首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
The structure of Locusta migratoria apolipophorin-III consists of a five-helix bundle connected by four short loops. The role of the conformational flexibility of helices and loops on the lipid-binding activity of this apolipoprotein was investigated by disulfide mediated tethering experiments. One disulfide mutant tethering the second and fourth loops (L2-L4), and two disulfide mutants restricting the flexibility of the neighboring alpha-helices 3 and 4 (H3-H4) and 1 and 5 (H1-H5), were studied. The ability of the disulfide mutants to interact with phospholipid vesicles, mixed micelles of phosphatidylcholine and cholate, and in vivo with native spherical lipoprotein particles was studied. The L2-L4 mutant was active with native lipoproteins as well as being able to form discoidal lipoproteins upon incubation with either liposomes or discoidal micelles. The H3-H4 mutant was not able to interact with liposomes or native lipoproteins but interacted with discoidal micelles. The H1-H5 mutant was unable to interact with lipid in any of the three systems. Three conclusions were reached: (1) opening of the helix bundle does not require the separation of loops 2 and 4 as recently proposed by others and (2) alpha-helices 3 and/or 4 are involved in the insertion of apoLp-III in both phospholipid bilayers and monolayers. The conformational flexibility of helices 3 and 4 is required for the lipid-binding activity of apoLp-III. (3) Interaction of helices 1 and/or 5 with the lipid surface is required to the formation of stable lipoprotein complexes of any kind.  相似文献   

2.
Apolipophorin III (ApoLp-III) from the Sphinx moth, Manduca sexta, is an 18kDa protein that binds reversibly to hydrophobic surfaces generated on metabolizing lipoprotein particles. It is comprised of amphipathic alpha-helices (H1-H5) organized in an up-and-down topology forming a helix bundle in the lipid-free state. Upon interaction with lipids, apoLp-III has been proposed to undergo a dramatic conformational change, involving helix bundle opening about putative hinge loops such that H1, H2 and H5 move away from H3 and H4. In the present study, we examine the relative spatial disposition of H1 and H5 on discoidal phospholipid complexes and spherical lipoproteins. Cysteine residues were engineered at position 8 in H1 and/or at position 138 in H5 in apoLp-III (which otherwise lacks Cys) yielding A8C-, A138C- and A8C/A138C-apoLp-III. Tethering of H1 and H5 by a disulfide bond between A8C and A138C abolished the ability of apoLp-III to transform phospholipid vesicles to discoidal particles, or to interact with lipoproteins, demonstrating that these helices are required to reposition during lipid interaction. Site-specific labeling of A8C/A138C-apoLp-III with N-(1-pyrene)maleimide in the lipid-free state resulted in intramolecular pyrene "excimer" fluorescence emission indicative of spatial proximity between these sites. Upon association with dimyristoylphosphatidylcholine (DMPC) discoidal complexes, the intramolecular excimer was replaced by intermolecular excimer fluorescence due to proximity between pyrene moieties on A8C and A138C in neighboring apoLp-III molecules on the discoidal particle. No excimer emission was observed in the case of pyrene-A8C-apoLp-III/DMPC or pyrene-A138C-apoLp-III/DMPC complexes. However, equimolar mixing of the two labeled single-cysteine mutants prior to disc formation resulted in excimer emission. In addition, intramolecular pyrene excimer formation was diminished upon binding of pyrene-A8C/A138C-apoLp-III to spherical lipoproteins. The data are consistent with repositioning of H1 away from H5 upon encountering a lipid surface, resulting in an extended conformation of apoLp-III that circumscribes the discoidal bilayer particle.  相似文献   

3.
Niere M  Dettloff M  Maier T  Ziegler M  Wiesner A 《Biochemistry》2001,40(38):11502-11508
Apolipophorin III (apoLp-III) is an exchangeable insect apolipoprotein consisting of five amphipathic alpha-helices. The protein is able to open reversibly on associating with hydrophobic surfaces and plays a role both in lipid transport and induction of immune responses. Point mutations were introduced at positions 66 (N-->D) and/or 68 (K-->E) between helices 2 and 3, a region possibly serving as a hinge for the opening of the molecule when associating with lipids. The lipid-binding properties of the mutant proteins were analyzed and compared with their immune inducing activities. Structural properties of the proteins were studied by far UV circular dichroism spectroscopy and their abilities to form discoidal complexes of dimyristoyl phosphatidylcholine (DMPC) vesicles were investigated. In comparison to wild-type apoLp-III, apoLp-III(N66D/K68E), and apoLp-III(K68E) displayed significantly decreased lipid-binding abilities and immune stimulating activities, while these effects were less noticeable with apoLp-III(N66D). The secondary structure of the double mutant apoLp-III(N66D/K68E) was similar to that of wild-type apoLp-III. A noticeable reduction of alpha-helical content could be observed for the single mutants apoLp-III(N66D) and apoLp-III(K68E), which was accompanied by an increase in percentage amount of beta-turns. The stability of the secondary structure determined by heat denaturation was not affected by mutagenesis. Furthermore, the ability of all proteins to form discoidal complexes of equal size and shape in the presence of dimyristoyl phosphatidylcholine indicated that the mutagenesis did not affect the molecular architecture in the lipid-associated conformation. The relationship between reduced lipid association and reduced immune stimulating activity supports the hypothesis that apoLp-III-induced immune activation is triggered by the conformational change of the protein.  相似文献   

4.
Apolipophorin III (apoLp-III) from Locusta migratoria is an exchangeable apolipoprotein that binds reversibly to lipid surfaces. In the lipid-free state this 164-residue protein exists as a bundle of five elongated amphipathic alpha-helices. Upon lipid binding, apoLp-III undergoes a significant conformational change, resulting in exposure of its hydrophobic interior to the lipid environment. On the basis of x-ray crystallographic data (Breiter, D. R., Kanost, M. R., Benning, M. M., Wesenberg, G., Law, J. H., Wells, M. A., Rayment, I., and Holden, H. M. (1991) Biochemistry 30, 603-608), it was proposed that hydrophobic residues, present in loops that connect helices 1 and 2 (Leu-32 and Leu-34) and helices 3 and 4 (Leu-95), may function in initiation of lipid binding. To examine this hypothesis, mutant apoLp-IIIs were designed wherein the three Leu residues were replaced by Arg, individually or together. Circular dichroism spectroscopy and temperature and guanidine hydrochloride denaturation studies showed that the mutations did not cause major changes in secondary structure content or stability. In lipid binding assays, addition of apoLp-III to phospholipid vesicles caused a rapid clearance of vesicle turbidity due to transformation to discoidal complexes. L34R and L32R/L34R/L95R apoLp-IIIs displayed a much stronger interaction with lipid vesicles than wild-type apoLp-III. Furthermore, it was demonstrated that the mutant apoLp-IIIs retained their ability to bind to lipoprotein particles. However, in lipoprotein competition binding assays, the mutants displayed an impaired ability to initiate a binding interaction when compared with wild-type apoLp-III. The data indicate that the loops connecting helices 1 and 2 and helices 3 and 4 are critical regions in the protein, contributing to recognition of hydrophobic defects on lipoprotein surfaces by apoLp-III.  相似文献   

5.
J L Soulages  E L Arrese 《Biochemistry》2001,40(47):14279-14290
Quenching of tryptophan fluorescence by nitroxide-labeled phospholipids and nitroxide-labeled fatty acids was used to investigate the lipid-binding domains of apolipophorin III. The location of the Trp residues relative to the lipid bilayer was investigated in discoidal lipoprotein particles made with 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine and five different single-Trp mutants of apoLp-III. A comparison of the quenching efficiencies of phospholipids containing nitroxide groups at the polar head, and at positions 5 and 16 of the sn-2 acyl chain, indicated that the protein is interacting with the acyl chains of the phospholipid along the periphery of the bilayer of the discoidal lipoprotein. N-Bromosuccinimide readily abolished 100% of the fluorescence of all Trp residues in the lipid-bound state. Larger quenching rates were observed for the Trp residues in helices 1, 4, and 5 than for those located in helices 2 and 3, suggesting differences between the interaction of these two groups of helices. However, the extent of Trp fluorescence quenching observed in lipoproteins made with any of the mutants was comparable to that reported for deeply embedded Trp residues, suggesting that all Trp residues interact with the phospholipid acyl chains. This study provides the first experimental evidence of a massive interaction of the alpha-helices of apoLp-III with the phospholipid acyl chains in discoidal lipoproteins. The extent of interaction deduced is consistent with the apolipoprotein adopting a highly extended conformation.  相似文献   

6.
Weers PM  Abdullahi WE  Cabrera JM  Hsu TC 《Biochemistry》2005,44(24):8810-8816
Apolipophorin III (apoLp-III) from Locusta migratoria is a model exchangeable apolipoprotein that plays a key role in neutral lipid transport. The protein is comprised of a bundle of five amphipathic alpha-helices, with most hydrophobic residues buried in the protein interior. The low stability of apoLp-III is thought to be crucial for lipid-induced helix bundle opening, to allow protein-lipid interactions. The presence of polar residues in the hydrophobic protein interior may facilitate this role. To test this, two buried polar residues, Thr-31 and Thr-144, were changed into alanine by site-directed mutagenesis. Secondary structure analysis and GdnHCl- and temperature-induced denaturation studies indicated an increase in alpha-helical content and protein stability for T31A apoLp-III compared to wild-type apoLp-III. In contrast, T144A had a decreased alpha-helical content and protein stability, while tryptophan fluorescence indicated increased exposure of the hydrophobic interior to buffer. Two mutant proteins that had lysine residues introduced in the hydrophobic core displayed a more pronounced decrease in secondary structure and protein stability. Lipid binding studies using phospholipid vesicles showed that T31A apoLp-III was able to transform phospholipid vesicles into discoidal particles but at a 3-fold reduced rate compared to wild-type apoLp-III. In contrast, the less stable apoLp-III mutants displayed an increased ability to transform phospholipid vesicles. These results demonstrate the inverse correlation between protein stability and the ability to transform phospholipid vesicles into discoidal protein-lipid complexes and that Thr-31 is a key determinant of the relatively low protein stability, thereby promoting apoLp-III to interact with lipid surfaces.  相似文献   

7.
Dettloff M  Niere M  Ryan RO  Luty R  Kay CM  Wiesner A  Weers PM 《Biochemistry》2002,41(30):9688-9695
Apolipophorin III (apoLp-III) is a prototype exchangeable apolipoprotein that is amenable to structure-function studies. The protein folds as a bundle of five amphipathic alpha-helices and undergoes a dramatic conformational change upon lipid binding. Recently, we have shown that a truncation mutant of Galleria mellonella apoLp-III comprising helices 1-3 is stable in solution and able to bind to lipid surfaces [Dettloff, M., Weers, P. M. M., Niere, M., Kay, C. M., Ryan, R. O., and Wiesner, A. (2001) Biochemistry 40, 3150-3157]. To investigate the role of the C-terminal helices in apoLp-III structure and function, two additional 3-helix mutants were designed: a core fragment comprising helix (H) 2-4, and a C-terminal fragment (H3-5). Each truncation mutant retained the ability to associate spontaneously with dimyristoylphosphatidylcholine (DMPC) vesicles, transforming them into discoidal complexes. The rate of apolipoprotein-dependent DMPC vesicle transformation decreased in the order H1-3 > H2-4 > H3-5. Truncation of two helices led to a significant decrease in alpha-helical content in buffer in each case, from 86% (wild-type) to 50% (H1-3), 28% (H2-4), and 24% alpha-helical content (H3-5). On the other hand, trifluoroethanol or complexation with DMPC induced the truncation mutants to adopt a high alpha-helical structure similar to that of wild-type protein (84-100% alpha-helical structure). ApoLp-III(H1-3) and apoLp-III(H2-4), but not apoLp-III(H3-5), were able to prevent phospholipase-C-induced low density lipoprotein aggregation, indicating that interaction of the C-terminal fragment with spherical lipoprotein surfaces was impaired. As lipoprotein binding is significantly affected and DMPC transformation rates are relatively slow upon removal of N-terminal helices, the data indicate that structural elements necessary for lipid interaction reside in the N-terminal part of the protein.  相似文献   

8.
The structure of apolipophorin III in the lipid-bound state and the extent of the conformational change that takes place when the five-helix bundle apolipoprotein binds to a lipoprotein lipid surface were investigated by fluorescence resonance energy transfer in discoidal lipoproteins. Four intramolecular interhelical distances between helix pairs 1-4, 2-4, 3-4, and 5-4 were estimated by fluorescence resonance energy transfer in both the lipid-free and the lipid-bound states. Depending on the helices pairs, the intramolecular interhelical distances increased between 15 and > or = 20 A upon binding of the apolipoprotein to lipid, demonstrating for the first time that binding to lipid is accompanied by a major change in interhelical distances. Using discoidal lipoproteins made with a combination of apolipophorin III molecules containing donor and acceptor groups and apolipophorin III molecules containing neither donor nor acceptor groups, it was possible to obtain information about intermolecular interhelical distances between the helix 4 of one apolipoprotein and the helices 1, 2, 3, and 5 of a second apolipoprotein residing in the same discoidal lipoprotein. Altogether, the estimated intermolecular and intramolecular interhelical distances suggest a model in which the apolipoprotein arranges in pairs of antiparallel and fully extended polypeptide chains surrounding the periphery of the bilayer disc.  相似文献   

9.
Apolipophorin III (apoLp-III) is a prototypical apolipoprotein used for structure-function studies. Besides its crucial role in lipid transport, apoLp-III is able to associate with fungal and bacterial membranes and stimulate cellular immune responses. We recently demonstrated binding interaction of apoLp-III of the greater wax moth, Galleria mellonella, with lipopolysaccharides (LPS). In the present study, the requirement of helix bundle opening for LPS binding interaction was investigated. Using site-directed mutagenesis, two cysteine residues were introduced in close spatial proximity (P5C/A135C). When the helix bundle was locked by disulfide bond formation, the tethered helix bundle failed to associate with LPS. In contrast, the mutant protein regained its ability to bind upon reduction with dithiothreitol. Thus, helix bundle opening is a critical event in apoLp-III binding interaction with LPS. This mechanism implies that the hydrophobic interior of the protein interacts directly with LPS, analogous to that observed for lipid interaction.  相似文献   

10.
Chicken cystatin (cC) mutant I66Q is located in the hydrophobic core of the protein and increases the propensity for amyloid formation. Here, we demonstrate that under physiological conditions, the replacement of Ile with the Gln in the I66Q mutant increases the susceptibility for the disulfide bond Cys71–Cys81 to be reduced when compared to the wild type (WT) cC. Molecular dynamics (MD) simulations under conditions favoring cC amyloid fibril formation are in agreement with the experimental results. MD simulations were also performed to investigate the impact of disrupting the Cys71–Cys81 disulfide bond on the conformational stability of cC at the atomic level, and highlighted major disruption to the cC appendant structure. Domain swapping and extensive unfolding has been proposed as one of the possible mechanisms initiating amyloid fibril formation by cystatin. Our in silico studies suggest that disulfide bond formation between residues Cys95 and Cys115 is necessary to maintain conformational stability of the I66Q mutant following breakage of the Cys71–Cys81 disulfide bridge. Subsequent breakage of disulfide bond Cys95–Cys115 resulted in large structural destabilization of the I66Q mutant, which increased the α–β interface distance and expanded the hydrophobic core. These experimental and computational studies provide molecular-level insight into the relationship between disulfide bond formation and progressive unfolding of amyloidogenic cC mutant I66Q.

An animated Interactive 3D Complement (I3DC) is available in Proteopedia at http://proteopedia.org/w/Journal:JBSD:23  相似文献   

11.
Apolipophorin III (apoLp-III) is an exchangeable apolipoprotein whose structure is represented as a bundle of five amphipathic alpha-helices. In order to study the properties of the helical domains of apolipophorin III, we designed and obtained five single-tryptophan mutants of Locusta migratoria apoLp-III. The proteins were studied by UV absorption spectroscopy, time-resolved and steady-state fluorescence spectroscopy, and circular dichroism. Fluorescence anisotropy, near-UV CD and solute fluorescence quenching studies indicate that the Trp residues in helices 1 (N-terminal) and 5 (C-terminal) have the highest conformational flexibility. These two residues also showed the highest degree of hydration. Trp residues in helices 3 and 4 display the lowest mobility, as assessed by fluorescence anisotropy and near UV CD. The Trp residue in helix 2 is protected from the solvent but shows high mobility. As inferred from the properties of the Trp residues, helices 1 and 5 appear to have the highest conformational flexibility. Helix 2 has an intermediate mobility, whereas helices 3 and 4 appear to constitute a highly ordered domain. From the configuration of the helices in the tertiary structure of the protein, we estimated the relative strength of the five interhelical interactions of apoLp-III. These interactions can be ordered according to their apparent stabilizing strengths as: helix 3-helix 4 > helix 2-helix 3 > helix 4-helix 1 approximately helix 2-helix 5 > helix 1-helix 5. A new model for the conformational change that is expected to occur upon binding of the apolipoprotein to lipid is proposed. This model is significantly different from the currently accepted model (Breiter, D. R., Kanost, M. R., Benning, M. M., Wesemberg, G., Law, J. H., Wells, M. A., Rayment, I., and Holden, M. (1991) Biochemistry 30, 603-608). The model presented here predicts that the relaxation of the tertiary structure and the concomitant exposure of the hydrophobic core take place through the disruption of the weak interhelical contacts between helices 1 and 5. To some extent, the weakness of the helix 1-helix 5 interaction would be due to the parallel arrangement of these helices.  相似文献   

12.
Apolipophorin III (apoLp-III) is a low molecular weight exchangeable apolipoprotein that plays an important role in the enhanced neutral lipid transport during insect flight. The protein exists in lipid-free and lipid-bound states. The lipid-bound state is the active form of the protein and occurs when apoLp-III associates with lipid-enriched lipophorins. ApoLp-III is well characterized in two evolutionally divergent species: Locusta migratoria and Manduca sexta. The two apolipoproteins interact in a similar manner with model phospholipid vesicles, and transform them into discoidal particles. Their low intrinsic stability in the lipid-free state likely facilitates interaction with lipid surfaces. Low solution pH also favors lipid binding interaction through increased exposure of hydrophobic surfaces on apoLp-III. While secondary structure is maintained under acidic conditions, apoLp-III tertiary structure is altered, adopting molten globule-like characteristics. In studies of apoLp-III interaction with natural lipoproteins, we found that apoLp-III is readily displaced from the surface of L. migratoria low-density lipophorin by recombinant apoLp-III proteins from either L. migratoria or M. sexta. Thus, despite important differences between these two apoLp-IIIs (amino acid sequence, presence of carbohydrate), their functional similarity is striking. This similarity is also illustrated by the recently published NMR solution structure of M. sexta apoLp-III wherein its molecular architecture closely parallels that of L. migratoria apoLp-III.  相似文献   

13.
You M  Spangler J  Li E  Han X  Ghosh P  Hristova K 《Biochemistry》2007,46(39):11039-11046
Mutations in fibroblast growth factor receptors are known as the genetic basis of skeletal growth disorders. The mechanism of pathogenesis, as determined by mutation-induced changes in receptor structure, interactions, and function, is elusive. Here we study three pathogenic Cys mutations, associated with either thanatophoric dysplasia or achondroplasia, in the TM domain of fibroblast growth factor receptors 3 (FGFR3). We characterize the dimerization propensities of the mutant TM domains in detergents and in lipid bilayers, in the presence and absence of reducing agents, and compare them to previous measurements of wild-type. We find that the Cys mutations increase the propensity for dimerization in detergent, with the Cys370 mutant exhibiting the highest propensity for disulfide bond formation, the Cys371 mutant having an intermediate propensity, and Cys375 the lowest. Thus, disulfide bonds readily form in detergents, with efficiency that correlates with the severity of the phenotype. In lipid bilayers, however, the Cys370 mutant, which dimerizes strongly in detergent, behaves as the wild-type, suggesting that Cys370-mediated disulfide bonds do not form between the isolated TM domains in bilayers. Thus, the nature of the hydrophobic environment plays an important role in defining the structure and flexibility of transmembrane dimers. These results and previous findings from cellular studies lead us to propose a conformational flexibility mechanism of receptor stabilization as a basis for disregulated FGFR3 signaling in thanatophoric dysplasia and achondroplasia.  相似文献   

14.
Conformational reorganization of the amino-terminal four-helix bundle (22-kDa fragment) of apolipoprotein E (apoE) in binding to the phospholipid dimyristoylphosphatidylcholine (DMPC) to form discoidal particles was investigated by introducing single, double, and triple interhelical disulfide bonds to restrict the opening of the bundle. Interaction of apoE with DMPC was assessed by vesicle disruption, turbidimetric clearing, and gel filtration assays. The results indicate that the formation of apoE.DMPC discoidal particles occurs in a series of steps. A triple disulfide mutant, in which all four helices were tethered, did not form complexes but could release encapsulated 5-(6)-carboxylfluorescein from DMPC vesicles, indicating that the initial interaction does not involve major reorganization of the helical bundle. Initial interaction is followed by the opening of the four-helix bundle to expose the hydrophobic faces of the amphipathic helices. In this step, helices 1 and 2 and helices 3 and 4 preferentially remain paired, since these disulfide-linked mutants bound to DMPC in a manner similar to that of the 22-kDa fragment of apoE4. In contrast, mutants in which helices 2 and 3 and/or helices 1 and 4 paired bound poorly to DMPC. However, all single and double helical pairings resulted in the formation of larger discs than were formed by the 22-kDa fragment, indicating that further reorganization of the helices occurs following the initial opening of the four-helix bundle in which the protein assumes its final lipid-bound conformation. In support of this rearrangement, reducing the disulfide bonds converted the large disulfide mutant discs to normal size.  相似文献   

15.
Molecular dynamics simulations were carried out to calculate free energy differences between the folded and unfolded states of wild type and mutant collagen model peptides. The calculated stability of the collagen models was compared with the severity of osteogenesis imperfecta. Free energy differences of Gly → Xaa (Xaa: Ser, Cys, Glu, and Asp) mutations between the wild type and the mutants at position 15 of the model peptide were 3.8, 4.2, 5.6, and 8.8 kcal/mol, respectively. The corresponding free energy differences of a second Gly mutation at the same position in different chains were, on average, 1.3, 1.5, 2.9, and 5.4 kcal/mol, respectively. Free energy simulations were also performed to estimate the relative stability between an oxidized form and a reduced form of the mutants containing two Cys residues, which indicated that the mutant of the collagen-like peptide containing an intramolecular disulfide bond was more stable than the mutant containing one Cys residue but less stable than the wild type. The calculated free energy differences between an oxidized and a reduced form of the mutants containing two Cys residues are 0.8 and 2.6 kcal/mol for the disulfide bonds between Chains A and B and between Chains A and C, respectively.  相似文献   

16.
Two molecular dynamics simulations have been performed for 2 ns, at room temperature, on fully hydrated wild type and Cys3Ala/Cys26Ala double-mutant azurin, to investigate the role of the unique disulfide bridge on the structure and dynamics of the protein. The results show that the removal of the [bond]SS[bond] bond does not affect the structural features of the protein, whereas alterations of the dynamical properties are observed. The root mean square fluctuations of the atomic positions are, on average, considerably reduced in the azurin mutant with respect to the wild type form. The number of intramolecular hydrogen bonds between protein backbone atoms that are lost during the simulation, with respect to the starting configuration, are reduced in the absence of the disulfide bond. The analysis of the dynamical cross-correlation map, characterising the protein co-ordinated internal motions, demonstrates in the mutated azurin a significant decrease in anti-correlated displacements between protein residues, with the only exception occurring in the region of the mutation sites. The overall findings show a relevant reduction in flexibility as a consequence of the disulfide bridge depletion in azurin, suggesting that the [bond]SS[bond] bond is a structural element which significantly contributes to the dynamic properties of the native protein.  相似文献   

17.
Dettloff M  Weers PM  Niere M  Kay CM  Ryan RO  Wiesner A 《Biochemistry》2001,40(10):3150-3157
Apolipophorin III (apoLp-III) from the greater wax moth Galleria mellonella is an exchangeable insect apolipoprotein that consists of five amphipathic alpha-helices, sharing high sequence identity with apoLp-III from the sphinx moth Manduca sexta whose structure is available. To define the minimal requirement for apoLp-III structural stability and function, a C-terminal truncated apoLp-III encompassing residues 1-91 of this 163 amino acid protein was designed. Far-UV circular dichroism spectroscopy revealed apoLp-III(1-91) has 50% alpha-helix secondary structure content in buffer (wild-type apoLp-III 86%), increasing to essentially 100% upon interactions with dimyristoylphosphatidylcholine (DMPC). Guanidine hydrochloride denaturation studies revealed similar stability properties for wild-type apoLp-III and apoLp-III(1-91). Resistance to denaturation for both proteins increased substantially upon association with phospholipid. In the absence of lipid, wild-type apoLp-III was monomeric whereas apoLp-III(1-91) partly formed dimers and trimers. Discoidal apoLp-III(1-91)-DMPC complexes were smaller in diameter (13.5 nm) compared to wild-type apoLp-III (17.7 nm), and more molecules of apoLp-III(1-91) associated with the complexes. Lipid interaction revealed that apoLp-III(1-91) binds to modified spherical lipoprotein surfaces and efficiently transforms phospholipid vesicles into discoidal complexes. Thus, the first three helices of G. mellonella apoLp-III contain the basic features required for maintenance of the structural integrity of the entire protein.  相似文献   

18.
The engineered disulfide bridge between residues 21 and 142 of phage T4 lysozyme spans the active-site cleft and can be used as a switch to control the activity of the enzyme (Matsumura, M. & Matthews, B.W., 1989, Science 243, 792-794). In the oxidized form the disulfide increases the melting temperature of the protein by 11 degrees C at pH 2. The crystal structure of this mutant lysozyme has been determined in both the reduced and oxidized forms. In the reduced form, the crystal structure of the mutant is shown to be extremely similar to that of wild type. In the oxidized form, however, the formation of the disulfide bridge causes the alpha-carbons of Cys 21 and Cys 142, on opposite sides of the active-site cleft, to move toward each other by 2.5 A. In association with this movement, the amino-terminal domain of the protein undergoes a rigid-body rotation of 5.1 degrees relative to the carboxy-terminal domain. This rotation occurs about an axis passing through the junction of the amino-terminal and carboxy-terminal domains and is also close to the axis that best fits the apparent thermal motion of the amino-terminal domain seen previously in crystals of wild-type lysozyme. Even though the engineered Cys 21-Cys 142 disulfide links together the amino-terminal and carboxy-terminal domains of T4 lysozyme, it does not reduce the apparent mobility of the one domain relative to the other. The pronounced "hinge-bending" mobility of the amino-terminal domain that is suggested by the crystallographic thermal parameters of wild-type lysozyme persists in the oxidized (and reduced) mutant structures. In the immediate vicinity of the introduced disulfide bridge the mutant structure is more mobile (or disordered) than wild type, so much so that the exact conformation of Cys 21 remains obscure. As with the previously described disulfide bridge between residues 9 and 164 of T4 lysozyme (Pjura, P.E., Matsumura, M., Wozniak, J.A., & Matthews, B.W., 1990, Biochemistry 29, 2592-2598), the engineered cross-link substantially enhances the stability of the protein without making the folded structure more rigid.  相似文献   

19.
Previous evidence indicated that discoidal reconstituted high density lipoproteins (rHDL) of apolipoprotein A-I (apoA-I) can interact with lipid membranes (Tricerri, M. A., Córsico, B., Toledo, J. D., Garda, H. A., and Brenner, R. R. (1998) Biochim. Biophys. Acta 1391, 67-78). With the aim of studying this interaction, photoactivable reagents and protein cleavage with CNBr and hydroxylamine were used. The generic hydrophobic reagent 3-(trifluoromethyl)-3-(m-[125I]iodophenyl)diazirine gave information on the apoA-I regions in contact with the lipid phase in the rHDL discs. Two protein regions loosely bound to lipids were detected: a C-terminal domain and a central one located between residues 87 and 112. They consist of class Y amphipathic alpha-helices that have a different distribution of the charged residues in their polar faces by comparison with class A helices, which predominate in the rest of the apoA-I molecule. The phospholipid analog 1-O-hexadecanoyl-2-O-[9-[[[2-[125I]iodo-4-(trifluoro-methyl-3-H-diazirin-3-yl)benzyl]oxy]carbonyl]nonanoyl]-sn-glycero-3-phosphocholine, which does not undergo significant exchange between membranes and lipoproteins, was used to identify the apoA-I domain directly involved in the interaction of rHDL discs with membranes. By incubating either rHDL or lipid-free apoA-I with lipid vesicles containing 125I-TID-PC, only the 87-112 apoA-I segment becomes labeled after photoactivation. These results indicate that the central domain formed by two type Y helices swings away from lipid contact in the discoidal lipoproteins and is able to insert into membrane bilayers, a process that may be of great importance for the mechanism of cholesterol exchange between high density lipoproteins and cell membranes.  相似文献   

20.
P M Weers  C M Kay  R O Ryan 《Biochemistry》2001,40(25):7754-7760
Locusta migratoria apolipophorin III (apoLp-III) is a helix bundle exchangeable apolipoprotein that reversibly binds to lipoprotein surfaces. Structural reorganization of its five amphipathic alpha-helices enables the transition from the lipid-free to lipid-bound state. ApoLp-III-induced transformation of dimyristoylphosphatidylcholine (DMPC) bilayer vesicles into smaller discoidal complexes is enhanced as a function of decreasing pH, with maximal transformation occurring at pH 3.5. Over the entire pH range studied, apoLp-III retains nearly all of its secondary structure content. Whereas no changes in fluorescence emission maximum of the two Trp residues in apoLp-III were observed in the pH range from 7.0 to 4.0, a further decrease in pH resulted in a strong red shift. Near-UV circular dichroism spectra of apoLp-III showed well-defined extrema (at 286 and 292 nm) between pH 7.0 and pH 4.0, which were attributed to Trp115. Below pH 4.0, these extrema collapsed, indicating a less rigid environment for Trp115. Similarly, the fluorescence intensity of 8-anilinonaphthalene-1-sulfonate in the presence of apoLp-III increased 4-fold below pH 4.0, indicating exposure of hydrophobic sites in the protein in this pH range. Taken together, the data suggest two conformational states of the protein. In the first state between pH 7.0 and pH 4.0, apoLp-III retains a nativelike helix bundle structure. The second state, found between pH 3.0 and pH 4.0, is reminiscent of a molten globule, wherein tertiary structure contacts are disrupted without a significant loss of secondary structure content. In both states DMPC vesicle transformation is enhanced by lowering the solution pH, reaching an optimum in the second state. The correlation between tertiary structure and lipid binding activity suggests that helix bundle organization is a determinant of apoLp-III lipid binding activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号