首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Adipose triglyceride lipase (ATGL) is a lipolytic enzyme that is highly specific for triglyceride hydrolysis. The ATGL-knockout mouse (ATGL(-/-)) accumulates lipid droplets in various tissues, including skeletal muscle, and has poor maximal running velocity and endurance capacity. In this study, we tested whether abnormal lipid accumulation in skeletal muscle impairs mitochondrial oxidative phosphorylation, and hence, explains the poor muscle performance of ATGL(-/-) mice. In vivo 1H magnetic resonance spectroscopy of the tibialis anterior of ATGL(-/-) mice revealed that its intramyocellular lipid pool is approximately sixfold higher than in WT controls (P = 0.0007). In skeletal muscle of ATGL(-/-) mice, glycogen content was decreased by 30% (P < 0.05). In vivo 31P magnetic resonance spectra of resting muscles showed that WT and ATGL(-/-) mice have a similar energy status: [PCr], [P(i)], PCr/ATP ratio, PCr/P(i) ratio, and intracellular pH. Electrostimulated muscles from WT and ATGL(-/-) mice showed the same PCr depletion and pH reduction. Moreover, the monoexponential fitting of the PCr recovery curve yielded similar PCr recovery times (τPCr; 54.1 ± 6.1 s for the ATGL(-/-) and 58.1 ± 5.8 s for the WT), which means that overall muscular mitochondrial oxidative capacity was comparable between the genotypes. Despite similar in vivo mitochondrial oxidative capacities, the electrostimulated muscles from ATGL(-/-) mice displayed significantly lower force production and increased muscle relaxation time than the WT. These findings suggest that mechanisms other than mitochondrial dysfunction cause the impaired muscle performance of ATGL(-/-) mice.  相似文献   

2.
3T3-L1 adipocytes develop insulin-resistant glucose transport upon preincubation with high glucose or glucosamine, provided insulin (0.6 nM) is present during preincubation. Insulin receptor substrate-1 (IRS-1)-associated phosphatidylinositol (PI) 3-kinase activity is unaffected (30). Total cellular IRS-1, PI 3-kinase, or Akt concentrations were unchanged. Akt activation in subcellular fractions was assessed by immunoblotting with two phospho-Akt-specific antibodies. Upon acute 100 nM insulin stimulation, plasma membrane (PM)-associated phospho-Akt was highest in cells preincubated in low glucose with no insulin, less in high glucose with no insulin, even less in low glucose+insulin, and lowest in high glucose+insulin. Only high glucose+insulin caused insulin-resistant glucose transport. Acute insulin stimulation increased total PM-Akt about twofold after preincubation without insulin in low or high glucose. Preincubation with 0.6 nM insulin decreased Akt PM translocation by approximately 25% in low and approximately 50% in high glucose. Preincubation with glucosamine did not affect Akt phosphorylation or translocation. Conclusions: chronic exposure to high glucose or insulin downregulates acute insulin-stimulated Akt activation, acting synergistically distal to PI 3-kinase. Maximal insulin activates more Akt than required for maximal glucose transport stimulation. Insulin resistance may ensue when PM-associated phospho-Akt decreases below a threshold. High glucose and glucosamine cause insulin resistance by different mechanisms in 3T3-L1 adipocytes.  相似文献   

3.
Recent studies have indicated that the mass/content of intramyocellular lipid (IMCL), intrahepatic triglyceride (IHTG), visceral fat (VF), and even deep abdominal subcutaneous fat (SF) may all be correlated with insulin resistance. Since simultaneous measurements of these parameters have not been reported, the relative strength of their associations with insulin action is not known. Therefore, the goals of this study were 1) to simultaneously measure IMCL, IHTG, VF, and abdominal SF in the same nondiabetic individuals using noninvasive (1)H-magnetic resonance spectroscopy (MRS) and magnetic resonance imaging (MRI) and 2) to examine how these fat stores are correlated with systemic insulin sensitivity as measured by whole body glucose disposal (R(d)) during euglycemic-hyperinsulinemic clamp studies. Positive correlations were observed among IMCL, IHTG, and VF. There were significant inverse correlations between whole body R(d) and both IMCL and VF. Notably, there was a particularly tight inverse correlation between IHTG and whole body R(d) (r = -0.86, P < 0.001), consistent with an association between liver fat and peripheral insulin sensitivity. This novel finding suggests that hepatic triglyceride accumulation has important systemic consequences that may adversely affect insulin sensitivity in other tissues.  相似文献   

4.
High visceral adiposity and intramyocellular lipid levels (IMCL) are both associated with the development of type 2 diabetes. The relationship between visceral adiposity and IMCL levels was explored in diet- and glucocorticoid-induced models of insulin resistance. In the diet-induced model, lean and fa/fa Zucker rats were fed either normal or high-fat (HF) chow over 4 wk. Fat distribution, IMCL content in the tibialis anterior (TA) muscle (IMCL(TA)), and whole body insulin resistance were measured before and after the 4-wk period. The HF diet-induced increase in IMCL(TA) was strongly correlated with visceral fat accumulation and greater glucose intolerance in both groups. The increase in IMCL(TA) to visceral fat accumulation was threefold greater for fa/fa rats. In the glucocorticoid-induced model, insulin sensitivity was impaired with dexamethasone. In vivo adiposity and IMCL(TA) content measurements were combined with ex vivo analysis of plasma and muscle tissue. Dexamethasone treatment had minimal effects on visceral fat accumulation while increasing IMCL(TA) levels approximately 30% (P < 0.05) compared with controls. Dexamethasone increased plasma glucose by twofold and increased the saturated fatty acid content of plasma lipids [fatty acid (CH2)n/omegaCH3 ratio +15%, P < 0.05]. The lipid composition of the TA muscle was unchanged by dexamethasone treatment, indicating that the relative increase in IMCL(TA) observed in vivo resulted from a decrease in lipid oxidation. Visceral adiposity may influence IMCL accumulation in the context of dietary manipulations; however, a "causal" relationship still remains to be determined. Dexamethasone-induced insulin resistance likely operates under a different mechanism, i.e., independently of visceral adiposity.  相似文献   

5.
Insulin resistance is a common feature of obesity. BTBR mice have more fat mass than most other inbred mouse strains. On a chow diet, BTBR mice have elevated insulin levels relative to the C57BL/6J (B6) strain. Male F1 progeny of a B6 x BTBR cross are insulin resistant. Previously, we reported insulin resistance in isolated muscle and in isolated adipocytes in this strain. Whereas the muscle insulin resistance was observed only in male F1 mice, adipocyte insulin resistance was also present in male BTBR mice. We examined in vivo mechanisms of insulin resistance with the hyperinsulinemic euglycemic clamp technique. At 10 wk of age, BTBR and F1 mice had a >30% reduction in whole body glucose disposal primarily due to insulin resistance in heart, soleus muscle, and adipose tissue. The increased adipose tissue mass and decreased muscle mass in BTBR and F1 mice were negatively and positively correlated with whole body glucose disposal, respectively. Genes involved in focal adhesion, actin cytoskeleton, and inflammation were more highly expressed in BTBR and F1 than in B6 adipose tissue. The BTBR and F1 mice have higher levels of testosterone, which may be related to the pathological changes in adipose tissue that lead to systemic insulin resistance. Despite profound peripheral insulin resistance, BTBR and F1 mice retained hepatic insulin sensitivity. These studies reveal a genetic difference in body composition that correlates with large differences in peripheral insulin sensitivity.  相似文献   

6.
The effect of creatine supplementation, alone or in combination with exercise training, on insulin sensitivity, intramyocellular lipid content (IMCL) and fatty acid translocase (FAT)/CD36 content was investigated in rats fed a sucrose-rich cafeteria diet during 12 weeks. Five experimental conditions were CON, receiving normal pellets; CAF, fed the cafeteria diet; CAFTR, fed the cafeteria diet together with exercise training in weeks 8-12 and CAFCR and CAFCRT that were analogous to CAF and CAFTR, respectively, but which received daily 2.5% of creatine monohydrate. During intravenous glucose tolerance test, compared with CON, whole-body glucose tolerance was reduced in CAF and CAFCR but not in CAFTR and CAFCRT. Insulin-stimulated glucose transport in perfused red gastrocnemius muscles was impaired in CAF and CAFCR but not in the trained groups. IMCL content in soleus and extensor digitorum longus muscles was higher in CAF than in CON, but not in CAFTR, CAFCR and CAFCRT. Compared with CON and CAF, FAT/CD36 protein content in m. soleus, was ∼40% lower in CAFCR, CAFTR and CAFCRT. The fraction of fecal fat, as determined in a 3-week post hoc study, was 25% higher in CAFCR than in CON. Moreover, in CAFCR, triglyceride concentration in blood and liver were significantly lower than in CAF. It is concluded that creatine supplementation in rats on a cafeteria diet inhibits IMCL accumulation via inhibition of gastrointestinal lipid absorption together with lower muscle FAT/CD36 content. Furthermore, exercise-induced but not creatine-induced reduction of IMCL is associated with improved insulin action on glucose transport in muscle cells.  相似文献   

7.
Augmented glucose-stimulated insulin secretion (GSIS) is an adaptive mechanism exhibited by pancreatic islets from insulin-resistant animal models. Gap junction proteins have been proposed to contribute to islet function. As such, we investigated the expression of connexin 36 (Cx36), connexin 43 (Cx43), and the glucose transporter Glut2 at mRNA and protein levels in pancreatic islets of dexamethasone (DEX)-induced insulin-resistant rats. Study rats received daily injections of DEX (1 mg/kg body mass, i.p.) for 5 days, whereas control rats (CTL) received saline solution. DEX rats exhibited peripheral insulin resistance, as indicated by the significant postabsorptive insulin levels and by the constant rate for glucose disappearance (KITT). GSIS was significantly higher in DEX islets (1.8-fold in 16.7 mmol/L glucose vs. CTL, p < 0.05). A significant increase of 2.25-fold in islet area was observed in DEX vs. CTL islets (p < 0.05). Cx36 mRNA expression was significantly augmented, Cx43 diminished, and Glut2 mRNA was unaltered in islets of DEX vs. CTL (p < 0.05). Cx36 protein expression was 1.6-fold higher than that of CTL islets (p < 0.05). Glut2 protein expression was unaltered and Cx43 was not detected at the protein level. We conclude that DEX-induced insulin resistance is accompanied by increased GSIS and this may be associated with increase of Cx36 protein expression.  相似文献   

8.
Aging is associated with insulin resistance, often attributable to obesity and inactivity. Recent evidence suggests that skeletal muscle insulin resistance in aging is associated with mitochondrial alterations. Whether this is true of the senescent myocardium is unknown. Twelve young (Y, 4 years old) and 12 old (O, 11 years old) dogs, matched for body mass, were instrumented with left-ventricular pressure gauges, aortic and coronary sinus catheters, and flow probes on left circumflex artery. Before surgery, all dogs participated in a 6-wk exercise program. Dogs underwent measurements of hemodynamics and plasma substrates before and during a 2-h hyperinsulinemic-euglycemic clamp to measure whole body and myocardial glucose and nonesterified fatty acid uptake. Following the protocol, myocardial and skeletal samples were obtained to measure components of the insulin-signaling cascade and mitochondrial structure. There was no difference in plasma glucose (Y, 90 +/- 4 mg/dl; O, 87 +/- 4 mg/dl), but old dogs had higher (P < 0.02) nonesterified fatty acids (Y, 384 +/- 48 micromol/l; O, 952 +/- 97 micromol/l) and plasma insulin (Y, 39 +/- 11 pmol/l; O, 108 +/- 18 pmol/l). Old dogs had impaired total body glucose disposition (Y, 11.5 +/- 1 mg x kg(-1) x min(-1); O, 8.0 +/- 0.5 mg x kg(-1) x min(-1); P < 0.05) and insulin-stimulated myocardial glucose uptake (Y, 3.5 +/- 0.3 mg x min(-1) x g(-1); O, 1.8 +/- 0.3 mg x min(-1) x g(-1); P < 0.05). The impaired insulin action was associated with altered insulin signaling and glucose transporter (GLUT4) translocation. There were myocardial mitochondrial structural changes observed in association with decreased expression of uncoupling protein-3. Aging is associated with both whole body and myocardial insulin resistance, independent of obesity and inactivity, but involving altered mitochondrial structure and impaired cellular insulin action.  相似文献   

9.
Two-week-old Phaseolus vulgaris plants, wick-fed with 1 mmol/L salicylic acid (SA) or 50 nmol/L dihydrozeatin (DHZ), showed partial inhibition of the accumulation of white clover mosaic virus (WClMV) in infected primary leaves. This inhibition was measured as a decrease in the accumulation of both viral mRNA and viral coat protein, especially at the early stages of infection. Salicylic acid treatment resulted in moderately increased expression of phenylalanine ammonia lyase (PAL), NPR1, PR1 and HSP70 genes that participate in resistance to pathogens in plants. In contrast, DHZ treatments did not induce significant changes in expression of these genes. The expression of the P. vulgaris alternative oxidase (AOX) gene homolog, an enzyme implicated in plant resistance to viruses, showed low constitutive expression during the first 11 days post-infection and was not affected by either SA or DHZ. It appears that, while SA induced the NPR1-PR1 pathogen defense pathway genes, both SA and DHZ may use a different pathway to induce resistance to WClMV infection in P. vulgaris plants.  相似文献   

10.
We determined whether acquired obesity is associated with increases in liver or intra-abdominal fat or impaired insulin sensitivity by studying monozygotic (MZ) twin pairs discordant and concordant for obesity. We studied nineteen 24- to 27-yr-old MZ twin pairs, with intrapair differences in body weight ranging from 0.1 to 24.7 kg [body mass index (BMI) range 20.0-33.9 kg/m2], identified from a population-based FinnTwin16 sample. Fat distribution was determined by magnetic resonance imaging, percent body fat by dual-energy X-ray absorptiometry, liver fat by proton spectroscopy, insulin sensitivity by measuring the fasting insulin concentration, and whole body insulin sensitivity by the euglycemic insulin clamp technique. Intrapair differences in BMI were significantly correlated with those in intra-abdominal fat (r = 0.82, P < 0.001) and liver fat (r = 0.57, P = 0.010). Intrapair differences in fasting insulin correlated with those in subcutaneous abdominal (r = 0.60, P = 0.008), intra-abdominal (r = 0.75, P = 0.0001) and liver (r = 0.49, P = 0.048) fat. Intrapair differences in whole body insulin sensitivity correlated with those in subcutaneous abdominal (r = -0.72, P = 0.001) and intra-abdominal (r = -0.55, P = 0.015) but not liver (r = -0.20, P = 0.20) fat. We conclude that acquired obesity is associated with increases in intra-abdominal and liver fat and insulin resistance, independent of genetic factors.  相似文献   

11.
12.
Animal studies have revealed the association between stearoyl-CoA desaturase 1 (SCD1) and obesity and insulin resistance. However, only a few studies have been undertaken in humans. We studied SCD1 in visceral adipose tissue (VAT) and subcutaneous adipose tissue (SAT) from morbidly obese patients and their association with insulin resistance, sterol regulatory element binding protein-1 (SREBP-1) and ATPase p97, proteins involved in SCD1 synthesis and degradation. The insulin resistance was calculated in 40 morbidly obese patients and 11 overweight controls. Measurements were made of VAT and SAT SCD1, SREBP-1 and ATPase p97 mRNA expression and protein levels. VAT and SAT SCD1 mRNA expression levels in the morbidly obese patients were significantly lower than in the controls (P = 0.006), whereas SCD1 protein levels were significantly higher (P < 0.001). In the morbidly obese patients, the VAT SCD1 protein levels were decreased in patients with higher insulin resistance (P = 0.007). However, SAT SCD1 protein levels were increased in morbidly obese patients with higher insulin resistance (P < 0.05). Multiple linear regressions in the morbidly obese patients showed that the variable associated with the SCD1 protein levels in VAT was insulin resistance, and the variables associated with SCD1 protein levels in SAT were body mass index (BMI) and ATPase p97. In conclusion, these data suggest that the regulation of SCD1 is altered in individuals with morbid obesity and that the SCD1 protein has a different regulation in the two adipose tissues, as well as being closely linked to the degree of insulin resistance.  相似文献   

13.
BACKGROUND: Polycystic ovary syndrome (PCOS) is associated with insulin resistance and reproductive and metabolic abnormalities. The potential genetic contributors to PCOS are unclear. We tested the hypothesis that genomic instability (chromosome malsegregation and DNA damage) is increased in PCOS. METHODS: Overweight age, weight and BMI-matched women with (n=14) and without (n=16) PCOS (age 34.2+/-6.0 years, weight 90.7+/-14.5 kg, BMI 34.0+/-5.6 kg/m(2), mean+/-S.D.) were assessed for chromosome malsegregation (assessed by X chromosome chromogenic in situ hybridisation) and micronucleus frequency (assessed by the cytokinesis block micronucleus index) in lymphocytes. RESULTS: Women with PCOS had significantly elevated genomic instability as demonstrated by a significantly higher number of binucleated lymphocytes containing micronuclei, total number of micronuclei, a higher proportion of aneuploid X chromosome signals (2:1 X and 3:1 X) and a lower proportion of normal X chromosome segregation signals (2:2 X) in binucleated lymphocytes than women without PCOS. Surrogate measures of insulin resistance positively correlated with the proportion of aneuploid cells (2:1; 3:1 X chromosome signals) and inversely with the proportion of normal cells (2:2 X chromosome signals). CONCLUSION: Women with PCOS display increased genomic instability (higher micronuclei and chromosome malsegregation) compared to women without PCOS and this increase may be related to the insulin resistance phenotype.  相似文献   

14.
Chronic inflammation is closely associated with metabolic disorders such as obesity and type 2 diabetes, however, the underlying mechanism is unclear. Toll-like receptors (TLRs) play a key role in innate immune response as well as inflammatory signals. Here, we observed that mRNA level of TLR4 was induced during adipocyte differentiation and remarkably enhanced in fat tissues of obese db/db mice. In addition, activation of TLR4 with either LPS or free fatty acids stimulated NFkappaB signaling and expression of inflammatory cytokine genes, such as TNFalpha and IL-6 in 3T3-L1 adipocytes. Furthermore, we discovered that TLR4 activation in 3T3-L1 adipocytes provoked insulin resistance. Taken together, these results suggest that activation of TLR4 in adipocyte might be implicated in the onset of insulin resistance in obesity and type 2 diabetes.  相似文献   

15.
Although body composition, insulin sensitivity, and lipids are markedly altered in overweight adolescents, hormonal associations with these parameters have not been well characterized. Growth hormone (GH) deficiency and hypercortisolemia predispose to abdominal adiposity and insulin resistance, and GH secretion is decreased in obese adults. We hypothesized that low-peak GH on the GH-releasing hormone (GHRH)-arginine stimulation test and high cortisol in overweight adolescents would be associated with higher regional fat, insulin resistance, and lipids. We examined the following parameters in 15 overweight and 15 bone age-matched control 12- to 18-yr-old girls: 1) body composition using dual-energy X-ray absorptiometry and MR [visceral and subcutaneous adipose tissue at L(4)-L(5) and soleus intramyocellular lipid ((1)H-MR spectroscopy)], 2) peak GH on the GHRH-arginine stimulation test, 3) mean overnight GH and cortisol, 4) 24-h urinary free cortisol (UFC), 5) fasting lipids, and 6) an oral glucose tolerance test. Stepwise regression was the major tool employed to determine relationships between measured parameters. Log peak GH on the GHRH-arginine test was lower (P = 0.03) and log UFC was higher (P = 0.02) in overweight girls. Log mean cortisol (overnight sampling) was associated positively with subcutaneous adipose tissue and, with body mass index standard deviation score, accounted for 92% of its variability, whereas log peak GH and body mass index standard deviation score accounted for 88% of visceral adipose tissue variability and log peak GH for 34% of the intramyocellular lipid variability. Log mean cortisol was independently associated with log homeostasis model assessment of insulin resistance, LDL, and HDL and explained 49-59% of the variability. Our data indicate that lower peak GH and higher UFC in overweight girls are associated with visceral adiposity, insulin resistance, and lipids.  相似文献   

16.
Leishmania donovani is an intracellular protozoan parasite that causes visceral leishmaniasis (VL). Antimonials (SSG) have long been the first-line treatment against VL, but have now been replaced by miltefosine (MIL) in the Indian subcontinent due to the emergence of SSG-resistance. Our previous study hypothesised that SSG-resistant L. donovani might have increased in vivo survival skills which could affect the efficacy of other treatments such as MIL. The present study attempts to validate these hypotheses. Fourteen strains derived from Nepalese clinical isolates with documented SSG-susceptibility were infected in BALB/c mice to study their survival capacity in drug free conditions (non-treated mice) and in MIL-treated mice. SSG-resistant parasites caused a significant higher in vivo parasite load compared to SSG-sensitive parasites. However, this did not seem to affect the strains' response to MIL-treatment since parasites from both phenotypes responded equally well to in vivo MIL exposure. We conclude that there is a positive association between SSG-resistance and in vivo survival skills in our sample of L. donovani strains which could suggest a higher virulence of SSG-R strains compared to SSG-S strains. These greater in vivo survival skills of SSG-R parasites do not seem to directly affect their susceptibility to MIL. However, it cannot be excluded that repeated MIL exposure will elicit different adaptations in these SSG-R parasites with superior survival skills compared to the SSG-S parasites. Our results therefore highlight the need to closely monitor drug efficacy in the field, especially in the context of the Kala-azar elimination programme ongoing in the Indian subcontinent.  相似文献   

17.
Insulin resistance is a key pathogenic factor of type 2 diabetes (T2DM); in contrast, in type 1 diabetes (T1DM) it is considered a secondary alteration. Increased intramyocellular lipid (IMCL) content accumulation and reduced plasma adiponectin were suggested to be pathogenic events of insulin resistance in T2DM. This study was designed to assess whether IMCL content and plasma adiponectin were also associated with the severity of insulin resistance in T1DM. We studied 18 patients with T1DM, 7 older and overweight/obese patients with T2DM, and 15 nondiabetic, insulin-resistant offspring of T2DM parents (OFF) and 15 healthy individuals (NOR) as appropriate control groups matched for anthropometric features with T1DM patients by means of the euglycemic hyperinsulinemic clamp combined with the infusion of [6,6-2H2]glucose and 1H magnetic resonance spectroscopy of the calf muscles. T1DM and T2DM patients showed reduced insulin-stimulated glucose metabolic clearance rate (MCR: 5.1 +/- 0.6 and 3.2 +/- 0.8 ml x kg(-1) min(-1)) similar to OFF (5.3 +/- 0.4 ml x kg(-1) x min(-1)) compared with NOR (8.5 +/- 0.5 ml x kg(-1) min(-1), P < 0.001). Soleus IMCL content was increased in T1DM (112 +/- 15 AU), T2DM (108 +/- 10 AU) and OFF (82 +/- 13 AU) compared with NOR (52 +/- 7 AU, P < 0.05) and the result was inversely proportional to the MCR (R2 = 0.27, P < 0.001); an association between IMCL content and Hb A1c was found only in T1DM (R2 = 0.57, P < 0.001). Fasting plasma adiponectin was reduced in T2DM (7 +/- 1 microg/ml, P = 0.01) and OFF (11 +/- 1 microg/ml, P = 0.03) but not in T1DM (25 +/- 6 microg/ml), whose plasma level was increased with respect to both OFF (P = 0.03) and NOR (16 +/- 2 microg/ml, P = 0.05). In conclusion, in T1DM, T2DM, and OFF, IMCL content was associated with insulin resistance, demonstrating that IMCL accretion is a marker of insulin resistance common to both primary genetically determined and secondary metabolic (chronic hyperglycemia) alterations. The increased adiponectin levels in insulin-resistant patients with T1DM, in contrast to the reduced levels found in patients with T2DM and in OFF, demonstrated that the relationship of adiponectin to insulin resistance in humans is still unclear.  相似文献   

18.
Inflammation and infiltration of immune cells in white adipose tissue have been implicated in the development of obesity-associated insulin resistance. Likewise, dysregulation of the fuel-sensing enzyme AMP-activated protein kinase (AMPK) has been proposed as a pathogenetic factor for these abnormalities based on both its links to insulin action and its anti-inflammatory effects. In this study, we examined the relationships between AMPK activity, the expression of multiple inflammatory markers in visceral (mesenteric and omental) and abdominal subcutaneous adipose tissue, and whole-body insulin sensitivity in morbidly obese patients (BMI 48 ± 1.9 kg/m2) undergoing gastric bypass surgery. AMPK activity was assessed by Western-blots (P-AMPK/T-AMPK) and mRNA levels of various markers of inflammation by qRT-PCR. Patients were stratified as insulin sensitive obese or insulin-resistant obese according to their HOMA-IR values. The results indicate that AMPK activity is lower in visceral than in subcutaneous abdominal adipose tissue of these patients and that this is associated with an increased expression of multiple inflammatory genes. They also revealed that AMPK activity is lower in adipose tissue of obese patients who are insulin resistant (HOMA-IR > 2.3) than in BMI-matched insulin sensitive subjects. Furthermore, this difference was evident in all three fat depots. In conclusion, the data suggest that there are close links between reduced AMPK activity and inflammation in white adipose tissue, and whole-body insulin resistance in obese humans. Whether adipose tissue AMPK dysregulation is a causal factor for the development of the inflammation and insulin resistance remains to be determined.  相似文献   

19.
20.
We evaluated the influence of chronic hypertriglyceridemia and endothelial dysfunction on myocardial glucose uptake (MGU) in Type 2 diabetic patients without coronary heart disease. Patients were divided into two groups according to fasting triglyceride (TG) levels: 5.4 +/- 1.1 and 1.5 +/- 0.3 mmol/l for high- and normal-TG groups, respectively. Five subjects were assigned to the high-TG group and 11 to the normal-TG group. Age, gender, body mass index, systolic and diastolic blood pressure, glucose, insulin, HbA1c, cholesterol, and HDL cholesterol were similar in the two groups, whereas free fatty acid (FFA) levels were higher in the high-TG group basally and at the end of the clamp. Furthermore, five healthy subjects were subjected to the same protocol and used as the control group. MGU was assessed by using 18F-labeled 2-fluoro-2-deoxy-D-glucose under hyperglycemic-hyperinsulinemic conditions. Basal endothelin-1 and nitric oxide levels were significantly higher in the high-TG group than in the normal-TG and control groups, and cGMP and maximal postischemic vasodilation were significantly decreased in the high-TG group compared with the normal-TG and control groups. However, significant alterations were found in the same parameters in the normal-TG group compared with the control group. By the end of the hyperglycemic clamp, in the high-TG group, MGU was approximately 40 and 65% of that in the normal-TG and control groups. MGU negatively correlated with TG, FFA, and endothelin-1, whereas a positive correlation was found with cGMP and maximal postischemic vasodilation. In conclusion, increased TG and FFA levels are risks, in addition to Type 2 diabetes mellitus, for myocardial insulin resistance, endothelial dysfunction, and alteration of nitric oxide/cGMP levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号