isomers could be completed with the steric structures of 16beta-methyl-17alpha-hydroxy-5alpha-androstan-3beta-ol 7 and 16alpha-methyl-17alpha-hydroxy-5alpha 8 and with their 3-keto derivatives 15 and 16. The relative binding affinities of the 16-methyl-5alpha-androstane-3beta,17-diols 5, 6, 7, 8 and 17-hydroxy-16-methyl-5alpha-androstan-3-ones 13, 14, 15, 16 were studied. The introduction of a 16-methyl substituent into 5alpha-androstane molecules substantially decreases the binding affinity to the androgen receptor and 16alpha-methyl derivatives were always bound more weakly than the 16beta-methyl isomers.  相似文献   

15.
It was previously shown that the microsomal 5 alpha-reductase activity in the male rat pituitary was increased by castration. Subcutaneous administration of androgens to castrated rats prevented the rise in 5 alpha-reductase activity. Their relative efficiency was as follows: 5 alpha-dihydrotestosterone greater than 5 alpha-androstane-3 alpha, 17 beta-diol greater than testosterone. Under our experimental conditions 5 alpha-androstane-3 beta, 17 beta-diol and estrogens were inefficient. The rise in 5 alpha-reductase activity following castration is exclusively located in hypophysis and it is probably due to an increased of the enzyme biosynthesis.  相似文献   

16.
The dimorphic pattern of growth hormone (GH) secretion and somatic growth in male and female mammals is attributable to the gonadal steroids. Whether these hormones mediate their effects solely on hypothalamic neurons, on somatotropes or on both to evoke the gender-specific GH secretory patterns has not been fully elucidated. The purpose of this study was to determine the effects of 17beta-estradiol, testosterone and its metabolites on release of GH, GH-releasing hormone (GHRH) and somatostatin (SRIF) from bovine anterior pituitary cells and hypothalamic slices in an in vitro perifusion system. Physiological concentrations of testosterone and estradiol perifused directly to anterior pituitary cells did not affect GH releases; whereas, dihydrotestosterone and 5alpha-androstane-3alpha, 17beta-diol increased GH. Perifusion of testosterone at a pulsatile rate, and its metabolites and estradiol at a constant rate to hypothalamic slices in series with anterior pituitary cells increased GH release. The androgenic hormones increased GHRH and SRIF release from hypothalamus; whereas, estradiol increased GHRH but decreased SRIF release. Our data show that estradiol and the androgens generated distinctly different patterns of GHRH and SRIF release, which in turn established gender-specific GH patterns.  相似文献   

17.
Recently, several natural steroids have been found to be esterified to long-chain fatty acids (FAE) in various mammalian tissues. The purpose of the present study was to determine the ability of a series of 3H-labeled steroids to serve as substrates for the formation and accumulation of such non-polar derivatives in intact cells, using the hormone-responsive ZR-75-1 human breast cancer cell line as model. All 14 steroids tested were found to be converted, directly or following further metabolism, to lipoidal ester derivatives. The percentage of intracellular steroids recovered as FAE derivatives was usually substantial (14-90%), especially in the case of C-19 steroids (75-90%). The composition of the lipoidal steroid fractions recovered from the labeled cell extracts was characterized by chromatographic comparison with synthetic steroid FAEs and by saponification of the steroid FAEs and identification of the released steroidal moieties. Following metabolism, most steroid substrates were converted into multiple lipoidal esters. Furthermore, 5 alpha-androstane-3 alpha, 17 beta-diol, 5 alpha-androstane-3 beta, 17 beta-diol, as well as androst-5-ene-3 beta, 17 beta-diol formed lipoidal diesters in addition to the monoester form. The high level of intracellular steroid FAE accumulation reported in this study suggests that these yet poorly known steroid derivatives may play important functions in the regulation of steroid hormone metabolism and action.  相似文献   

18.
The effects of androgen pretreatment on follicle-stimulating hormone (FSH)-stimulated luteinizing hormone (LH) receptor induction in ovarian granulosa cells was examined. Immature female rats were treated with various doses (0.1-5 mg/rat) of testosterone (T), 5 alpha-dihydrotestosterone (DHT), 5 alpha-androstane-3 alpha,17 beta-diol (3 alpha-diol), or 5 alpha-androstane-3 beta,17 beta-diol (3 beta-diol). Subsequent follicular development was stimulated by treatment with ovine FSH. LH receptor induction in granulosa cells and ovulatory responses to 10 IU human chorionic gonadotropin (hCG) were examined. Since LH receptor induction requires the synergistic action of both FSH and estradiol, the effects of the androgen pretreatment on FSH-stimulated estradiol production were also examined. Dihydrotestosterone treatment at doses greater than 1 mg inhibited LH receptor induction by approximately 70%, which resulted in absent ovulatory responses. Treatment with 1 mg or more of T or 3 alpha-diol had no effect on LH receptor induction, yet the hCG-stimulated ovulation rate was reduced to 40% of that seen in vehicle-treated controls. 3 beta-Diol, at a dose of 1 mg/rat, did not affect LH receptor induction but did reduce hCG-stimulated ovulation responses. No significant effects of androgen treatment on ovarian or uterine weight or FSH-stimulated estradiol production were observed. These results suggest that androgens can act at multiple sites to inhibit ovarian follicular development and function. In addition these studies demonstrate that, although LH receptor induction is necessary, it may not be a sufficient condition to ensure ovulation of ovarian follicles.  相似文献   

19.
The effects of ethanol on the concentrations of steroids in testis was studied in adult rats. Testosterone, seven of its potential precursors, three of its metabolites, and estradiol were analyzed by gas chromatography-mass spectrometry of samples from testes removed 2 h after intraperitoneal administration of ethanol, 1.2 g/kg body weight. The same analyses were made on samples from control rats. Ethanol gave a marked increase of all 3 beta-hydroxy-delta 5 steroids analyzed: pregnenolone (60%), 17-hydroxypregnenolone (480%), dehydroepiandrosterone (430%) and 5-androstene-3 beta, 17 beta-diol (60%). This resulted in highly significant increases of the 3 beta-hydroxy-delta 5/3-oxo-delta 4 steroid ratios for all steroid couples analyzed. An analogous increase of the ratio between 5 alpha-androstane-3 beta, 17 beta-diol and dihydrotestosterone was also observed, whereas the ratio between androstenediol and dehydroepiandrosterone was decreased by ethanol. The concentration of estradiol was not affected. The results indicate that moderate doses of ethanol inhibit the conversion of 3 beta-hydroxy-delta 5 to 3-oxo-delta 4 steroids. This may be one mechanism by which ethanol decreases the production of testosterone.  相似文献   

20.
The concentrations of testosterone and its tissular metabolites were determined in testicular and epididymal tissue obtained from eleven male subjects (aged 65-85 years) after orchiectomy for prostatic cancer. The steroids were measured in different tissular compartments, i.e. testis, caput, corpus and cauda epididymis. The values (mean +/- SD; ng/g wet weight) were: Testosterone 724.0 +/- 286.0, 32.08 +/- 2.56, 41.45 +/- 1.77 and 32.24 +/- 2.14; 5 alpha-dihydrotestosterone 6.95 +/- 1.99, 9.76 +/- 2.33, 16.87 +/- 0.21 and 15.79 +/- 2.67; 5 alpha-androstane-3 alpha, 17 beta-diol 6.07 +/- 2.33, 2.17 +/- 0.24, 1.93 +/- 0.02 and 1.17 +/- 0.20; 5 alpha-androstane-3 beta, 17 beta-diol 56.66 +/- 20.97, 3.55 +/- 0.19, 2.21 +/- 0.27 and 3.34 +/- 0.32; estradiol-17 beta 5.36 +/- 3.0, 1.08 +/- 0.014, 1.44 +/- 0.038 and 1.47 +/- 0.03, respectively. Incubation of human testicular tissue with [3H]androst-5-ene-3 beta, 17 beta-diol or [3H]dihydrotestosterone showed that both androstane-diols were exclusively formed from dihydrotestosterone. Since high concentrations of 5 alpha-androstane-3 beta, 17 beta-diol are found in testicular tissue it is suggested that this steroid may be an index of seminiferous tubular function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号