首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Stimulation of astrocytes with the excitatory neurotransmitter glutamate leads to the formation of inositol 1,4,5-trisphosphate and the subsequent increase of intracellular calcium content. Astrocytes express both ionotropic receptors and metabotropic glutamate (mGlu) receptors, of which mGlu5 receptors are probably involved in glutamate-induced calcium signaling. The mGlu5 receptor occurs as two splice variants, mGlu5a and mGlu5b, but it was hitherto unknown which splice variant is responsible for the glutamate-induced effects in astrocytes. We report here that both mRNAs encoding mGlu5 receptor splice variants are expressed by cultured astrocytes. The expression of mGlu5a receptor mRNA is much stronger than that of mGlu5b receptor mRNA in these cells. In situ hybridization experiments reveal neuronal expression of mGlu5b receptor mRNA in adult rat forebrain but a strong neuronal expression of mGlu5a mRNA only in olfactory bulb. Signals for mGlu5a receptor mRNA in the rest of the brain were diffuse and weak but consistently above background. Activation of mGlu5 receptors in astrocytes yields increases in inositol phosphate production and transient calcium responses. It is surprising that the rank order of agonist potency [quisqualate > (2S,1 'S,2'S)-2-(carboxycyclopropyl)glycine = trans-(1S,3R)-1-amino-1,3-cyclopentanedicarboxylic acid (1S,3R-ACPD) > glutamate] differs from that reported for recombinantly expressed mGlu5a receptors. The expression of mGlu5a receptor mRNA and the occurrence of 1S,3R-ACPD-induced calcium signaling were found also in cultured microglia, indicating for the first time expression of mGlu5a receptors in these macrophage-like cells.  相似文献   

2.
突触前代谢型谷氨酸受体调节神经递质的释放   总被引:6,自引:0,他引:6  
谷氨酸通过激活离子型受体(iGluR)介导快速兴奋性突触传递,参与脑内几乎所有生理过程。谷氨酸过量释放可导致与脑缺血,缺氧及变性疾病有关的兴奋毒作用,最终引起神经元的死亡。代谢型谷氨酸受体(mGluRs)是一个与G-蛋白偶联的受体家族,分三型共八个亚型。其中Ⅱ和Ⅲ型mGluRs主要位于突触前,发挥对谷氨酸释放的负反馈调节。Ⅲ型mGluRs中的mGluR7位于谷氨酸能末梢突触前膜的活性区,发挥自身受体的作用,对正常情况下突触传递过程的谷氨酸释放进行负反馈调节;而属于Ⅱ型的mGluR2及属于Ⅲ型的mGluR4和mGluR8,则位于远离突有膜活性区的外突触区,因而正常突触传递过程中释放的谷氨酸量不能激活它们。只有在突触传递增强的情况下才被激活,抑制递质的释放。国外,mGluRs还分布在GABA能纤维末梢,通过突触前机制抑制GABA的释放。对突触前膜受体尤其是位于外突触区的mGluRs受体的研究,将有可能开发出理想的工具药,从而预防和阻止谷氨酸过量释放引起的神经毒及神经元的死亡。  相似文献   

3.
In cerebellar slices, the lowering of oxygen availability, obtained by bubbling N(2) in the medium, reduced the incorporation of radioactive serine into phosphatidylserine (PtdSer). CPCCOEt, an antagonist of metabotropic glutamate receptors type 1 (mGluR1) counteracted the effect, whereas antagonists of NMDA or AMPA receptors were ineffective. In oxygenated slices, agonists of Group I mGluRs, which include mGluR1, inhibited PtdSer synthesis. This effect was also counteracted by CPCCOEt. These findings indicate that glutamate inhibits PtdSer synthesis by acting on mGluR1. This could be important in relation to the known release of glutamate in hypoxia-ischaemia conditions. In cerebellar Purkinje cells, mGluR1 are involved in the generation of mGluR-EPSP evoked by parallel fibre stimulation. The administration of l-serine to cerebellar slices reduced in a dose-dependent manner the mGluR-EPSP evoked by parallel fibre stimulation. The effect was mostly due to the increased synthesis of PtdSer. Thus inhibition of PtdSer synthesis, mediated by mGluR1, may participate in the generation of mGluR-EPSP.  相似文献   

4.
A detailed pharmacological characterization of metabotropic glutamate receptors (mGluR) was performed in primary cultures of cerebellar granule cells at 6 days in vitro (DIV). The rank order of agonists induced polyphosphoinositide (PPI) hydrolysis (after correcting for the ionotropic component in the response) was as follows: in terms of efficiency, Glu>quisqualate (quis)=ibotenate (ibo)>(1S,3R)-1-amino-cyclopentane-1,3-dicarboxylic acid (ACPD)>-methyl-amino-l-alanine (BMAA) and in terms of potency, quis>ACPD>Glu>ibo=BMAA. Ionotropic excitatory amino acid (EAA) receptor agonists, such as -amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and N-methyl-D-aspartate (NMDA) were relatively inactive (in the presence of Mg2+). Quis and ACPD-induced PPI hydrolysis was unaffected by ionotropic Glu receptor antagonists, but was inhibited, in part by L-2-amino-3-phosphonopropionate (AP3). In contrast, Glu-or ibo- induced PPI hydrolysis was reduced, in part, by both AP3 and NMDA receptor antagonists. Characteristic interactions involving different transmitter receptors were noted. PPI hydrolysis evoked by quis and 1S,3R-ACPD was not additive. In contrast, PPI hydrolysis stimulated by quis/ACPD and carbamylcholine was additive (indicating different receptors/transduction pathways). In the presence of Mg2+, the metabotropic response to quis/AMPA and NMDA was synergistic (this being consistent with AMPA receptor-induced depolarization activating NMDA receptor). On the other hand, in Mg2+-free buffer the effects of quis and NMDA, at concentrations causing maximal PPI hydrolysis, were additive (indicating that PPI hydrolysis was effected by two different mechanisms). Thus, in cerebellar granule cells EAAs elicit PPI hydrolysis by acting at two distinct receptor types: (i) metabotropic Glu receptors (mGluR), with pharmacological characteristics suggesting the expression of a unique mGluR receptor that shows certain similarities to those observed for the mGluR1 subtype (Aramori and Nakanishi, 1992) and (ii) NMDA receptors. The physiological agonist, Glu, is able to stimulate both receptor classes.Abbreviations ACPD (1S,3R)-1-amino-cyclopentane-1,3-dicarboxylic acid - AMPA -amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid - AP3 L-2-amino-3-phosphono-propionate - AP5 D-2-amino-5-phosphonopentenoate - BMAA -methyl-amino-L-alanine - DIV days in vitro - DNOX 6,7-dinitroouinoxoline-2,3-dione - EAA excitatory amino acids - Glu glutamate - InsP inositol monophosphate - mGluR metabotropic glutamate receptors - MK-801 (+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]-cyclohept-5,10-imine hydrogen maleate - NMDA N-methyl-D-aspartate - PPI polyphosphoinositide - quis quisqualate  相似文献   

5.
The primary cause of Parkinson's disease is a loss of dopamine in the corpus striatum. It has been postulated that this effect leads to disinhibition of the striopallidal pathway and secondarily, to a functional shift towards glutamatergic stimulation. The aim of the present study was to find out whether inhibition of glutamatergic transmission at a level of metabotropic glutamate receptors (mGluRs) in the striatum may alleviate parkinsonian-like symptoms in rats. The non-competitive antagonist of receptor subtype 5 (mGluR5), MPEP (1.0-10 mg/kg ip), or the agonist of group II mGluRs, LY354,740 (5-10 mg/kg ip), reduced haloperidol-induced muscle rigidity and catalepsy. Intrastriatal injections of the mGluR1 antagonist, (RS) AIDA (7.5-15 microg/0.5 microl), but not of the agonist of group II mGluRs, 2R,4R-APDC (7.5-15 microg/0.5 microl), inhibited the muscle rigidity induced by haloperidol. In order to search for an influence of mGluRs on the striopallidal pathway, the effect of MPEP or of the agonist of group II mGluRs, DCG-IV, on the proenkephalin (PENK) mRNA expression in the dorso-lateral striatum was examined by an in situ hybridization. Repeated MPEP (6 x 10 mg/kg ip) administration did not influence PENK expression in na?ve rats, but diminished that increased by haloperidol. In contrast, repeated DCG-IV (3 x 1 nmol/4 microl icv) injections enhanced both the control and the haloperidol-increased levels of PENK expression. The obtained results suggest that blockade of group I mGluRs, or stimulation of group II mGluRs may be important to ameliorate parkinsonian symptoms. Striatal mGluRs may contribute to at least some of these effects.  相似文献   

6.
Glutamate is well established as an excitatory neurotransmitter in the vertebrate retina. Its role as a modulator of retinal function, however, is poorly understood. We used immunocytochemistry and calcium imaging techniques to investigate whether metabotropic glutamate receptors are expressed in the chicken retina and by identified GABAergic amacrine cells in culture. Antibody labeling for both metabotropic glutamate receptors 1 and 5 in the retina was consistent with their expression by amacrine cells as well as by other retinal cell types. In double-labeling experiments, most metabotropic glutamate receptor 1-positive cell bodies in the inner nuclear layer also label with anti-GABA antibodies. GABAergic amacrine cells in culture were also labeled by metabotropic glutamate receptor 1 and 5 antibodies. Metabotropic glutamate receptor agonists elicited Ca(2+) elevations in cultured amacrine cells, indicating that these receptors were functionally expressed. Cytosolic Ca(2+) elevations were enhanced by metabotropic glutamate receptor 1-selective antagonists, suggesting that metabotropic glutamate receptor 1 activity might normally inhibit the Ca(2+) signaling activity of metabotropic glutamate receptor 5. These results demonstrate expression of group I metabotropic glutamate receptors in the avian retina and suggest that glutamate released from bipolar cells onto amacrine cells might act to modulate the function of these cells.  相似文献   

7.
Although reactive oxygen species (ROS) are conventionally viewed as toxic by-products of cellular metabolism, a growing body of evidence suggests that they may act as signaling molecules. We have studied the effects of hydrogen peroxide (H(2)O(2))-induced oxidative stress on phospholipid signaling in cultured rat cortical astrocytes. H(2)O(2) stimulated the formation of phosphatidic acid and the accumulation of phosphatidylbutanol, a product of the phospholipase D (PLD)-catalyzed transphosphatidylation reaction. The effect of exogenous H(2)O(2) on the PLD response was mimicked by menadione-induced production of endogenous H(2)O(2). Oxidative stress also elicited inositol phosphate accumulation resulting from phosphoinositide phospholipase C (PLC) activation. The PLD response to H(2)O(2) was totally suppressed by chelation of both extracellular and cytosolic Ca(2+) with EGTA and BAPTA/AM, respectively. Furthermore, H(2)O(2)-induced PLD stimulation was completely abolished by the protein kinase C (PKC) inhibitors bisindolylmaleimide and chelerythrine and by PKC down-regulation. Activation of PLD by H(2)O(2) was also inhibited by the protein-tyrosine kinase inhibitor genistein. Finally, H(2)O(2) also stimulated both PLC and PLD in rat brain cortical slices. These results show for the first time that oxidative stress elicits phospholipid breakdown by both PLC and PLD in rat cultured astrocytes and brain slices.  相似文献   

8.
We investigated whether the activation of astroglial group II and III metabotropic glutamate receptors (mGluRs) could exert neuroprotective effects and whether the neuroprotection was related to glutamate uptake. Our results showed that the activation of astroglial group II or III mGluRs exerted neuroprotection against 1-methyl-4-phenylpyridinium (MPP+) astroglial conditioned medium-induced neurotoxicity in midbrain neuron cultures. Furthermore, MPP+ decreased glutamate uptake of primary astrocytes and C6 glioma cells, which was recovered by activating group II or III mGluRs. Specific group II or III mGluRs antagonists completely abolished the neuroprotective effects and the enhancement of glutamate uptake of their respective agonists. Our results showed that the primary cultured rat astrocytes and C6 glioma cells expressed receptor proteins for group II mGluR2/3, group III mGluR4, mGluR6 and mGluR7. C6 glioma cells expressed mRNA for group II mGluR3, group III mGluR4, mGluR6, mGluR7 and mGluR8. In conclusion, we confirmed that the activation of astroglial mGluRs exerted neuroprotection, and demonstrated that the mechanism underlying this protective role was at least partially related to the enhancement of glutamate uptake.  相似文献   

9.
10.
Regulation of neurotransmitter release by metabotropic glutamate receptors   总被引:25,自引:0,他引:25  
The G protein-coupled metabotropic glutamate (mGlu) receptors are differentially localized at various synapses throughout the brain. Depending on the receptor subtype, they appear to be localized at presynaptic and/or postsynaptic sites, including glial as well as neuronal elements. The heterogeneous distribution of these receptors on glutamate and nonglutamate neurons/cells thus allows modulation of synaptic transmission by a number of different mechanisms. Electrophysiological studies have demonstrated that the activation of mGlu receptors can modulate the activity of Ca(2+) or K(+) channels, or interfere with release processes downstream of Ca(2+) entry, and consequently regulate neuronal synaptic activity. Such changes evoked by mGlu receptors can ultimately regulate transmitter release at both glutamatergic and nonglutamatergic synapses. Increasing neurochemical evidence has emerged, obtained from in vitro and in vivo studies, showing modulation of the release of a variety of transmitters by mGlu receptors. This review addresses the neurochemical evidence for mGlu receptor-mediated regulation of neurotransmitters, such as excitatory and inhibitory amino acids, monoamines, and neuropeptides.  相似文献   

11.
Metabotropic glutamate receptors (mGluR) modulate neuronal function. Here, we tested the effect on metabolism of a range of Group I and II mGluR ligands in Guinea pig brain cortical tissue slices, applying 13C NMR spectroscopy and metabolomic analysis using multivariate statistics. The effects of Group I agonists (S)-3,5-dihydroxyphenylglycine (DHPG) and (RS)-2-chloro-5-hydroxyphenylglycine (CHPG) depended upon concentration and were mostly stimulatory, increasing both net metabolic flux through the Krebs cycle and glutamate/glutamine cycle activity. Only the higher (50 microm) concentrations of CHPG had the opposite effect. The Group I antagonist (RS)-1-aminoindan-1,5-dicarboxylic acid (AIDA), consistent with its neuroprotective role, caused significant decreases in metabolism. With principal components analysis of the metabolic profiles generated by these ligands, the effects could be separated by two principal components. Agonists at Group II mGluR [(2S,2'R,3'R)-2-(2',3'-dicarboxycyclopropyl)glycine (DCG IV) and 2R,4R-4-aminopyrrolidine-2,4-dicarboxylate (APDC)] generally stimulated metabolism, including glutamate/glutamine cycling, although this varied with concentration. The antagonist (2S)-alpha-ethylglutamic acid (EGLU) stimulated astrocyte metabolism with minimal impact on glutamate/glutamine cycling. (RS)-1-Aminophosphoindan-1-carboxylic acid (APICA) decreased metabolism at 5 microm but had a stimulatory effect at 50 microm. All ligand effects were separated from control and from each other using two principal components. The ramifications of these findings are discussed.  相似文献   

12.
13.
Summary.  Degeneration of dopaminergic nigrostriatal neurons is a primary cause of Parkinson's disease. Oxidative stress, excitotoxicity and mitochondrial failure are thought to be key mechanisms resposible for degeneration of dopaminergic cells. We found that the selective antagonist of the mGluR5 subtype MPEP in a dose of 5 mg/kg diminshed basal and veratridine (100 μM)-stimulated dopamine release in rat striatum in an in vivo model of microdialysis. In contrast, MPEP given intrastriatally in a high concentration (500 μM) enhanced the striatal extracellular concentration of dopamine. DCG-IV (100 μM), a non-selective agonist of group II mGluRs, inhibited the veratridine-stimulated striatal dopamine release. In an animal model of neuroxicity in vivo, methamphetamine (5 × 10 mg/kg, injected at 2 h intervals) produced deficits in the striatal content of dopamine and its metabolites DOPAC and HVA 72 h after the treatment. MPEP (5 × 5 mg/kg) given before each methamphetamine injection reversed the decrease in the striatal content of dopamine and diminished the methamphetamine-induced dopamine outflow from nigrostriatal terminals. It is concluded that the MPEP-produced blockade of mGluR5 situated on dopaminergic cells, or the suppression of glutamate release in the subthalamic nucleus or substantia nigra pars reticulata may directly and indirectly cause a decrease in striatal dopamine release. However, inhibitory effect of DCG-IV on dopamine release can be induced by attenuation of excitatory input from corticostriatal terminals by activation of mGluR2/3. Regulation of dopamine carriers by MPEP, an antagonist of group I mGluRs may be responsible for the reversal of toxicity induced by methamphetamine. Received July 7, 2001 Accepted August 6, 2001 Published online September 10, 2002  相似文献   

14.
Summary The inhibitory amino acid taurine has been held to function as an osmoregulator and modulator of neural activity, being particularly important in the immature brain. lonotropic glutamate receptor agonists are known markedly to potentiate taurine release. The effects of different metabotropic glutamate receptor (mGluR) agonists and antagonists on the basal and K+-stimulated release of [3H]taurine from hippocampal slices from 3-month-old (adult) and 7-day-old mice were now investigated using a superfusion system. Of group I metabotropic glutamate receptor agonists, quisqualate potentiated basal taurine release in both age groups, more markedly in the immature hippocampus. This action was not antagonized by the specific antagonists of group I but by 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) and 6-nitro-7-sulphamoylbenzo[f]quinoxaline-2,3-dione (NBQX), which would suggest an involvement of ionotropic glutamate receptors. (S)-3,5-dihydroxyphenylglycine (DHPG) potentiated the basal release by a receptor-mediated mechanism in the immature hippocampus. The group II agonist (2S, 2R, 3R)-2-(2,3-dicarboxycyclopropyl)glycine (DCG IV) markedly potentiated basal taurine release at both ages. These effects were antagonized by dizocilpine, indicating again the participation of ionotropic receptors. Group III agonists slightly potentiated basal taurine release, as did several antagonists of the three metabotropic receptor groups. Potassium-stimulated (50 mM K+) taurine release was generally significantly reduced by mGluR agents, mainly by group I and II compounds. This may be harmful to neurons in hyperexcitatory states. On the other hand, the potentiation by mGluRs of basal taurine release, particularly in the immature hippocampus, together with the earlier demonstrated pronounced enhancement by activation of ionotropic glutamate receptors, may protect neurons against excitotoxicity.Abbreviations ACPD (1±)-1-aminocyclopentane-trans-1,3-dicarboxylate - AIDA (RS)-1-aminoindan-1,5-dicarboxylate - AMPA 2-amino-3-hydroxy05-methyl-4-isoxazolepropionate - CNQX 6-cyano-7-nitroquinoxaline-2,3-dione - CPPG (RS)-2-cyclopropyl-4-phosphonophenylglycine - DCG IV (2S,2R,3R)-2-(2,3-dicarboxycyclopropyl)glycine - DHPG (S)-3,5-dihydroxyphenylglycine - EGLU (2S)-2-ethylglutamate - L-AP3 L(+)-2-amino-3-phosphonopropionate - L-AP4 L(+)-2-amino-4-phosphonobutyrate - L-AP6 L(+)-2-amino-6-phosphonohexanoate - L-SOP O-phospho-L-serine - MPPG (RS)-2-methyl-4-phosphonophenylglycine - MSOP (RS)-2-methylserine-O-phosphate - MSOPPE (RS)-2-methylserine-O-phosphate monophenyl ester - MTPG (RS)-2-methyl-4-tetrazolylphenylglycine - NBQX 6-nitro-7-sulphamoyl[f]quinoxaline-2,3-dione - NMDA N-methyl-D-aspartate - QA quisqualate - S-3C4H-PG (S)-3-carboxy-4-hydroxyphenylglycine - S-4C-PG (S)-4-carboxyphenylglycine; - S-MCGP (S)-2-methyl-4-carboxyphenylglycine  相似文献   

15.
Summary. It has been shown that the primary striatal dopaminergic hypofunction which is at the origin of Parkinson's disease, results in a secondary hyperactivity of glutamatergic neurotransmission. In the search for a therapy of Parkinson's disease, ionotropic, mainly NMDA, receptor antagonists were found to have moderately beneficial, yet also some undesirable side-effects. Therefore the present study was aimed at determining whether some metabotropic glutamate receptor (mGluR) ligands may have antiparkinsonian effects in the haloperidol-induced muscle rigidity. To this end three mGluR ligands were used: the potent and selective mGluR I antagonist (RS)-1-aminoindan-1,5-dicarboxylic acid (AIDA), the mixed group II agonist/group I antagonist (S)-4-carboxy-3-hydroxyphenyl-glycine ((S)-4-C3HPG), and the potent group II agonist (+)-2-aminobicyclo[3.1.0.]hexane-2,6,-dicarboxylic acid (LY354740). Only LY354740 penetrated the brain from the periphery; for this reason other drugs were injected bilaterally into the rostral striatum or nucleus accumbens. The muscle tone was recorded by a mechanomyographic/electromyographic (MMG/EMG) method which measured the resistance of a rat's hind foot and the EMG reflex response of its muscles to passive movements. (S)-4C3HPG (5 and 15 μg/0.5 μl) and LY354740 (5 and 10 mg/kg i.p.) diminished the muscle rigidity induced by haloperidol (1 mg/kg i.p.). AIDA (0.5–15 μg/0.5 μl) injected into the striatum was only slightly effective in the highest dose used. However, when injected into the nucleus accumbens AIDA (15 μg/0.5 μl) significantly and strongly counteracted the haloperidol-induced muscle rigidity. Our results suggest that stimulation of group II striatal mGluRs seems to play a major role in diminution of parkinsonian-like muscle rigidity. However, it seems that the antagonism of group I mGluRs located in the nucleus accumbens may also be of importance to the antiparkinsonian effect. Received August 31, 1999 Accepted September 3, 1999  相似文献   

16.
We have examined the expression of mRNA for several P2Y nucleotide receptors by northern blot analysis in purified type 1 cerebellar astrocyte cultures. These results suggest that different P2Y subtypes could be responsible for ATP metabotropic calcium responses in single type 1 astrocytes. To identify these subtypes we have studied the pharmacological profile of ATP calcium responses using fura-2 microfluorimetry. All tested astrocytes responded to ATP and UTP stimulations evoking similar calcium transients. Most astrocytes also responded to 2-methylthioATP and ADP challenges. The agonist potency order was 2-methylthioATP > ADP > ATP = UTP. Cross-desensitization experiments carried out with ATP, UTP, and 2-methylthioATP showed that 2-methylthioATP and UTP interact with different receptors, P2Y(1) and P2Y(2) or P2Y(4). In a subpopulation of type 1 astrocytes, ATP prestimulation did not block UTP responses, and UDP elicited clear intracellular Ca(2+) concentration responses at very low concentrations. 2-MethylthioATP and UTP calcium responses exhibited different sensitivity to pertussis toxin and different inhibition patterns in response to P2 antagonists. The P2Y(1)-specific antagonist N:(6)-methyl-2'-deoxyadenosine 3', 5'-bisphosphate (MRS 2179) specifically blocked the 2-methylthio-ATP responses. We can conclude that all single astrocytes coexpressed at least two types of P2Y metabotropic receptors: P2Y(1) and either P2Y(2) or P2Y(4) receptors. Moreover, 30-40% of astrocytes also coexpressed specific pyrimidine receptors of the P2Y(6) subtype, highly selective for UDP coupled to pertussis-toxin insensitive G protein.  相似文献   

17.
Metabotropic glutamate receptors (mGluR) are present in cells of the nervous system, where they are activated by one of the main neurotransmitters, glutamate. They are also expressed in cells outside the nervous system. We identified and characterized two receptors belonging to group I mGluR, mGlu1R and mGlu5R, in human cell lines of lymphoid origin and in resting and activated lymphocytes from human peripheral blood. Both are highly expressed in the human Jurkat T cell line, whereas mGlu5R is expressed only in the human B cell line SKW6.4. In blood lymphocytes, mGlu5R is expressed constitutively, whereas mGlu1R is expressed only upon activation via the T cell receptor-CD3 complex. Group I receptors in the central nervous system are coupled to phospholipase C, whereas in blood lymphocytes, activation of mGlu5R does not trigger this signaling pathway, but instead activates adenylate cyclase. On the other hand, mGlu5R does not mediate ERK1/2 activation, whereas mGlu1R, which is coupled neither to phospholipase C nor to calcium channels and whose activation does not increase cAMP, activates the mitogen-activated protein kinase cascade. The differential expression of mGluR in resting and activated lymphocytes and the different signaling pathways that are triggered when mGlu1Rs or mGlu5Rs are activated point to a key role of glutamate in the regulation of T cell physiological function. The study of the signaling pathways (cAMP production and ERK1/2 phosphorylation) and the proliferative response obtained in the presence of glutamate analogs suggests that mGlu1R and mGlu5R have distinct functions. mGlu5R mediates the reported inhibition of cell proliferation evoked by glutamate, which is reverted by the activation of inducible mGlu1R. This is a novel non-inhibitory action mechanism for glutamate in lymphocyte activation. mGlu1R and mGlu5R thus mediate opposite glutamate effects in human lymphocytes.  相似文献   

18.
Abstract: Phospholipase D (PLD) activity was determined in rat hippocampal slices between postnatal days 3 and 35. After birth, basal PLD activity was low and, within 2 weeks, increased to reach a plateau that was maintained up to the adult age. Likewise the response to glutamate developed postnatally to reach a maximum at day 8, but then faded rapidly and was almost absent at day 35. Activation of PLD by 4β-phorbol 12β,13α-dibutyrate (PDB) was independent of age, whereas the effect of aluminum fluoride (AlF4) increased to a plateau within the first week. At day 8, PLD stimulation by glutamate via metabotropic receptors involved protein kinase C activation, but was independent of Ca2+ influx; the time course of PLD activation by PDB or AlF4 was linear throughout the experiment, whereas the response to glutamate or 1-aminocyclopentane-1,3-dicarboxylic acid followed a biphasic pattern: the rapid "first phase activation" desensitized within a few minutes and disclosed a small, but maintained "second phase." Pretreatment experiments confirmed desensitization of PLD activation by glutamate, but not by AlF4 or PDB. The biphasic pattern of glutamatergic PLD activation changed during development, i.e., the first phase activation faded and the second phase remained. These results were fully confirmed by the time courses of the PLD-mediated efflux of choline evoked by glutamate. In conclusion, postnatal glutamatergic activation of hippocampal PLD is composed of a pronounced and desensitizing first phase activation and a small, but nondesensitizing second phase. The first, but not the second, phase activation fades rapidly during development. The hypothesis is discussed that the glutamatergic activation of PLD occurs along different pathways in neonate and adult tissue.  相似文献   

19.
We have investigated the binding properties of [(3)H]quisqualate to rat metabotropic glutamate (mGlu) 1a and 5a receptors and to rat and human brain sections. Saturation isotherms gave K:(D) values of 27 +/- 4 and 81 +/- 22 nM: for mGlu1a and mGlu5a receptors, respectively. Several compounds inhibited the binding to mGlu1a and mGlu5a receptors concentration-dependently. (S:)-4-Carboxyphenylglycine, (S:)-4-carboxy-3-hydroxyphenylglycine, and (R,S)-1-aminoindan-1,5-dicarboxylic acid, which completely inhibited [(3)H]quisqualate binding to the mGlu5a receptor, were inactive in a functional assay using this receptor. The distribution and abundance of binding sites in rat and human brain sections were studied by quantitative receptor radioautography and image analysis. Using 10 nM: [(3)H]quisqualate, a high density of binding was detected in various brain regions with the following rank order of increasing levels: medulla, thalamus, olfactory bulb, cerebral cortex, spinal cord dorsal horn, olfactory tubercle, dentate gyrus molecular layer, CA1-3 oriens layer of hippocampus, striatum, and cerebellar molecular layer. The ionotropic component of this binding could be inhibited by 30 microM: kainate, revealing the distribution of mGlu1+5 receptors. The latter were almost completely inhibited by the group I agonist (S:)-3,5-dihydroxyphenylglycine. The binding profile correlated well with the cellular sites of synthesis and regional expression of the respective group I receptor proteins revealed by in situ hybridization histochemistry and immunohistochemistry, respectively.  相似文献   

20.
代谢型谷氨酸受体在突触可塑性中的作用   总被引:2,自引:0,他引:2  
陈鹏  李金莲 《生命科学》2001,13(3):107-109,102
突触可塑性是近几年神经科学研究的热点之一,因为它对于理解神经系统的学习、学习和记忆、多咱神经疾病等许多过程有着重要的意义。除了离子型谷氨酸受体外,代谢型谷氨酸受体也参与了一些脑区中不同形式的突触可塑性变化。本文就代谢型谷氨酸受体选择性激动剂和拮抗剂对长时程增强和长时程抑制的作用进行了综述,以助于人们进一步理解突触可塑性的细胞和分子机制。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号