首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
We have earlier shown that dietary fructo-oligosaccharide inulin enhances adenoma growth in multiple intestinal neoplasia (Min/+) mice. To further explore inulin-induced early biochemical changes in the normal-appearing mucosa, Min/+ mice were fed from the age of 5 weeks to the ages of 8 and 15 weeks a control diet or an inulin-enriched diet (10% w/w). In addition, the wild-type littermates were fed with the same diets until the age of 8 weeks, in order to determine whether similar changes happen both in the wild-type and Min/+ mice. The mucosa without adenomas was collected and fractionated to nuclear, cytosolic and membrane pools. The protein levels of beta-catenin, cyclin D1 and E-cadherin were determined by Western blotting at both time points, and immunohistochemical stainings were done for 8-week-old mice. The promotion of adenoma growth by inulin (week 15, 1.3-fold increase, P=.0004) was associated with accumulation of cytosolic and nuclear beta-catenin, and increased amount of cytosolic cyclin D1 (1.5-fold increase, P=.003) in the normal-appearing mucosa of the Min/+ mice. Furthermore, inulin feeding reduced the membranous pools of beta-catenin and E-cadherin. Also in the wild-type mice the drop in membranous beta-catenin was clear (P=.015), and, moreover, a subset of crypts had enhanced nuclear beta-catenin staining. These data indicate that dietary inulin can already activate in the normal-appearing mucosa beta-catenin signaling, which in the presence of Apc mutation induces adenoma growth and even in the wild-type mice direction of the changes is similar.  相似文献   

3.
The biological activities of PGE(2) are mediated through EP receptors (EP(1)-EP(4)), plasma membrane G protein-coupled receptors that differ in ligand binding and signal-transduction pathways. We investigated gastrointestinal EP(2) receptor expression in adult mice before and after radiation injury and evaluated intestinal stem cell survival and crypt epithelial apoptosis after radiation injury in EP(2) null mice. EP(2) was expressed throughout the gut. Intestinal EP(2) mRNA increased fivefold after gamma-irradiation. Crypt survival was diminished in EP(2)-/- mice (4.06 crypts/cross section) compared with wild-type littermates (8.15 crypts/cross section). Radiation-induced apoptosis was significantly increased in EP(2)-/- mice compared with wild-type littermates. Apoptosis was 1.6-fold higher in EP(2) (-/-) mice (5.9 apoptotic cells/crypt) than in wild-type mice (3.5 apoptotic cells/crypt). The EP(2) receptor is expressed in mouse gastrointestinal epithelial cells and is upregulated following radiation injury. The effects of PGE(2) on both crypt epithelial apoptosis and intestinal crypt stem cell survival are mediated through the EP(2) receptor.  相似文献   

4.
Overexpression of the epidermal growth factor receptor (EGFR) and its increased tyrosine kinase activity are implicated in colorectal cancer (CRC) development and malignant progression. The C57BL/6J-Min/+ (Min/+) mouse is a model for CRC and develops numerous intestinal adenomas. We analyzed the normal mucosa of Min/+ and Apc+/+ (WT) littermate mice together with Apc-null adenomas to gain insight into the roles of Egfr in these intestinal tissues. Protein analyses showed that Egfr activity was highest in the tumors, and also up-regulated in Min/+ relative to WT enterocytes. Expression of ubiquitylated Egfr (Egfr-Ub) was increased in Min/+ enterocytes and tumors. Tumors exhibited increased association of Egfr with clathrin heavy chain (CHC), Gab1, and p85alpha, the regulatory subunit of phosphoinositide 3-kinase (PI3K), and tumors also overexpressed c-Src, PDK1, and Akt. Immunohistochemistry for Akt-p-Ser473 revealed a low level of this active kinase in Min/+ and WT enterocytes and its strong presence in tumors. Prostaglandin E2 (PGE2) is a product of cyclooxygenase-2 (Cox-2) activity that is up-regulated in Min/+ tumors and transactivates Egfr. PGE2 expression was significantly higher in untreated Min/+ tumors and reduced by treatment with the Cox-2 inhibitor, celecoxib. Dietary administration of this NSAID also inhibited Egfr activity in tumors. Increased activation of the EGFR-PI3K-Akt signaling pathway in tumors relative to Apc+/+ and ApcMin/+ enterocytes provides potential opportunities for therapeutic interventions to differentially suppress tumor formation, promotion, progression, and/or recurrence.  相似文献   

5.
Inflammation is as an important component of intestinal tumorigenesis. The activation of Toll‐like receptor 4 (TLR4) signalling promotes inflammation in colitis of mice, but the role of TLR4 in intestinal tumorigenesis is not yet clear. About 80%–90% of colorectal tumours contain inactivating mutations in the adenomatous polyposis coli (Apc) tumour suppressor, and intestinal adenoma carcinogenesis in familial adenomatous polyposis (FAP) is also closely related to the germline mutations in Apc. The ApcMin/+ (multiple intestinal neoplasia) model mouse is a well‐utilized model of FAP, an inherited form of intestinal cancer. In this study, ApcMin/+ intestinal adenoma mice were generated on TLR4‐sufficient and TLR4‐deficient backgrounds to investigate the carcinogenic effect of TLR4 in mouse gut by comparing mice survival, peripheral blood cells, bone marrow haematopoietic precursor cells and numbers of polyps in the guts of ApcMin/+ WT and ApcMin/+ TLR4?/? mice. The results revealed that TLR4 had a critical role in promoting spontaneous intestinal tumorigenesis. Significant differential genes were screened out by the high‐throughput RNA‐Seq method. After combining these results with KEGG enrichment data, it was determined that TLR4 might promote intestinal tumorigenesis by activating cytokine‐cytokine receptor interaction and pathways in cancer signalling pathways. After a series of validation experiments for the concerned genes, it was found that IL6, GM‐CSF (CSF2), IL11, CCL3, S100A8 and S100A9 were significantly decreased in gut tumours of ApcMin/+ TLR4?/? mice compared with ApcMin/+ WT mice. In the functional study of core down‐regulation factors, it was found that IL6, GM‐CSF, IL11, CCL3 and S100A8/9 increased the viability of colon cancer cell lines and decreased the apoptosis rate of colon cancer cells with irradiation and chemical treatment.  相似文献   

6.
BALB/c-nu/nu mice and their intact nu/+ littermates are equally susceptible to infection with third-stage larvae of Nematospiroides dubius. Unlike their heterozygous littermates, however, the nu/nu mice are unable to form ganulomata in the intestinal wall and become only partially resistant to rechallenge. Following two or more infections, nu/nu mice maintain a high burden of adult intestinal worms, whereas worms are lost from immune nu/+ mice. Studies in T cell-injected nu/nu mice suggest that a full complement of T cells is needed to develop maximum resistance against the infective third-stage larvae and to expel adult worms. Measurement of serum immunoglobulin levels indicate that infected nu/+ mice have very high levels of IgG1 whereas the levels of IgG2a are reduced. In infected T cell-injected nu/nu mice, IgG1 levels increase with the number of T cells injected, whereas IgG2a levels are variable but always higher than in infected nu/+ mice.  相似文献   

7.
Sphingosine kinase (Sphk) enzymes are important in intracellular sphingolipid metabolism as well as in the biosynthesis of sphingosine 1-phosphate (S1P), an extracellular lipid mediator. Here, we show that Sphk1 is expressed and is required for small intestinal tumor cell proliferation in Apc Min/+ mice. Adenoma size but not incidence was dramatically reduced in Apc Min/+ Sphk(-/-) mice. Concomitantly, epithelial cell proliferation in the polyps was significantly attenuated, suggesting that Sphk1 regulates adenoma progression. Although the S1P receptors (S1P1R, S1P2R, and S1P3R) are expressed, polyp incidence or size was unaltered in Apc Min/+ S1p2r(-/-), Apc Min/+ S1p3r(-/-), and Apc Min/+ S1p1r(+/-) bigenic mice. These data suggest that extracellular S1P signaling via its receptors is not involved in adenoma cell proliferation. Interestingly, tissue sphingosine content was elevated in the adenomas of Apc Min/+ Sphk1(-/-) mice, whereas S1P levels were not significantly altered. Concomitantly, epithelial cell proliferation and the expression of the G1/S cell cycle regulator CDK4 and c-myc were diminished in the polyps of Apc Min/+ Sphk1(-/-) mice. In rat intestinal epithelial (RIE) cells in vitro, Sphk1 overexpression enhanced cell cycle traverse at the G1/S boundary. In addition, RIE cells treated with sphingosine but not C6-ceramide exhibited reduced cell proliferation, reduced retinoblastoma protein phosphorylation, and cyclin-dependent kinase 4 (Cdk4) expression. Our findings suggest that Sphk1 plays a critical role in intestinal tumor cell proliferation and that inhibitors of Sphk1 may be useful in the control of intestinal cancer.  相似文献   

8.
Both Wnt and cyclooxygenase (COX-2) pathways are activated in most sporadic and familial colorectal cancers, especially in those with chromosomal instability. We have recently shown that a common target of both signaling pathways, the peroxisome proliferator-activated receptor (PPAR)-?, is involved in intestinal adenoma growth. Activation of this receptor by synthetic agonist (GW501516) or COX-2-derived prostaglandin E2 (PGE2) accelerates intestinal adenoma growth in ApcMin mice. Moreover, these effects are lost in ApcMin mice lacking PPAR?. These findings implicate PPAR? as a focal point of cross-talk between the Wnt and prostaglandin signaling pathways. Based on this work it looks as if PPAR? agonists currently in development for treatment of dyslipidemias and obesity may increase the risk of tumor formation in humans. By contrast, antagonists of PPAR? may provide a novel approach for prevention and treatment of colorectal cancer.  相似文献   

9.
Chemoprevention is a pragmatic approach to reduce the risk of colorectal cancer, one of the leading causes of cancer-related death in western countries. In this regard, maslinic acid (MA), a pentacyclic triterpene extracted from wax-like coatings of olives, is known to inhibit proliferation and induce apoptosis in colon cancer cell lines without affecting normal intestinal cells. The present study evaluated the chemopreventive efficacy and associated mechanisms of maslinic acid treatment on spontaneous intestinal tumorigenesis in ApcMin/+ mice. Twenty-two mice were randomized into 2 groups: control group and MA group, fed with a maslinic acid–supplemented diet for six weeks. MA treatment reduced total intestinal polyp formation by 45% (P<0.01). Putative molecular mechanisms associated with suppressing intestinal polyposis in ApcMin/+ mice were investigated by comparing microarray expression profiles of MA-treated and control mice and by analyzing the serum metabolic profile using NMR techniques. The different expression phenotype induced by MA suggested that it exerts its chemopreventive action mainly by inhibiting cell-survival signaling and inflammation. These changes eventually induce G1-phase cell cycle arrest and apoptosis. Moreover, the metabolic changes induced by MA treatment were associated with a protective profile against intestinal tumorigenesis. These results show the efficacy and underlying mechanisms of MA against intestinal tumor development in the ApcMin/+ mice model, suggesting its chemopreventive potential against colorectal cancer.  相似文献   

10.
Prostaglandins may play an important role in regulating normal renewal of gastrointestinal epithelium, epithelial injury repair, and initiation or progression of intestinal neoplasia. Synthesis of prostaglandins is catalyzed by either of two cyclooxygenase isoforms, Cox-1 and Cox-2. Cox-1 is the predominant cyclooxygenase isoform found in the normal intestine. In contrast, Cox-2 is present at low levels in normal intestine but is elevated at sites of inflammation and in adenomas and carcinomas. To determine directly whether prostaglandins synthesized by Cox-1 or Cox-2 regulate crypt epithelial cell fate after genotoxic or cytotoxic injury, we examined apoptosis, prostaglandin synthesis, and crypt stem cell survival after gamma-irradiation in Cox-1(-/-) and Cox-2(-/-) mice. Cox-1(-/-) mice had increased crypt epithelial cell apoptosis and decreased clonogenic stem cell survival compared with wild-type littermates. PGE(2) synthesis was also diminished in Cox-1(-/-) mice compared with wild-type controls in unstressed intestine and after radiation injury. In contrast, apoptosis, stem cell survival, and intestinal PGE(2) synthesis in Cox-2(-/-) mice after irradiation were the same as in wild-type littermates. Crypt stem cell survival after irradiation was inhibited by a highly specific neutralizing antibody to PGE(2), suggesting that this prostaglandin mediates stem cell fate in vivo. These data suggest that prostaglandins synthesized by Cox-1 regulate multiple steps that determine the fate of crypt epithelial cell after genotoxic or cytotoxic injury.  相似文献   

11.
Akt decreases lymphocyte apoptosis and improves survival in sepsis   总被引:4,自引:0,他引:4  
Sepsis induces extensive death of lymphocytes that may contribute to the immunosuppression and mortality of the disorder. The serine/threonine kinase Akt is a key regulator of cell proliferation and death. The purpose of this study was to determine whether overexpression of Akt would prevent lymphocyte apoptosis and improve survival in sepsis. In addition, given the important role of Akt in cell signaling, T cell Th1 and Th2 cytokine production was determined. Mice that overexpress a constitutively active Akt in lymphocytes were made septic, and survival was recorded. Lymphocyte apoptosis and cytokine production were determined at 24 h after surgery. Mice with overexpression of Akt had a marked improvement in survival compared with wild-type littermates, i.e., 94 and 47% survival, respectively, p < 0.01. In wild-type littermates, sepsis caused a marked decrease in IFN-gamma production, while increasing IL-4 production >2-fold. In contrast, T cells from Akt transgenic mice had an elevated production of IFN-gamma at baseline that was maintained during sepsis, while IL-4 had little change. Akt overexpression also decreased sepsis-induced lymphocyte apoptosis via a non-Bcl-2 mechanism. In conclusion, Akt overexpression in lymphocytes prevents sepsis-induced apoptosis, causes a Th1 cytokine propensity, and improves survival. Findings from this study strengthen the concept that a major defect in sepsis is impairment of the adaptive immune system, and suggest that strategies to prevent lymphocyte apoptosis represent a potential important new therapy.  相似文献   

12.
13.
High fat diet is implicated in the elevated deoxycholic acid (DCA) in the intestine and correlated with increased colon cancer risk. However, the potential mechanisms of intestinal carcinogenesis by DCA remain unclarified. Here, we investigated the carcinogenic effects and mechanisms of DCA using the intestinal tumour cells and Apcmin/+ mice model. We found that DCA could activate epidermal growth factor receptor (EGFR) and promote the release of EGFR ligand amphiregulin (AREG), but not HB‐EGF or TGF‐α in intestinal tumour cells. Moreover, ADAM‐17 was required in DCA‐induced promotion of shedding of AREG and activation of EGFR/Akt signalling pathway. DCA significantly increased the multiplicity of intestinal tumours and accelerated adenoma‐carcinoma sequence in Apcmin/+ mice. ADAM‐17/EGFR signalling axis was also activated in intestinal tumours of DCA‐treated Apcmin/+ mice, whereas no significant change occurred in tumour adjacent tissues after DCA exposure. Conclusively, DCA activated EGFR and promoted intestinal carcinogenesis by ADAM17‐dependent ligand release.  相似文献   

14.
《Free radical research》2013,47(1):108-117
Abstract

The nitrones of α-phenyl-tert-butyl nitrone (PBN) and 4-hydroxyl-PBN (4-OH-PBN) that have anti-cancer activity in models of liver cancer and glioblastomas were tested in the ApcMin/+ mouse model. Mice were administered PBN and 4-OH-PBN in drinking water and intestinal tumour size and number assessed after 3–4 months. Throughout the experiment, contrast-enhanced magnetic resonance imaging (MRI) was used to monitor colon tumours. MRI data showed a time-dependent significant increase in total colonic signal intensity in sham-treated mice, but a significant decrease for PBN-treated mice and slight decrease for 4-OHPBN treated mice, probably due to the limited water solubility of 4-OH-PBN. Final pathological and percentage survival data agreed with the MRI data. PBN had little effect on oxaliplatin-mediated killing of HCT116 colon cancer cells and caused only a slight decrease in the amount of active fraction caspase 3 in oxaliplatin-treated cells. PBN has significant anti-cancer activity in this model of intestinal neoplasia.  相似文献   

15.
《Reproductive biology》2022,22(4):100708
To investigate the functions and potential mechanisms of hsa_circ_0069094 in this cancer. The expression of hsa_circ_0069094, zinc finger protein 217 (ZNF217) and microRNA-758–3p (miR-758–3p) was detected by quantitative polymerase chain reaction (qPCR), and the protein level of ZNF217 was detected by western blot. Cell proliferation was assessed using cell counting kit-8 (CCK-8) assay and colony formation assay. Cell cycle progression and cell apoptosis were determined using flow cytometry assay. Cell invasion and cell migration were monitored using transwell assay and wound healing assay. The protein levels of apoptosis-related proteins were quantified by western blot. The putative relationship between miR-758–3p and hsa_circ_0069094 and ZNF217 was confirmed using dual-luciferase reporter assay and RNA immunoprecipitation (RIP) assay. Xenograft model was constructed in mice to explore the role of hsa_circ_0069094 on solid tumor growth.Hsa_circ_0069094 and ZNF217 were highly expressed, while miR-758–3p was poorly expressed in tissues and cells of breast cancer. Hsa_circ_0069094 knockdown or ZNF217 knockdown inhibited cell proliferation, invasion and migration and induced cell apoptosis and cell cycle arrest in breast cancer cells. The inhibitory effects of hsa_circ_0069094 knockdown on cell malignant behaviors were abolished by ZNF217 overexpression. Hsa_circ_0069094 competed with ZNF217 for the binding site of miR-758–3p, and hsa_circ_0069094 positively regulated ZNF217 expression by competitively binding to miR-758–3p. Hsa_circ_0069094 knockdown also blocked solid tumor growth in mice. Collectively, Hsa_circ_0069094 played oncogenic effects in breast cancer by activating the expression of ZNF217 via competitively binding to miR-758–3p, which might be a novel strategy for breast cancer suppression.  相似文献   

16.
Zinc finger proteins (ZNF) play important roles in various physiological processes. Here we report that ZNF300, a novel zinc finger protein, identified specifically in humans, promotes tumour development by modulating the NF-κB pathway. Inflammatory factors were found to induce ZNF300 expression in HeLa cell line, and ZNF300 expression further enhanced NF-κB signalling by activating TRAF2 and physically interacting with IKKβ. Furthermore, ZNF300 overexpression increased ERK1/2 phosphorylation and the expression of c-myc, IL-6, and IL-8 but decreased the expression of p21(waf-1) and p27(Kip1) ; whose down-regulation led to the opposite effect. Most importantly, ZNF300 overexpression stimulated cancer cell proliferation in vitro and significantly enhanced tumour development and metastasis in mouse xenograft model, while knocking down ZNF300 led to the opposite effects. We have identified a novel function for ZNF300 in tumour development that may uniquely link inflammation and NF-κB to tumourigenesis in humans but not in mice.  相似文献   

17.
Prior studies of intestinal adaptation after massive small bowel resection (SBR) have focused on growth factors and their effects on amplification of the gut mucosa. Because adaptive changes have also been described in intestinal smooth muscle, we sought to determine the effect of targeted smooth muscle growth factor overexpression on resection-induced intestinal adaptation. Male transgenic mice with smooth muscle cell overexpression of insulin-like growth factor I (IGF-I) by virtue of an alpha-smooth muscle actin promoter were obtained. SMP8 IGF-I transgenic (IGF-I TG) and nontransgenic (NT) littermates underwent 50% proximal SBR or sham operation and were then killed after 3 or 28 days. NT mice showed the expected alterations in mucosal adaptive parameters after SBR, such as increased wet weight and villus height. The IGF-I TG mice had inherently taller villi, which did not increase significantly after SBR. In addition, IGF-I TG mice had a 50% postresection persistent increase in remnant intestinal length, which was associated with an early decline and later increase in relative mucosal surface area. These results indicate that growth factor overexpression within the muscularis layer of the bowel wall induces significant postresection adaptive intestinal lengthening and a unique mucosal response. IGF-I signaling within the muscle wall may play an important role in the pathogenesis of resection-induced adaptation.  相似文献   

18.
The underlying mechanism of colorectal cells developing into cancer cells has been extensively investigated, yet is still not fully delineated, resulting in the treatment of advanced colorectal cancer (CRC) remains regrettably an unmet need. Zinc Finger Protein 746/Parkin-interacting substrate (ZNF746/PARIS) has previously been identified to play a fundamental role on bladder cancer cell proliferation and metastasis that were effectively inhibited by melatonin (Mel). In this study, we utilized ex vivo/in vivo studies to verify whether the ZNF746 signaling was also crucial in CRC growth/invasion/migration. Tissue-bank specimens showed that the protein expression of ZNF746 was significantly increased in CRC than that of healthy colorectal tissues (p < 0.001). Additionally, in vitro study demonstrated that excessive expression of ZNF746 significantly inhibited mitochondrial activity via (1) interfering with the dynamic balance of mitochondrial fusion/fission and (2) inhibiting the protein expression of MFN1/MFN2/PGC1a (all p < 0.001). Furthermore, we identified that inhibition of ZNF746 protein expression significantly reduced the resistance of CRC cell lines to the anticancer drug of 5-FU (p < 0.001), whereas overexpression of ZNF746 significantly augmented resistance of CRC cells to 5-FU (all p < 0.001). Finally, using the cell culture method, we found that combined Mel and 5-FU was superior to merely one on promoting the CRC cell apoptosis (p < 0.001). Our results confirmed that ZNF746 signaling played a cardinal role of CRC cell proliferation/survival and combined Mel and 5-FU treatment attenuated the resistance of CRC cells to the drug mainly through suppressing this signaling.  相似文献   

19.
Phosphatase and tensin homolog (Pten) antagonizes PI3K-Akt signaling; therefore, Pten impairment causes tumorigenesis. However, the correlation between Pten deficiency and colon cancer has remained elusive due to numerous opposite observations. To study this correlation, we examined whether Pten deficiency in intestinal epithelial cells (IECs) induces tumorigenesis.With mucosal biopsies of human colon cancer and normal colon, Pten mRNA was evaluated by quantitative PCR. Using IEC-specific Pten knockout mice (PtenΔIEC/ΔIEC), we examined the mitotic activity of IECs; and PtenΔIEC/ΔIEC; Apcmin/+ mice were generated by combining PtenΔIEC/ΔIEC with Apcmin/+ mice. Tumor-associated gene was evaluated by micro-array analysis. Fecal microbiome was analyzed through 16S rRNA gene sequencing.We found that Pten mRNA level was reduced in human colon cancer relative to normal tissues. Augmented chromatids, increased Ki-67 and PCNA expression, and enhanced Akt activation were identified in IECs of PtenΔIEC/ΔIEC mice compared to Pten+/+ littermate. Combining PtenΔIEC/ΔIEC with Apcmin/+ condition caused rapid and aggressive intestinal tumorigenesis. However, PtenΔIEC/ΔIEC mice did not develop any tumors. While maintaining the tumor-driving potential, these data indicated that IEC-Pten deficiency alone did not induce tumorigenesis in mice. Furthermore, the expression of tumor-promoting and tumor-suppressing genes was decreased and increased, respectively, in the intestine of PtenΔIEC/ΔIEC mice compared to controls. The abundance of Akkermansia muciniphila, capable of inducing chronic intestinal inflammation, was diminished in PtenΔIEC/ΔIEC mice compared to controls.These findings suggested that altered tumor-associated gene expression and changed gut microbiota shape a tumor-preventive microenvironment to counteract the tumor-driving potential, leading to the tumor prevention in PtenΔIEC/ΔIEC mice.  相似文献   

20.
The etiology of colon cancer is a complex phenomenon that involves both genetic and environmental factors. However, only about 20% have a familial basis with the largest fraction being attributed to environmental causes that can lead to chronic inflammation. While the link between inflammation and colon cancer is well established, the temporal sequence of the inflammatory response in relation to tumorigenesis has not been characterized. We examined the timing and magnitude of the intestinal inflammatory cytokine response in relation to tumorigenesis in the ApcMin/+ mouse. ApcMin/+ mice and wildtype mice were sacrificed at one of 4 time-points: 8, 12, 16, and 20 weeks of age. Intestinal tissue was analyzed for polyp burden (sections 1, 4 and 5) and mRNA expression and protein concentration of MCP-1, IL-1β, IL-6 and TNF-α (sections 2 and 3). The results show that polyp burden was increased at 12, 16 and 20 weeks compared to 8 weeks (P < 0.05). Gene expression (mRNA) of MCP-1, IL-1β, IL-6 and TNF-α was increased in sections 2 and 3 starting at week 12 (P < 0.05), with further increases in MCP-1, IL-1β and IL-6 at 16 weeks (P < 0.05). Protein concentration for these cytokines followed a similar pattern in section 3. Similarly, circulating MCP-1 was increased at 12 weeks (P < 0.05) and then again at 20 weeks (P < 0.05). In general, overall polyp number and abundance of large polyps were significantly correlated with the inflammatory cytokine response providing further support for a relationship between polyp progression and these markers. These data confirm the association between intestinal cytokines and tumorigenesis in the ApcMin/+ mouse and provide new information on the timing and magnitude of this response in relation to polyp development. These findings may lead to the development of inflammatory mediators as important biomarkers for colon cancer progression. Further, these data may be relevant in the design of future investigations of therapeutic interventions to effectively target inflammatory processes in rodent models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号