首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A new improved method for purification of the enzyme 1-O-alkyl-2-lyso-sn-glycero-3-phosphocholine: acetyl-CoA acetyltransferase (EC 2.3.1.67) from rat spleen is described. The catalytic subunit of cyclic AMP-dependent protein kinase in the presence of MgATP stimulated about 3-fold the activity of this partially purified enzyme activity. When [gamma-32P]ATP was included in the assay mixture, the analysis of phosphoprotein products by SDS/polyacrylamide-gel electrophoresis and autoradiography showed the incorporation of [32P]phosphate into a single protein band of about 30 kDa. Analysis of the phosphorylated amino acids indicated that the phosphate was incorporated into a serine residue. Activation of the acetylation reaction by the protein kinase was reversible. The reversal of the activation was coincident with the loss of the [32P]phosphate incorporated into the 30 kDa protein band, which suggests that the acetyltransferase is regulated by a phosphorylation-dephosphorylation mechanism dependent on cyclic AMP.  相似文献   

2.
The enzyme 1-O-alkyl-2-lyso-sn-glycero-3-phosphocholine: acetyl-CoA acetyltransferase (EC 2.3.1.67) was purified from rat spleen approx. 1500-fold in 1.6% yield. The specific activity of the purified enzyme was 0.317 +/- 0.089 mumol/min per mg of protein (mean +/- S.D., n = 6). The Km for the substrate acetyl-CoA was 137 +/- 13 microM and the pH optimum was about 8. Incubation of the purified enzyme was 1-O-[3H]octadecyl-2-lyso-sn-glycero-3-phosphocholine followed by electrophoresis resulted in the incorporation of radioactivity into a protein of Mr 29,000. The enzyme was most active towards 1-O-alkyl-2-lyso-sn-glycero-3-phosphocholine as substrate, 1-palmitoyl-2-lyso-glycero-3-phosphocholine being a poor substrate. In addition, the enzyme preferred acetyl-CoA to palmitoyl-CoA or oleoyl-CoA as substrate.  相似文献   

3.
Acetyl-CoA:1-O-alkyl-2-lyso-sn-glycero-3-phosphocholine acetyltransferase, along with phospholipase A2, is a key regulator of platelet-activating factor biosynthesis via the remodeling pathway. We have now obtained evidence in human neutrophils indicating that this enzyme is regulated by a specific member of the mitogen-activated protein kinases, namely the p38 kinase. We earlier demonstrated that tumor necrosis factor-alpha (TNF-alpha) as well as N-formyl-methionyl-leucyl-phenylalanine treatment leads to increased phosphorylation and activation of p38 kinase in human neutrophils. Strikingly, in the present study these stimuli increased the catalytic activity of acetyltransferase up to 3-fold, whereas 4-phorbol 12-myristate 13-acetate, which activates the extracellular-regulated kinases (ERKs) but not p38 kinase, had no effect. Furthermore, a selective inhibitor of p38 kinase, SB 203580, was able to abolish the TNF-alpha- and N-formyl-methionyl-leucyl-phenylalanine-induced activation of acetyltransferase. The same effect was not observed in the presence of an inhibitor that blocked ERK activation (PD 98059). Complementing the findings in intact cells, we have shown that recombinant, activated p38 kinase added to microsomes in the presence of Mg2+ and ATP increased acetyltransferase activity to the same degree as in microsomes obtained from TNF-alpha-stimulated cells. No activation of acetyltransferase occurred upon treatment of microsomes with either recombinant, activated ERK-1 or ERK-2. Finally, the increases in acetyltransferase activity induced by TNF-alpha could be ablated by treating the microsomes with alkaline phosphatase. Thus acetyltransferase appears to be a downstream target for p38 kinase but not ERKs. These data from whole cells as well as cell-free systems fit a model wherein stimulus-induced acetyltransferase activation is mediated by a phosphorylation event catalyzed directly by p38 kinase.  相似文献   

4.
In platelets, and in several other cell systems, pre-treatment with protein kinase C activators such as phorbol 12-myristate 13-acetate (PMA) results in the inhibition of receptor-mediated responses, suggesting that protein kinase C may play an important role in the termination of signal transduction. In the present study, we have attempted to locate the site of action of phorbol ester by comparing thrombin-induced (i.e. receptor-mediated) platelet activation with that induced by guanosine 5'-[gamma-thio]triphosphate (GTP[S]) and NaF, two agents which by-pass the receptor and initiate platelet responses by directly modulating G-protein function. After a 10 s pre-treatment with PMA (16 nM), dense-granule secretion induced by thrombin (0.2 unit/ml), GTP[S] (40 microM) and NaF (30 mM) was potentiated, resulting in a greater than additive response to agent plus PMA. However, after a 5 min pre-treatment, thrombin-induced secretion alone was inhibited, whereas PMA plus GTP[S]/NaF-induced release remained greater than additive. [32P]Phosphatidate formation in response to all three agents, in contrast, was inhibited by 50-70% in PMA (5 min)-treated platelets. That secretion induced by these agents is a protein kinase C-dependent event was demonstrable by using staurosporine, a protein kinase C inhibitor which at concentrations of 1-10 nM inhibited (70-90%) PMA-induced as well as thrombin- and NaF-induced secretion and protein phosphorylation. In membranes from PMA-treated platelets, thrombin-stimulated GTPase activity was significantly enhanced compared with that in untreated membranes (59% versus 82% increase over basal activity). The results suggest that inhibition of receptor-mediated responses by PMA may be directed towards two sites relating to G-protein activation: (i) receptor-stimulated GTPase activity and (ii) G-protein-phospholipase C coupling. Furthermore, the lack of inhibition of NaF- and GTP[S]-induced secretion by PMA suggests that different mechanisms may be involved in thrombin-induced and G-protein-activator-induced secretion.  相似文献   

5.
In order to characterize the mechanism of activation of the enzyme 1-O-alkyl-2-lyso-sn-glycero-3-phosphocholine:acetyl-CoA acetyltransferase (EC 2.3.1.67) which is the limiting step in the regulation of the synthesis of the potent inflammatory mediator 1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine; homogenates from human polymorphonuclear leukocytes were incubated in the presence of the catalytic subunit of cyclic AMP-dependent protein kinase and in the presence of a partially purified phospholipid sensitive, calcium-dependent protein kinase (PrKC). The first kinase was found to enhance up to 3-fold acetyltransferase activity in a dose- and time-dependent manner. In homogenates from PMN previously stimulated with complement-coated zymosan particles, the decay of acetyltransferase activity was partially prevented by the addition of soybean trypsin inhibitor and almost completely inhibited when the homogenates were supplemented with inhibitors of alkaline phosphatase such as 50 mM KF and 100 microM paranitrophenylphosphate. Under these conditions it was possible to initiate the decay of acetyltransferase activity by adding an excess of alkaline phosphatase. Preincubation of PMN with 12-O-tetradecanoylphorbol-13-acetate previous or simultaneously to the addition of ionophore A23187 reduced the increase in acetyltransferase produced by ionophore A23187, whereas the generation of superoxide anions was enhanced. Addition of partially purified PrKC to homogenates from ionophore A23187-stimulated PMN, reduced acetyltransferase activity by 63%, whereas only a 16% inhibition was observed on homogenates from resting PMN. These data indicate the modulation of acetyltransferase activity in human polymorphonuclear leukocytes by a phosphorylation-dephosphorylation mechanism linked to cyclic AMP-dependent protein kinase. Phospholipid sensitive, calcium-dependent protein kinase seems not to be involved in the mechanism of activation, but, most probably, in the generation of negative activation signals.  相似文献   

6.
The substrate requirements and specificity of 1-alkyl-2-lyso-sn-glycero-3-phosphocholine (alkyllyso-GPC):acetyl-CoA acetyltransferase were investigated. The following findings were observed. 1) When the ether bond of alkyllyso-GPC is substituted with an ester linkage, the resulting compound, palmitoyllyso-GPC, can serve as a substrate, albeit at a reduced rate (50%). In addition, palmitoyllyso-GPC is a competitive inhibitor in the reaction with respect to concentration dependence of alkyllyso-GPC and a noncompetitive inhibitor when the concentrations of acetyl-CoA are varied. 2) Octadecyllyso-GPC is acetylated at a slightly higher rate than hexadecyllyso-GPC and unsaturated alkyllyso-GPC is a preferable substrate to its saturated counterpart. 3) The homologous series of short chain acyl-CoAs demonstrate an inverse relationship of chain length with the values of their apparent Km and Vmax, e.g. the longer the acyl-CoA chain, the smaller the values of Vmax and apparent Km. 4) The effect of polar head group modification of alkyllyso-GPC on the acetyltransferase activity is related to the degree of methylation of the amine group. The choline base analog gives the highest enzyme activity and the ethanolamine derivative is the least active, while N', N'-dimethylethanolamine and monomethylethanolamine analogs are the substrates with intermediate activities. These results on substrate selectivity of acetyltransferase correlate with the known structural requirements essential for the biological activities elicited by platelet activating factor and thus suggest that the acetyltransferase activating factor and thus suggest that the acetyltransferase may be important in governing the chemical structure of platelet activating factor synthesized in vivo.  相似文献   

7.
The selenoenzyme phospholipid hydroperoxide glutathione peroxidase (PHGPx) is indispensable for murine embryonic development; yet, the cellular mechanisms leading to embryonic death around gastrulation are still unclear. To investigate PHGPx expression patterns during embryogenesis, we performed a detailed analysis that revealed a complex expression profile. Up to embryonic day 9.5, PHGPx was ubiquitously expressed, which was, albeit to a lower extent, maintained throughout later stages of embryogenesis. Notably, strong expression was frequently observed in epithelial tissue. A transient increase in PHGPx expression was detected in developing tissues, suggesting a crucial role for PHGPx in proliferation and differentiation. By semi-quantitative RT-PCR analysis we observed that the cytosolic form of PHGPx was present in embryonic and somatic tissues whereas the mitochondrial and nuclear forms were detectable only in testicular tissue. This strongly suggests that it is the cytosolic form of PHGPx that is indispensable for embryonic development.  相似文献   

8.
谷胱甘肽磷脂氢过氧化物酶研究进展   总被引:2,自引:0,他引:2  
谷胱甘肽磷脂氢过氧化物酶(PHGPx)是生物体内一种重要的抗氧化酶。它是一种硒依赖性蛋白,在谷胱甘肽(GSH)的参与下能特异性地还原磷脂氢过氧化物(PLOOH)和胆固醇氢过氧化物(ChOOH),从而保护生物膜免受过氧化损伤。它还是核酸等生物大分子的重要保护剂,并且在细胞凋亡调控中发挥作用。  相似文献   

9.
1-Alkyl-2-lyso-sn-glycero-3-phosphocholine:acetyl-CoA acetyltransferase plays an important regulatory role in the biosynthesis of platelet activating factor, a potent bioactive mediator. We tested the hypothesis that the activity of acetyltransferase may be modulated by enzymatic phosphorylation and dephosphorylation. The results showed that acetyltransferase activity in rat spleens was 2- to 3-fold higher in microsomes isolated in the presence of F-than in those isolated in the presence of Cl-. The microsomal acetyltransferase could be activated by preincubation of microsomes, isolated in the presence of Cl-, with ATP, Mg2+, and the soluble fraction from rat spleen. Addition of phosphatidylserine, diacylglycerols, plus Ca2+ further enhanced the activity. The increase in the activity of acetyltransferase was abolished by treatment of the activated microsomes with alkaline phosphatase. Conversely, the activity of acetyltransferase can be reactivated in the alkaline phosphatase-treated microsomes with incubation conditions that favor phosphorylation. Therefore, our findings suggest that acetyltransferase activity is regulated by reversible activation/inactivation through phosphorylation/dephosphorylation.  相似文献   

10.
The redox enzyme phospholipid hydroperoxide glutathione peroxidase (PHGPx) has emerged as one of the most significant selenoenzymes in mammals, corroborated by early embryonic lethality of PHGPx null mice. PHGPx is one of five selenium-dependent glutathione peroxidases and the second glutathione peroxidase to be discovered in 1982. PHGPx has a particular position within this family owing to its peculiar structural and catalytic properties, its multifaceted roles during male gametogenesis, and its necessity for early mouse development. Interestingly, mice devoid of endogenous glutathione die at the same embryonic stage as PHGPx-deficient mice compatible with the hypothesis that a similar phenotype of embryonic lethality may be provoked by PHGPx deficiency and lack of its reducing substrate glutathione. Various gain- and loss-of-function approaches in mice have provided some insights into the physiological functions of PHGPx. These include a protective role for PHGPx in response to irradiation, increased resistance of transgenic PHGPx mice to toxin-induced liver damage, a putative role in various steps of embryogenesis, and a contribution to sperm chromatin condensation. The expression of three forms of PHGPx and early embryonic lethality call for more specific studies, such as tissue-specific disruption of PHGPx, to precisely understand the contribution of PHGPx to mammalian physiology and under pathological conditions.  相似文献   

11.
12.
The partially purified phospholipid hydroperoxide glutathione peroxidase (PHGPx) from A431 cells was used to systematically compare the inhibitory effect on the enzyme activity of various lipoxygenases and cyclooxygenases. Under the standard assay system, platelet 12-lipoxygenase, 15-lipoxygenase, and cyclooxygenase-2 were the most sensitive to the inhibition by PHGPx. 5-Lipoxygenase and cyclooxygenase-1 were less sensitive to the inhibition by PHGPx than platelet 12-lipoxygenase and cyclooxygenase-2, respectively, and the difference was approximately 10-fold. Reduction of 12(S)-hydroperoxyeicosatetraenoic acid to 12(S)-hydroxyeicosatetraenoic acid by PHGPx was observed in the presence of glutathione (GSH), and the inhibitory effect of PHGPx on 12-lipoxygenase-catalyzed arachidonate metabolism was reversed by the addition of exogenous lipid hydroperoxide. The results indicate that PHGPx directly reduced lipid hydroperoxides and then down-regulated the activity of arachidonate oxygenases. Moreover, a high-level expression of PHGPx mRNA and its 12-lipoxygenase-inhibitory activity was observed in cancer cells and endothelial cells, and these results suggest that PHGPx may play a significant role in the regulation of reactive oxygen species formation in these cells.  相似文献   

13.
14.
A Ca2+-dependent lysophospholipase D activity in microsomal preparations from the rabbit kidney medulla hydrolyzes the choline moiety from 1-O-[9,10-3H]hexadecyl-2-lyso-sn-glycero-3-phosphocholine (lyso-PAF) to form 1-O-[9,10-3H]hexadecyl-2-lyso-sn-glycero-3-P; the latter is subsequently dephosphorylated by a phosphohydrolase to 1-O-[9,10-3H]hexadecyl-sn-glycerol. Sodium vanadate, which is known to inhibit phosphohydrolases, reduces the proportion of hexadecylglycerol and increases the formation of hexadecyl-lysoglycerophosphate. Essentially no hydrolysis occurs when the sn-2 position of the hexadecyllysoGPC substrate contains an acyl moiety. The lysophospholipase D in rabbit kidney is of microsomal origin and has a broad pH optimum between 8.0 and 8.8, with the activity decreasing sharply from pH 7.6 to 7.2. Wykle et al. (Biochim. Biophys. Acta 619 (1980) 58-67) have previously demonstrated the existence of a microsomal lysophospholipase D (specific for ether lipid substrates) in rat tissues that requires Mg2+ and exhibits a pH optimum of 7.2; high activities of the Mg2+-dependent lysophospholipase D were found in liver and brain, but not in kidney. In contrast to the Mg2+-dependent lysophospholipase D in rat tissues, the renal enzyme from rabbits requires Ca2+ (5 mM), whereas Mg2+ (5 mM) exhibits little stimulatory action. Under optimal assay conditions (0.1 M Tris-HCl (pH 8.4)/5 mM CaCl2), lysophospholipase D in the rabbit kidney medulla has an activity of 2.7 nmol/min per mg protein compared to 0.9 nmol/min per mg protein for the lysophospholipase D in the rat kidney medulla (0.1 M Tris-HCl (pH 7.2)/5 mM MgCl2). The Ca2+-dependent lysophospholipase D is highest in the liver and kidney medulla from rabbits, but is very low in rat tissues; similar activities were found in male and female rabbits. Our data indicate that the divalent metal ion requirements for expression of maximum lysophospholipase D activities can differ markedly among animal species and also suggest the microsomal Ca2+-dependent lysophospholipase D is an important catabolic route for lyso-PAF metabolism in rabbit renomedullary tissue.  相似文献   

15.
Phospholipid hydroperoxide glutathione peroxidase (PHGPx) is a selenoprotein which inhibits peroxidation ofmicrosomes. The human enzyme, which may play an important role in protecting the cell from oxidative damage, has not been purified or characterized. PHGPx was isolated from human liver using ammonium sulphate fractionation, affinity chromatography on bromosulphophthalein-glutathione-agarose, gel filtration on Sephadex G-50, anion exchange chromatography on Mono Q resin and high resolution gel filtration on Superdex 75. The protein was purified about 112,000-fold, and 12 μg, was obtained from 140 g of human liver with a 9% yield. PHGPx was active on hydrogen peroxide, cumene hydroperoxide, linoleic acid hydroperoxide and phosphatidylcholine hydroperoxide. The molecular weight, as estimated from non-denaturing gel filtration, was 16,100. The turnover number (37°C, pH 7.6) on (β-(13-hydroperoxy-cis-9, trans-11-octadecadienoyl)-γ-palmitoyl)-l-α-phosphatidylcholine was 91 mol mo−1 s−1. As reported for pig PHGPx, activity of the enzyme from human liver on cumene hydroperoxide and on linoleic acid hydroperoxide was inhibited by deoxycholate. In the presence of glutathione, the enzyme was a potent inhibitor of ascorbate/Fe induced lipid peroxidation in microsomes derived from human B lymphoblastic AHH-1 TK ± CHol cells but not from human liver microsomes. Human cell line microsomes contained no detectable PHGPx activity. However, microsomes prepared from human liver contained 0.009 U/mg of endogenous PHGPx activity, which is 4–5 times the activity required for maximum inhibition of lipid peroxidation when pure PHGPx was added back to human lymphoblastic cell microsomes. PHGPx from human liver exhibits similar properties to previously described enzymes with PHGPx activity isolated from pig and rat tissues, but does not inhibit peroxidation of human liver microsomes owing to a high level of PHGPx activity already present in these microsomes.  相似文献   

16.
Although reactive oxygen species (ROS) such as superoxide and hydroperoxide are known to induce apoptotic cell death, little is known as to the apoptotic death signaling of mitochondrial ROS. Recent evidence has suggested that antioxidant enzymes in mitochondria may be responsible for the regulation of cytochrome c release and apoptotic cell death. This paper examines the current state of knowledge regarding the role of mitochondrial antioxidant enzymes, especially phospholipid hydroperoxide glutathione peroxidase. A model for the release of cytochrome c by lipid hydroperoxide has also been proposed.  相似文献   

17.
18.
Antigenic cross-linking of the high affinity IgE receptors on mast cells induced the synthesis of prostaglandin D(2) (PGD(2)). The production of PGD(2) in L9 cells, which overexpressed non-mitochondrial phospholipid glutathione peroxidase (PHGPx), was only one-third that in the control line of cells (S1 cells). The reduction in the formation of PGD(2) in L9 cells was reversed upon inhibition of PHGPx activity by buthionine sulfoximine. Experiments with inhibitors demonstrated that prostaglandin H synthase-2 (PGHS-2) was the isozyme responsible for the production of PGD(2) upon cross-linking of IgE receptors. The conversion of radiolabeled arachidonic acid to prostaglandin H(2) (PGH(2)) was strongly inhibited in L9 cells, whereas the rate of conversion of PGH(2) to PGD(2) was the same in L9 cells and S1 cells, indicating that PGHS was inactivated in L9 cells. The PGHS activity in L9 cells was about half that in S1 cells. However, PGHS activity in L9 cells increased to the level in S1 cells upon the addition of the hydroperoxide 15-hydroperoxyeicosatetraenoic acid or of 3-chloroperoxybenzoic acid. These results suggest that non-mitochondrial PHGPx might be involved in the inactivation of PGHS-2 in nucleus and endoplasmic reticulum via reductions in levels of the hydroperoxides that are required for full activation of PGHS. Therefore, it appears that PHGPx might function as a modulator of the production of prostanoids, in addition to its role as an antioxidant enzyme.  相似文献   

19.
Phospholipid hydroperoxide glutathione peroxidase (GPx4) is a selenocysteine-containing enzyme, and three different isoforms (cytosolic, mitochondrial, and nuclear) originate from the GPx4 gene. Homozygous GPx4-deficient mice die in utero at midgestation, since they fail to initiate gastrulation and do not develop embryonic cavities. To investigate the biological basis for embryonic lethality, we first explored expression of the GPx4 in adult murine brain and found expression of the protein in cerebral neurons. Next, we profiled mRNA expression during the time course of embryogenesis (embryonic days 6.5-17.5 (E6.5-17.5)) and detected mitochondrial and cytosolic mRNA species at high concentrations. In contrast, the nuclear isoform was only expressed in small amounts. Cytosolic GPx4 mRNA was present at constant levels (about 100 copies per 1000 copies of glyceraldehyde-3-phosphate dehydrogenase mRNA), whereas nuclear and mitochondrial isoforms were down-regulated between E14.5 and E17.5. In situ hybridization indicated expression of GPx4 isoforms in all developing germ layers during gastrulation and in the somite stage in the developing central nervous system and in the heart. When we silenced expression of GPx4 isoforms during in vitro embryogenesis using short interfering RNA technology, we observed that knockdown of mitochondrial GPx4 strongly impaired segmentation of rhombomeres 5 and 6 during hindbrain development and induced cerebral apoptosis. In contrast, silencing expression of the nuclear isoform led to retardations in atrium formation. Taken together, our data indicate specific expression of GPx4 isoforms in embryonic brain and heart and strongly suggest a role of this enzyme in organogenesis. These findings may explain in part intrauterine lethality of GPx4 knock-out mice.  相似文献   

20.
Micromolar concentrations (0.5 approximately 5 microM) of all-trans geranylgeranoic acid (GGA) induced cell death in a guinea pig cell line, 104C1, whereas under the same conditions GGA was unable to kill 104C1/O4C, a clone established from 104C1 cells by transfection of them with the human phospholipid hydroperoxide glutathione peroxidase (PHGPx) gene. GGA (5 microM) induced a loss of the mitochondrial inner membrane potential (DeltaPsim) in 104C1 cells in 2 h, and their apoptotic cell death became evident in 6 h. On the other hand, 104C1/O4C cells were resistant to loss of DeltaPsim and showed intact morphology until at least 24 h after addition of 10 microM GGA. Dihydroethidine, superoxide-sensitive probe, was immediately oxidized 15 min after addition of GGA in both 104C1 and 104C1/O4C cells. The peroxide-sensitive probe 2',7'-dichlorofluorescin diacetate (H2-DCF-DA) was strongly oxidized in 104C1 cells 4 h after the addition of 2.5 microM GGA, but not in 104C1/O4C cells even in the presence of 10 microM GGA. The present results suggest that GGA induced a hyper-production of superoxide and subsequently peroxides, which in turn may have led to dissipation of the DeltaPsim and final apoptotic cell death in 104C1 cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号