首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
The crystal structure of the complex between human immunodeficiency virus type 1 (HIV-1) protease and a peptidomimetic inhibitor of ethyleneamine type has been refined to R factor of 0.178 with diffraction limit 2.5 A. The peptidomimetic inhibitor Boc-Phe-Psi[CH2CH2NH]-Phe-Glu-Phe-NH2 (denoted here as OE) contains the ethyleneamine replacement of the scissile peptide bond. The inhibitor lacks the hydroxyl group which is believed to mimic tetrahedral transition state of proteolytic reaction and thus is suspected to be necessary for good properties of peptidomimetic HIV-1 protease inhibitors. Despite the missing hydroxyl group the inhibition constant of OE is 1.53 nm and it remains in the nanomolar range also towards several available mutants of HIV-1 protease. The inhibitor was found in the active site of protease in an extended conformation with a unique hydrogen bond pattern different from hydroxyethylene and hydroxyethylamine inhibitors. The isostere nitrogen forms a hydrogen bond to one catalytic aspartate only. The other aspartate forms two weak hydrogen bridges to the ethylene group of the isostere. A comparison with other inhibitors of this series containing isostere hydroxyl group in R or S configuration shows different ways of accommodation of inhibitor in the active site. Special attention is devoted to intermolecular contacts between neighbouring dimers responsible for mutual protein adhesion and for a special conformation of Met46 and Phe53 side chains not expected for free protein in water solution.  相似文献   

2.
Analogues of peptides ranging in size from three to six amino acids and containing the hydroxyethylene dipeptide isosteres Phe psi Gly, Phe psi Ala, Phe psi NorVal, Phe psi Leu, and Phe psi Phe, where psi denotes replacement of CONH by (S)-CH(OH)CH2, were synthesized and studied as HIV-1 protease inhibitors. Inhibition constants (Ki) with purified HIV-1 protease depend strongly on the isostere in the order Phe psi Gly greater than Phe psi Ala greater than Phe psi NorVal greater than Phe psi Leu greater than Phe psi Phe and decrease with increasing length of the peptide analogue, converging to a value of 0.4 nM. Ki values are progressively less dependent on inhibitor length as the size of the P1' side chain within the isostere increases. The structures of HIV-1 protease complexed with the inhibitors Ala-Ala-X-Val-Val-OMe, where X is Phe psi Gly, Phe psi Ala, Phe psi NorVal, and Phe psi Phe, have been determined by X-ray crystallography (resolution 2.3-3.2 A). The crystals exhibit symmetry consistent with space group P6(1) with strong noncrystallographic 2-fold symmetry, and the inhibitors all exhibit 2-fold disorder. The inhibitors bind in similar conformations, forming conserved hydrogen bonds with the enzyme. The Phe psi Gly inhibitor adopts an altered conformation that places its P3' valine side chain partially in the hydrophobic S1' pocket, thus suggesting an explanation for the greater dependence of the Ki value on inhibitor length in the Phe psi Gly series. From the kinetic and crystallographic data, a minimal inhibitor model for tight-binding inhibition is derived in which the enzyme subsites S2-S2' are optimally occupied. The Ki values for several compounds are compared with their potencies as inhibitors of proteolytic processing in T-cell cultures chronically infected with HIV-1 (MIC values) and as inhibitors of acute infectivity (IC50 values). There is a rank-order correspondence, but a 20-1000-fold difference, between the values of Ki and those of MIC or IC50. IC50 values can approach those of Ki but are highly dependent on the conditions of the acute infectivity assay and are influenced by physiochemical properties of the inhibitors such as solubility.  相似文献   

3.
Truncation of a peptide substrate in the N-terminus and replacement of its scissile amide bond with a non-cleavable reduced bond results in a potent inhibitor of HIV-1 protease. A series of such inhibitors has been synthesized, and S2-S3' subsites of the protease binding cleft mapped. The S2 pocket requires bulky Boc or PIV groups, large aromatic Phe residues are preferred in P1 and P1' and Glu in P2'. The S3' pocket prefers Phe over small Ala or Val. Introduction of a Glu residue into the P2' position yields a tight-binding inhibitor of HIV-1 protease, Boc-Phe-[CH2-NH]-Phe-Glu-Phe-OMe, with a subnanomolar inhibition constant. The relevant peptide derived from the same amino acid sequence binds to the protease with a Ki of 110 nM, thus still demonstrating a good fit of the amino acid residues into the protease binding pockets and also the importance of the flexibility of P1-P1' linkage for proper binding. A new type of peptide bond mimetic, N-hydroxylamine -CH2-N(OH)-, has been synthesized. Binding of hydroxylamino inhibitor of HIV-1 protease is further improved with respect to reduced-bond inhibitor.  相似文献   

4.
A Gustchina  I T Weber 《FEBS letters》1990,269(1):269-272
The crystal structure of HIV-1 protease with an inhibitor has been compared with the structures of non-viral aspartic proteases complexed with inhibitors. In the dimeric HIV-1 protease, two 4-stranded beta-sheets are formed by half of the inhibitor, residues 27-29, and the flap from each monomer. In the monomeric non-viral enzyme the single flap does not form a beta-sheet with an inhibitor. The HIV-1 protease shows more interactions with a longer peptide inhibitor than are observed in non-viral aspartic protease-inhibitor complexes. This, and the large movement of the flaps, restricts the conformation of the protease cleavage sites in the retroviral polyprotein precursor.  相似文献   

5.
Compounds containing the easily accessible Phe[CH(OH)CH2N(NH)Phe dipeptide isostere as a non-hydrolyzable replacement of the scissile amide bond in the natural substrate are potent inhibitors of HIV-1 protease. The expected symmetric binding pattern of the most potent inhibitor in this series (CGP 53280, IC50 = 9 nM) is illustrated by the X-ray analysis performed with the corresponding enzyme-inhibitor complex.  相似文献   

6.
Saquinavir is a widely used HIV-1 protease inhibitor drug for AIDS therapy. Its effectiveness, however, has been hindered by the emergence of resistant mutations, a common problem for inhibitor drugs that target HIV-1 viral enzymes. Three HIV-1 protease mutant species, G48V, L90M, and G48V/L90M double mutant, are associated in vivo with saquinavir resistance by the enzyme (Jacobsen et al., 1996). Kinetic studies on these mutants demonstrate a 13.5-, 3-, and 419-fold increase in Ki values, respectively, compared to the wild-type enzyme (Ermolieff J, Lin X, Tang J, 1997, Biochemistry 36:12364-12370). To gain an understanding of how these mutations modulate inhibitor binding, we have solved the HIV-1 protease crystal structure of the G48V/L90M double mutant in complex with saquinavir at 2.6 A resolution. This mutant complex is compared with that of the wild-type enzyme bound to the same inhibitor (Krohn A, Redshaw S, Richie JC, Graves BJ, Hatada MH, 1991, J Med Chem 34:3340-3342). Our analysis shows that to accommodate a valine side chain at position 48, the inhibitor moves away from the protease, resulting in the formation of larger gaps between the inhibitor P3 subsite and the flap region of the enzyme. Other subsites also demonstrate reduced inhibitor interaction due to an overall change of inhibitor conformation. The new methionine side chain at position 90 has van der Waals interactions with main-chain atoms of the active site residues resulting in a decrease in the volume and the structural flexibility of S1/S1' substrate binding pockets. Indirect interactions between the mutant methionine side chain and the substrate scissile bond or the isostere part of the inhibitor may differ from those of the wild-type enzyme and therefore may facilitate catalysis by the resistant mutant.  相似文献   

7.
The muscle and heart lactate dehydrogenase (LDHs) of rabbit and pig are specifically cleaved at a single position by HIV-1 protease, resulting in the conversion of 36-kDa subunits of the oligomeric enzymes into 21- and 15-kDa protein bands as analyzed by SDS-PAGE. While the proteolysis was observed at neutral pH, it became more pronounced at pH 6.0 and 5.0. The time courses of the cleavage of the 36-kDa subunits were commensurate with the time-dependent loss of both quaternary structure and enzymatic activity. These results demonstrated that deoligomerization of rabbit muscle LDH at acidic pH rendered its subunits more susceptible to proteolysis, suggesting that a partially denatured form of the enzyme was the actual substrate. Proteolytic cleavage of the rabbit muscle enzyme occurred at a decapeptide sequence, His-Gly-Trp-Ile-Leu*Gly-Glu-His-Gly-Asp (scissile bond denoted throughout by an asterisk), which constitutes a "strand-loop" element in the muscle and heart LDH structures and contains the active site histidyl residue His-193. The kinetic parameters Km, Vmax/KmEt, and Vmax/Et for rabbit muscle LDH and the synthetic decapeptide Ac-His-Gly-Trp-Ile-Leu*Gly-Glu-His-Gly-Asp-NH2 were nearly identical, suggesting that the decapeptide within the protein substrate is conformationally mobile, as would be expected for the peptide substrate in solution. Insertion of part of this decapeptide sequence into bacterial galactokinase likewise rendered this protein susceptible to proteolysis by HIV-1 protease, and site-directed mutagenesis of this peptide in galactokinase revealed that the Glu residue at the P2' was important to binding to HIV-1 protease. Crystallographic analysis of HIV-1 protease complexed with a tight-binding peptide analogue inhibitor derived from this decapeptide sequence revealed that the "strand-loop" structure of the protein substrate must adopt a beta-sheet structure upon binding to the protease. The Glu residue in the P2' position of the inhibitor likely forms hydrogen-bonding interactions with both the alpha-amide and gamma-carboxylic groups of Asp-30 in the substrate binding site.  相似文献   

8.
The mutation Ala28 to serine in human immunodeficiency virus, type 1, (HIV-1) protease introduces putative hydrogen bonds to each active-site carboxyl group. These hydrogen bonds are ubiquitous in pepsin-like eukaryotic aspartic proteases. In order to understand the significance of this difference between HIV-1 protease and homologous, eukaryotic aspartic proteases, we solved the three-dimensional structure of A28S mutant HIV-1 protease in complex with a peptidic inhibitor U-89360E. The structure has been determined to 2.0 A resolution with an R factor of 0.194. Comparison of the mutant enzyme structure with that of the wild-type HIV-1 protease bound to the same inhibitor (Hong L, Treharne A, Hartsuck JA, Foundling S, Tang J, 1996, Biochemistry 35:10627-10633) revealed double occupancy for the Ser28 hydroxyl group, which forms a hydrogen bond either to one of the oxygen atoms of the active-site carboxyl or to the carbonyl oxygen of Asp30. We also observed marked changes in orientation of the Asp25 catalytic carboxyl groups, presumably caused by the new hydrogen bonds. These observations suggest that catalytic aspartyl groups of HIV-1 protease have significant conformational flexibility unseen in eukaryotic aspartic proteases. This difference may provide an explanation for some unique catalytic properties of HIV-1 protease.  相似文献   

9.
A novel 'ureidopeptide' substrate analog inhibitor of the HIV-1 protease, created by substitution of a urea for the scissile amide bond of a hexapeptide substrate, was synthesized and tested for inhibition of HIV-1 protease. This inhibitor was designed as a stereochemical mutant of an earlier ureidopeptide inhibitor in which the P1' phenylalanine residue was changed from an l-isomer to a d-isomer. This was done in an attempt to increase binding to the enzyme by compensating for a lengthening of the peptide backbone. The inhibitor was synthesized from two protected tripeptide precursors using an oxidative Hoffmann rearrangement of a C-terminal peptide amide. The new inhibitor was found to inhibit HIV-1 protease with an observed IC(50) of 47 mum.  相似文献   

10.
The specificity of HIV-1 (human immunodeficiency virus-1) protease has been evaluated relative to its ability to cleave the three-domain Pseudomonas exotoxin (PE66) and related proteins in which the first domain has been deleted or replaced by a segment of CD4. Native PE66 is not hydrolyzed by the HIV-1 protease. However, removal of its first domain produces a molecule which is an excellent substrate for the enzyme. The major site of cleavage in this truncated exotoxin, called LysPE40, occurs in a segment that connects its two major domains, the translocation domain (II), and the ADP-ribosyltransferase (III). This interdomain region contains the sequence ...Asn-Tyr-Pro-Thr... which is similar to that surrounding the scissile Tyr-Pro bond in the gag precursor polyprotein, a natural substrate of the HIV-1 protease. Nevertheless, it is not this sequence that is recognized and cleaved by the enzyme, but one 6 residues away, ...Ala-Leu-Leu-Glu... in which the Leu-Leu peptide bond is hydrolyzed. A second, slower cleavage takes place at the Leu-Ala bond 3 residues in from the NH2 terminus of LysPE40. When domain I of PE66 is replaced by a segment comprising the first two domains of CD4, the resulting chimeric protein is hydrolyzed at the same Leu-Leu bond by HIV-1 protease. Enzyme activities toward synthetic peptides modeled after the sequences defined above in LysPE40 are in complete accord, relative to specificity, kinetics, and pH optimum, with results obtained in the hydrolysis of the parent protein. These findings demonstrate that ideas concerning the specificity of the HIV-1 protease that are based solely upon its processing of natural viral polyproteins can be expanded by evaluation of other multidomain proteins as substrates. Moreover, it would appear that it is not a particular conformation, but sequence and accessibility that play the dominant role in defining sites in a protein substrate that are susceptible to hydrolysis by the enzyme.  相似文献   

11.
The human immunodeficiency virus 1 (HIV-1) protease (PR) is an aspartyl protease essential for HIV-1 viral infectivity. HIV-1 PR has one catalytic site formed by the homodimeric enzyme. We chemically synthesized fully active HIV-1 PR using modern ligation methods. When complexed with the classic substrate-derived inhibitors JG-365 and MVT-101, the synthetic HIV-1 PR formed crystals that diffracted to 1.04- and 1.2-A resolution, respectively. These atomic-resolution structures revealed additional structural details of the HIV-1 PR's interactions with its active site ligands. Heptapeptide inhibitor JG-365, which has a hydroxyethylamine moiety in place of the scissile bond, binds in two equivalent antiparallel orientations within the catalytic groove, whereas the reduced isostere hexapeptide MVT-101 binds in a single orientation. When JG-365 was converted into the natural peptide substrate for molecular dynamic simulations, we found putative catalytically competent reactant states for both lytic water and direct nucleophilic attack mechanisms. Moreover, free energy perturbation calculations indicated that the insertion of catalytic water into the catalytic site is an energetically favorable process.  相似文献   

12.
HIV-1 encodes an aspartic protease, an enzyme crucial to viral maturation and infectivity. It is responsible for the cleavage of various protein precursors into viral proteins. Inhibition of this enzyme prevents the formation of mature, infective viral particles and therefore, it is a potential target for therapeutic intervention following infection. Several drugs that inhibit the action of this enzyme have been discovered. These include peptidomimetic inhibitors such as ABT-538 and saquinavir, and structure based inhibitors such as indinavir and nelfinavir. Several of these have been tested in human clinical trials and have demonstrated significant reduction in viral load. However, most of them have been found to be of limited clinical utility because of their poor pharmacological properties and also because the viral protease becomes rapidly resistant to these drugs on account of mutations in the enzyme. One way to overcome these limitations is to design an inhibitor that interacts mainly with the conserved residues of HIV-1 protease. By a rational drug design approach based on the high resolution X-ray crystal structure of the HIV-1 protease with--MVT 101 (a substrate based inhibitor) and the specific design principles of peptides containing dehydro-Alanine (delta Ala) derived from our earlier studies, we have designed a tetrapeptide with the sequence: NH2-Thr-delta Ala-delta Ala-Gln-COOH. Energy minimization and molecular modelling of the interaction of the designed tetrapeptide with the inhibitor binding site indicate that the inhibitor is in an extended conformation and makes excessive contacts with the viral enzyme at the interface between the protein subunits. The designed inhibitor has 33% of its interaction with the conserved region of HIV-1 protease which is of the same order as that of MVT 101 with the enzyme.  相似文献   

13.
The goal of this study was to use X-ray crystallography to investigate the structural basis of resistance to human immunodeficiency virus type 1 (HIV-1) protease inhibitors. We overexpressed, purified, and crystallized a multidrug-resistant (MDR) HIV-1 protease enzyme derived from a patient failing on several protease inhibitor-containing regimens. This HIV-1 variant contained codon mutations at positions 10, 36, 46, 54, 63, 71, 82, 84, and 90 that confer drug resistance to protease inhibitors. The 1.8-angstrom (A) crystal structure of this MDR patient isolate reveals an expanded active-site cavity. The active-site expansion includes position 82 and 84 mutations due to the alterations in the amino acid side chains from longer to shorter (e.g., V82A and I84V). The MDR isolate 769 protease "flaps" stay open wider, and the difference in the flap tip distances in the MDR 769 variant is 12 A. The MDR 769 protease crystal complexes with lopinavir and DMP450 reveal completely different binding modes. The network of interactions between the ligands and the MDR 769 protease is completely different from that seen with the wild-type protease-ligand complexes. The water molecule-forming hydrogen bonds bridging between the two flaps and either the substrate or the peptide-based inhibitor are lacking in the MDR 769 clinical isolate. The S1, S1', S3, and S3' pockets show expansion and conformational change. Surface plasmon resonance measurements with the MDR 769 protease indicate higher k(off) rates, resulting in a change of binding affinity. Surface plasmon resonance measurements provide k(on) and k(off) data (K(d) = k(off)/k(on)) to measure binding of the multidrug-resistant protease to various ligands. This MDR 769 protease represents a new antiviral target, presenting the possibility of designing novel inhibitors with activity against the open and expanded protease forms.  相似文献   

14.
The structure of a synthetic pepsin inhibitor complexed with endothiapepsin   总被引:2,自引:0,他引:2  
The conformation of a synthetic polypeptide inhibitor, bound to the active site of the fungal aspartic proteinase endothiapepsin (EC 3.4.23.6), has been determined by X-ray diffraction at 0.20-nm resolution and refined to an agreement factor of 0.20. The inhibitor: Pro Thr Glu Phe-R-Phe Arg Glu (R = -CH2NH-) is based on a chromogenic substrate of pepsin (EC 3.4.23.1). It has, in place of the scissile bond, a reduced peptide group which is resistant to hydrolysis and mimics the tetrahedral transition state. The inhibitor binds in an extended conformation with the reduced bond close to the essential aspartate side-chains of the enzyme. The hydrogen bonds and hydrophobic interactions between the enzyme and the inhibitor do not induce large conformational changes.  相似文献   

15.
Human immunodeficiency virus type 1 (HIV-1) protease optimally catalyzes in the pH range of 4-6 in contrast to nearly all of the other eukaryotic aspartic proteases, which catalyze best in the pH range of 2-4. A possible structural reason for the higher optimal pH of HIV-1 protease is the absence of a hydrogen bond to the carboxyl group of active-site Asp25, which is nearly universally present in others. To investigate this hypothesis, we have mutated residue 28 in HIV-1 protease from alanine to serine. Both the wild-type and the mutant A28S enzymes have been overexpressed in Escherichia coli using a chemically synthesized gene and purified for a comparative study in enzyme kinetics. The kcat and Km values were determined by a radiometric assay for the wild-type enzyme from pH 3.2 to 7.0, and for the mutant enzyme from pH 3.2 to 6.0. The low pK values of the active site of the free enzyme, pKe1, are 3.3 and 3.4 for the wild-type and mutant enzymes, respectively. The low pK values of the active site of the enzyme bound to substrate, pKes1, are 5.1 and 4.3 for the wild-type and mutant enzymes, respectively. The high pK values of the free enzyme, pKe2, are 6.8 and 5.6, and the corresponding ones for the substrate-bound enzyme, pKes2, are 6.9 and 6.0 for the wild-type and mutant enzymes, respectively. The lowering of pK values in mutant HIV-1 protease indicates that the hydroxyl group of Ser28 forms a new hydrogen bond to active-site Asp25 to increase its acidity.  相似文献   

16.

Background

It is known that HIV-1 protease is an important target for design of antiviral compounds in the treatment of Acquired Immuno Deficiency Syndrome (AIDS). In this context, understanding the catalytic mechanism of the enzyme is of crucial importance as transition state structure directs inhibitor design. Most mechanistic proposals invoke nucleophilic attack on the scissile peptide bond by a water molecule. But such a water molecule coexisting with any ligand in the active site has not been found so far in the crystal structures.

Principal Findings

We report here the first observation of the coexistence in the active site, of a water molecule WAT1, along with the carboxyl terminal product (Q product) peptide. The product peptide has been generated in situ through cleavage of the full-length substrate. The N-terminal product (P product) has diffused out and is replaced by a set of water molecules while the Q product is still held in the active site through hydrogen bonds. The position of WAT1, which hydrogen bonds to both the catalytic aspartates, is different from when there is no substrate bound in the active site. We propose WAT1 to be the position from where catalytic water attacks the scissile peptide bond. Comparison of structures of HIV-1 protease complexed with the same oligopeptide substrate, but at pH 2.0 and at pH 7.0 shows interesting changes in the conformation and hydrogen bonding interactions from the catalytic aspartates.

Conclusions/Significance

The structure is suggestive of the repositioning, during substrate binding, of the catalytic water for activation and subsequent nucleophilic attack. The structure could be a snap shot of the enzyme active site primed for the next round of catalysis. This structure further suggests that to achieve the goal of designing inhibitors mimicking the transition-state, the hydrogen-bonding pattern between WAT1 and the enzyme should be replicated.  相似文献   

17.
Dimerization of HIV-1 protease subunits is essential for its proteolytic activity, which plays a critical role in HIV-1 replication. Hence, the inhibition of protease dimerization represents a unique target for potential intervention of HIV-1. We developed an intermolecular fluorescence resonance energy transfer-based HIV-1-expression assay employing cyan and yellow fluorescent protein-tagged protease monomers. Using this assay, we identified non-peptidyl small molecule inhibitors of protease dimerization. These inhibitors, including darunavir and two experimental protease inhibitors, blocked protease dimerization at concentrations of as low as 0.01 microm and blocked HIV-1 replication with IC(50) values of 0.0002-0.48 microm. These agents also inhibited the proteolytic activity of mature protease. Other approved anti-HIV-1 agents examined except tipranavir, a CCR5 inhibitor, and soluble CD4 failed to block the dimerization event. Once protease monomers dimerize to become mature protease, mature protease is not dissociated by this dimerization inhibition mechanism, suggesting that these agents block dimerization at the nascent stage of protease maturation. The proteolytic activity of mature protease that managed to undergo dimerization despite the presence of these agents is likely to be inhibited by the same agents acting as conventional protease inhibitors. Such a dual inhibition mechanism should lead to highly potent inhibition of HIV-1.  相似文献   

18.
The structure of a crystal complex of recombinant human immunodeficiency virus type 1 (HIV-1) protease with a peptide-mimetic inhibitor containing a dihydroxyethylene isostere insert replacing the scissile bond has been determined. The inhibitor is Noa-His-Hch psi [CH(OH)CH(OH)]Vam-Ile-Amp (U-75875), and its Ki for inhibition of the HIV-1 protease is < 1.0 nM (Noa = 1-naphthoxyacetyl, Hch = a hydroxy-modified form of cyclohexylalanine, Vam = a hydroxy-modified form of valine, Amp = 2-pyridylmethylamine). The structure of the complex has been refined to a crystallographic R factor of 0.169 at 2.0 A resolution by using restrained least-squares procedures. Root mean square deviations from ideality are 0.02 A and 2.4 degrees, for bond lengths and angles, respectively. The bound inhibitor diastereomer has the R configurations at both of the hydroxyl chiral carbon atoms. One of the diol hydroxyl groups is positioned such that it forms hydrogen bonds with both the active site aspartates, whereas the other interacts with only one of them. Comparison of this X-ray structure with a model-built structure of the inhibitor, published earlier, reveals similar positioning of the backbone atoms and of the side-chain atoms in the P2-P2' region, where the interaction with the protein is strongest. However, the X-ray structure and the model differ considerably in the location of the P3 and P3' end groups, and also in the positioning of the second of the two central hydroxyl groups. Reconstruction of the central portion of the model revealed the source of the hydroxyl discrepancy, which, when corrected, provided a P1-P1' geometry very close to that seen in the X-ray structure.  相似文献   

19.
The active site cleft of the HIV-1 protease (PR) is bound by two identical conformationally mobile loops known as flaps, which are important for substrate binding and catalysis. The present article reports, for the first time, an HIV-1 PR inhibitor, ATBI, from an extremophilic Bacillus sp. The inhibitor is found to be a hydrophilic peptide with Mr of 1147, and an amino acid sequence of Ala-Gly-Lys-Lys-Asp-Asp-Asp-Asp-Pro-Pro-Glu. Sequence homology exhibited no similarity with the reported peptidic inhibitors of HIV-1 PR. Investigation of the kinetics of the enzyme-inhibitor interactions revealed that ATBI is a noncompetitive and tight binding inhibitor with the IC(50) and K(i) values 18.0 and 17.8 nm, respectively. The binding of the inhibitor with the enzyme and the subsequent induction of the localized conformational changes in the flap region of the HIV-1 PR were monitored by exploiting the intrinsic fluorescence of the surface exposed Trp-42 residues, which are present at the proximity of the flaps. We have demonstrated by fluorescence and circular dichroism studies that ATBI binds in the active site of the HIV-1 PR and thereby leads to the inactivation of the enzyme. Based on our results, we propose that the inactivation is due to the reorganization of the flaps impairing its flexibility leading toward inaccessibility of the substrate to the active site of the enzyme.  相似文献   

20.
Highly purified, recombinant preparations of the virally encoded proteases from human immunodeficiency viruses (HIV) 1 and 2 have been compared relative to 1) their specificities toward non-viral protein and synthetic peptide substrates, and 2) their inhibition by several P1-P1' pseudodipeptidyl-modified substrate analogs. Hydrolysis of the Leu-Leu and Leu-Ala bonds in the Pseudomonas exotoxin derivative, Lys-PE40, is qualitatively the same for HIV-2 protease as published earlier for the HIV-1 enzyme (Tomasselli, A. G., Hui, J. O., Sawyer, T. K., Staples, D. J., FitzGerald, D. J., Chaudhary, V. K., Pastan, I., and Heinrikson, R. L. (1990) J. Biol. Chem. 265, 408-413). However, the rates of cleavage at these two sites are reversed for the HIV-2 protease which prefers the Leu-Ala bond. The kinetics of hydrolysis of this protein substrate by both enzymes are mirrored by those obtained from cleavage of model peptides. Hydrolysis by the two proteases of other synthetic peptides modeled after processing sites in HIV-1 and HIV-2 gag polyproteins and selected analogs thereof demonstrated differences, as well as similarities, in selectivity. For example, while the two proteases were nearly identical in their rates of cleavage of the Tyr-Pro bond in the HIV-1 gag fragment, Val-Ser-Gln-Asn-Tyr-Pro-Ile-Val, the HIV-1 protease showed a 64-fold enhancement over the HIV-2 enzyme in hydrolysis of a Tyr-Val bond in the same template. Accordingly, the HIV-2 protease appears to have a different specificity than the HIV-1 enzyme; it is better able to hydrolyze substrates with small amino acids in P1 and P1', but is variable in its rate of hydrolysis of peptides with bulky substituents in these positions. In addition to these comparisons of the two proteases with respect to substrate specificity, we present inhibitor structure-activity data for the HIV-2 protease. Relative to P1-P1' statine or Phe psi [CH2N]Pro-modified pseudopeptidyl inhibitors, compounds having Xaa psi[CH(OH)CH2]Yaa inserts were found to show significantly higher affinities to both enzymes, generally binding from 10 to 100 times stronger to HIV-1 protease than to the HIV-2 enzyme. Molecular modeling comparisons based upon the sequence homology of the two enzymes and x-ray crystal structures of HIV-1 protease suggest that most of the nonconservative amino acid replacements occur in regions well outside the catalytic cleft, while only subtle structural differences exist within the active site.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号