首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of Cd on oxalate oxidase (OxO) activity and its localisation were analysed in barley root. In Cd-treated roots OxO activity was strongly induced in the region 2–4 mm behind the root tip and in the area toward the root base. In situ analyses showed that Cd-induced OxO activity was localised to the cell wall (CW) of early metaxylem vascular bundles and surrounding parenchyma cells and was accompanied by lignification of metaxylem vessels. OxO activation was also observed during treatment with other heavy metals (HMs), salt treatment and at elevated non-optimal temperature. In contrast to HM activation of OxO and lignification, high temperature and NaCl indeed activated OxO but did not induce lignification of metaxylem vessels. These results suggest that oxalate oxidase as an H2O2-generating enzyme is activated in response to several stresses, however the ectopic lignification of metaxylem vessels is activated specifically by HMs. This HM-induced premature root xylogenesis due to ectopic lignification of metaxylem vessels probably causes shortening of the root elongation zone and therefore a reduction in root growth.  相似文献   

2.
Transient exposure of barley roots to Cd, IAA or H2O2 for 30 min resulted in a significant root growth inhibition. Cd significantly increased the GST activity of roots 6 h after the end of short-term treatment. This increase was more relevant in root segment containing differentiation zone than in root segment just immediately behind the root apex. In contrast to Cd treatment, the short-term exposure of barley roots to IAA resulted in a significant increase of GST activity along the whole root tip and this increase was detectable already 3 h after the treatment with 10 μM IAA. Similarly to IAA, exogenously applied 10 mM H2O2 for 30 min caused significant increase of GST activity along the whole root tip 6 h after the treatment. This increase was already detectable 3 h after the exposure, but only in the differentiation zone of root tip. Auxin influx or signalling inhibitor considerable decreased the Cd- or IAA-induced GST activity in barley root tips. The strong activation of GST even after a brief exposure of barley roots to Cd support the crucial role of GST in the Cd-induced stress response in which presumably IAA and H2O2 play an important signalling role including the activation of GST.  相似文献   

3.
The expression of defence-related peroxidases Prx7 and Prx8 in barley roots grown under selected abiotic stress conditions (toxic metals: Cd, Al, Co, Cu, Hg; drought, salinity, extreme temperatures: heat, cold) and compounds activating (2,4-D) or inhibiting (SHAM) POD activity as well as H2O2 and H2O2 scavenger (DTT) was characterized. Strong Cd concentration dependent expression of Prx8 peroxidase gene was observed, which correlated with root growth inhibition induced by Cd- and some other stress factors (heavy metals, heat and salinity). Application of H2O2 did not cause changes in expression of Prx8, but H2O2 scavenger (DTT) as well as the inhibitor (SHAM) and the activator (2,4-D) of PODs induced increase in Prx8 expression. Our results demonstrate that root growth inhibition during any disturbance of active oxygen species (AOS) in root tissue is correlated with up-regulation of Prx8 gene expression in barley roots.  相似文献   

4.
The function of root border cells (RBC) during aluminum (Al) stress and the involvement of oxalate oxidase, peroxidase and H2O2 generation in Al toxicity were studied in barley roots. Our results suggest that RBC effectively protect the barley root tip from Al relative to the situation in roots cultivated in hydroponics where RBC are not sustained in the area surrounding the root tip. The removal of RBC from Al-treated roots increased root growth inhibition, Al and Evans blue uptake, inhibition of RBC production, the level of dead RBC, peroxidase and oxalate oxidase activity and the production of H2O2. Our results suggest that even though RBC actively produce active oxygen species during Al stress, their role in the protection of root tips against Al toxicity is to chelate Al in their dead cell body.  相似文献   

5.
Lin  Chuan Chi  Kao  Ching Huei 《Plant and Soil》2001,230(1):135-143
The changes in cell-wall peroxidase (POD) activity and H2O2 level in roots of NaCl-stressed rice seedlings and their correlation with root growth were investigated. Increasing concentrations of NaCl from 50 to 150 mM progressively reduced root growth and increased ionically bound cell-wall POD activity. NaCl had no effect on covalently bound cell-wall POD activities. The reduction of root growth by NaCl is closely correlated with the increase in H2O2 level. Exogenous H2O2 was found to inhibit root growth of rice seedlings. Since ammonium and proline accumulation are associated with root growth inhibition caused by NaCl, we determined the effects of NH4Cl or proline on root growth, cell-wall POD activity and H2O2level in roots. External application of NH4Cl or proline markedly inhibited root growth, increased cell-wall POD activity and increased H2O2 level in roots of rice seedlings in the absence of NaCl. An increase in cell-wall POD activity and H2O2 level preceded inhibition of root growth caused by NaCl, NH4Cl or proline. NaCl or proline treatment also increased NADH-POD and diamine oxidase (DAO) activities in roots of rice seedlings, suggesting that NADH-POD and DAO contribute to the H2O2 generation in the cell wall of NaCl- or proline-treated roots. NH4Cl treatment increased NADH-POD activity but had no effect on DAO activity, suggesting that NADH-POD but not DAO is responsible for H2O2 generation in cell wall of NH4Cl-treated roots.  相似文献   

6.
All applied metals (Co, Al, Cu, Cd) and NaCl inhibited barley root growth. No root growth inhibition was caused by drought exposure, in contrast to cold treatment. 0.01 mM H2O2 stimulated root growth and GA application did not affect root growth at all. Other activators and inhibitors of H2O2 production (SHAM, DTT, 10 mM H2O2, 2,4-D) inhibited root growth. Loss of cell viability was most significant after Al treatment, followed by Cd and Cu, but no cell death was induced by Co. Drought led to slight increase in Evans blue uptake, whereas neither NaCl nor cold influenced this parameter. DTT treatment caused slight increase in Evans blue uptake and significant increases were detected after 2,4-D and 10 mM H2O2 treatment, but were not induced by others stressors. Metal exposure increased guaiacol-POD activity, which was correlated with oxidation of NADH and production of H2O2. Exposure to drought caused a minor change in NADH oxidation, but neither H2O2 production nor guaiacol-POD activity was increased. Cold and NaCl application decreased all monitored activities. Increase in NADH oxidation and guaiacol-POD activity was caused by 10 mM H2O2 and 0.01 mM 2,4-D treatment, which also caused enhancement of H2O2 production. Slight inhibition of all activities was caused by 0.01 mM H2O2, GA, DTT; more pronounced inhibition was detected after SHAM treatment. The role of H2O2 production mediated by POD activity in relation to root growth and cell viability under exposure to some abiotic stress factors is discussed.  相似文献   

7.
Using short-term treatments, the aim of this study was to analyze the role of hydrogen peroxide in the regulation of AAO activity during Cd, Cu or IAA treatments in barley root tips. For analysis individual barley root segments were obtained by the gradual cutting of each root from the tip to the base 1, 2, 3 or 6 h after short-term treatments. Already a short 30 min exposure of barley roots to Cd induced significant root growth inhibition in a Cd concentration dependent manner, which was accompanied by a marked reduction of AAO activity. At Cu concentration which had no effect on the root growth a significant increase in AAO activity was observed. This increased AAO activity was detected only in ionically-bound CW fraction. In contrast, Cu at higher concentration and IAA inhibited both ionically-bound CW AAO isozymes. Prompt inhibition of AAO activity immediately after short-term treatment was observed only in the case of H2O2 treatment suggesting that H2O2 may act as an inhibitor of AAO. This was further supported by the observation that all Cd-, Cu- or IAA-induced root growth and AAO activity inhibition in barley roots was connected with an elevated production of H2O2.  相似文献   

8.
All of the analyzed heavy metals significantly inhibited root growth, but in addition to Cd exposure an elevated IAA-POD activity was detected under Co, Cu and Hg treatment, while Ni and Pb inhibited its activity. The Cd-induced IAA-POD activity increased from the root apex towards to the mature region of root tips. However similar or even more severe root growth inhibition was observed by exogenously applied IAA, IAA-POD activity was activated only at high IAA concentrations. Elevated Cd-induced H2O2 production was detected both in the absence or in the presence of IAA in the reaction mixture, but in the case of IAA as a possible substrate for PODs the production of H2O2 increased markedly just in the Cd-treated roots. Exogenously applied H2O2 also activated IAA-POD activity. Our results indicated that in the development of Cd toxicity syndrome the production of ROS during IAA degradation by elevated IAA-POD activity plays a crucial role, mainly under severe Cd stress.  相似文献   

9.
The changes in activity of peroxidase (POD) extracted from the cellwalls and the level of H2O2 in rice seedling rootstreatedwith mannitol and their correlation with root growth were investigated.Increasing concentrations of mannitol from 92 to 276 mM, which isiso-osmotic with 50 to 150 mM NaCl, progressively reduced rootgrowth and increased POD activities extracted from the cell walls of riceroots.The reduction of growth was also correlated with an increase inH2O2 level. Both diamine oxidase (DAO) and NADHperoxidase(NADH-POD) are known to be responsible for the generation ofH2O2. Mannitol treatment increased DAO but not NADH-PODactivities in roots of rice seedlings, suggesting that DAO contributes to thegeneration of H2O2 in the cell walls of mannitol-treatedroots. An increase in the level of H2O2 and the activityof POD extracted from the cell walls of rice roots preceded root growthreduction caused by mannitol. An increase in DAO activity coincided with anincrease in H2O2 in roots caused by mannitol. Since DAOcatalyses the oxidation of putrescine, the demonstration that mannitolincreasesthe activity of DAO in roots is consistent with those that mannitol decreasesthe level of putrescine. In conclusion, cell-wall stiffening catalysed by PODispossibly involved in the regulation of root growth reduction caused bymannitol.  相似文献   

10.
Lipoxygenases (EC 1.13.11.12) catalyse the formation of hydroperoxy derivates by oxygenation of polyunsaturated fatty acids. They act as signal molecules, triggering several developmental processes and defence responses under stress conditions. Incubation of Cd-, IAA- or H2O2-short-term treated seedlings in the presence of LOX inhibitors efficiently inhibited both Cd-, IAA- or H2O2-induced LOX activity and root swelling in a concentration dependent manner, suggesting a key role of LOX or LOX signalling pathway in radial expansion of root cells. Application of antioxidants (ascorbate or N-acetyl cysteine) to the treated seedlings at low 2 mM concentration did not affect the Cd-, IAA- or H2O2-induced LOX activity and root swelling. At higher, 10 mM concentration antioxidants markedly inhibited root growth, significantly increased the activity of LOX and evoked the radial expansion of root cells leading to root swelling with well developed root hairs already in control roots. By contrast, the lipophilic antioxidant trolox, a scavenger of hydroperoxides, severely inhibited the development of Cd-, IAA- or H2O2-induced root swelling, indicating that not directly LOX, but probably oxylipins, products of LOX pathway, are involved in the induction of root swelling in barley root tip. The results of this study suggest a strong connection between abiotic stress-induced alteration in redox and hormone status caused root growth inhibition and LOX pathway mediated radial expansion of root tip cells.  相似文献   

11.
12.
The effect of Cd on oxalate oxidase (OxO) activity and its localisation were analysed in barley root. In Cd-treated roots OxO activity was strongly induced in the region 2–4 mm behind the root tip and in the area toward the root base. In situ analyses showed that Cd-induced OxO activity was localised to the cell wall (CW) of early metaxylem vascular bundles and surrounding parenchyma cells and was accompanied by lignification of metaxylem vessels. OxO activation was also observed during treatment with other heavy metals (HMs), salt treatment and at elevated non-optimal temperature. In contrast to HM activation of OxO and lignification, high temperature and NaCl indeed activated OxO but did not induce lignification of metaxylem vessels. These results suggest that oxalate oxidase as an H2O2-generating enzyme is activated in response to several stresses, however the ectopic lignification of metaxylem vessels is activated specifically by HMs. This HM-induced premature root xylogenesis due to ectopic lignification of metaxylem vessels probably causes shortening of the root elongation zone and therefore a reduction in root growth.  相似文献   

13.
In the present work, we investigated the alteration of oxidative and peroxidative activities of peroxidases (PODs) along the longitudinal root axis of barley seedlings during heavy metal (HM; e.g., Cd, Cu, Hg, Ni, Pb) treatment. Analysis of the individual root segments revealed that all of the analyzed HMs caused an increase of guaiacol-POD activity, however to a different extent and spatial distribution. Cd-induced ferulic acid POD activity was observed along the whole root tip (RT), while Cu and Hg caused its increase in the meristematic zone and Ni mainly at the end of the differentiation zone of RT. The activation of coniferyl alcohol POD by HMs was detected along the whole RT. HM-induced hydrogen peroxide-generating POD activity was localized mainly to the elongation zone of RT. Elevated chlorogenic acid POD activity was observed in the meristematic zone and at the end of the differentiation zone of RTs. The activation of several PODs is probably associated with enhanced H2O2 production and lignification as a defense response of roots to several HM, to prevent their uncontrolled flux. On the other hand, this defense response is accompanied by root growth inhibition, due to the enhanced rigidification of cell wall and accelerated differentiation of RTs.  相似文献   

14.
Although previous research has indicated that reactive oxygen species (ROS) regulate cell extension and tissue ontogenesis, the functions of ROS in aerial roots have not been previously studied. This research evaluated ROS production and dissipation in aerial roots of Chinese banyan (Ficus microcarpa). Aerial root segments (4 cm long) were cut from trees and divided into developmental zones 1, 2, and 3 (0–5, 5–15, and 15–25 mm from root tip, respectively). According to histochemical and biochemical determinations, production of the superoxide radical (O 2 ·– ), hydrogen peroxide (H2O2), and the hydroxyl radical (·OH) decreased from zone 1 to zone 3. The detected ROS increased with the application of exogenous stimulators of ROS generation and decreased with the application of exogenous inhibitors of ROS generation. Based on protein content, superoxide dismutase (SOD) activity increased but peroxidase (POD) and catalase (CAT) activities decreased from zone 1 to zone 3, whereas based on root segment fresh weight, SOD and CAT activities did not differ among the zones but POD activity decreased from zone 1 to 3. We conclude that ROS are generated mainly in the rapidly developing zones of aerial roots and suggest that NADPH oxidase, POD, and SOD control ROS generation. POD activity and the hydroxyl cycle seem particularly important in ROS generation in aerial roots.  相似文献   

15.
Cadmium (Cd) is readily taken up by the roots of rice seedlings, leading to growth reduction. H2O2 is a constituent of oxidative metabolism and is itself a reactive oxygen species. In this study, the participation of H2O2 in CdCl2-inhibited growth of rice roots was investigated. CdCl2 treatment increased H2O2 production in rice roots. CdCl2 treatment had no effect on the activities of superoxide dismutase, ascorbate peroxidase, and glutathione reductase, but inhibited the activity of catalase (CAT) in rice roots. CdCl2-inhibited root growth and -increased H2O2 content were lessened in the presence of diphenyleneiodonium chloride, an inhibitor of H2O2 generating NADPH oxidase. However, this stimulation of root growth in CdCl2-treated seedlings is small (about 5%). Calcium (Ca) is important in many physiological processes in plants. Attempts were also made to determine whether the action of Ca on CdCl2-inhibited growth of rice roots is associated with H2O2. CaCl2 application reduced the production of H2O2, the decrease in CAT activity, and the inhibition of root growth caused by CdCl2. The effects of CaCl2 application could be reversed by exogenous H2O2. Our results indicate that the Cd causes a decline in CAT and to a lower extent a stimulation of NADPH oxidase in rice roots, with the subsequent generation of H2O2, an agent responsible for growth inhibition.  相似文献   

16.
The aim of this work was to investigate the balance between the activities of ascorbate peroxidase (APX) and phenol peroxidases (POD) and cowpea root growth in response to dehydration and salt stress. Root growth and indicators of oxidative response were markedly changed in response to salinity and dehydration. Salt treatment strongly inhibited root elongation, which was associated with an increase in lignin content and a significant decrease in the concentrations of apoplastic hydrogen peroxide (H2O2) and ascorbate. In conditions of extreme salinity, cytosol–APX activity was significantly decreased. In contrast, cell-wall POD activity was greatly increased, whereas lipid peroxidation was unchanged. These results indicate that POD could be involved in both H2O2 scavenging and the inhibition of root elongation under high salinity. In contrast, dehydration stimulated primary root elongation and increased lipid peroxidation and apoplastic ascorbate content, but it did not change APX and POD activities or H2O2 concentration. When cowpea roots were subjected to salinity followed by dehydration, the water and pressure potentials were decreased, and lipid peroxidation was markedly increased, highlighting the additive nature of the inhibitory effects caused by salt and dehydration. The proline concentration was markedly increased by dehydration alone, as well as by salt followed by dehydration, suggesting a possible role for proline in osmotic adjustment. Salinity and dehydration induce contrasting responses in the growth and morphology of cowpea roots. These effects are associated with different types of oxidative modulation involving cytosolic-APX and cell-wall POD activities and apoplast H2O2 and ascorbate levels.  相似文献   

17.
In the present study, we investigated the alteration of reactive oxygen species production along the longitudinal axis of barley root tips during Cd treatment. In unstressed barley root tips, H2O2 production decreased from the root apex towards the differentiation zone where again, a slight increase was observed towards the more mature region of root. An opposite pattern was observed for O 2 ?? and OH? generation. The amount of both O 2 ?? and OH? was highest in the elongation zone, decreased in the root apex and at the differentiation zone of root, then increased again towards the more mature region of root. An elevated Cd-induced O 2 ?? production started in the elongation zone and increased further along the differentiation zone of barley root tip. In contrast, Cd-induced H2O2 production was localised to the root elongation zone and to the beginning of the differentiation zone. In contrast to Cd-induced H2O2 and O 2 ?? production, Cd reduced OH? production along the whole barley root tip. Our results suggest that not only an increase but also the spatial distribution of reactive oxygen species production is involved in the Cd-induced stress response of barley root tip.  相似文献   

18.
The effect of cadmium on microsomal membrane-bound peroxidases and their involvement in hydrogen peroxide production was studied in barley roots. One anionic and two cationic peroxidases were detected, which were strongly activated by Cd treatment. Positive correlation was found between root growth inhibition and increased peroxidase, NADH oxidase activity and H2O2 generation in root microsomal membrane fraction of Cd-treated barley roots.  相似文献   

19.
刘洪庆  车永梅  赵方贵  杨凤玲  刘新 《生态学报》2012,32(19):6085-6091
以烟草((Nicotiana tabacum,品种CF90NF)为寄主,苗期接种丛枝菌根(AM)真菌摩西球囊霉(Glomus mosseae,G.m),测定G.m与烟草共生过程中烟草根部H2O2含量以及多胺氧化酶(PAO)和过氧化物酶(POD)活性;研究外源H2O2对G.m侵染烟草的影响以及H2O2清除剂和合成抑制剂对烟草侧根H2O2含量及烟草侧根和菌丝中H2O2荧光强度的影响,以探究H2O2在AM真菌侵染烟草过程中的作用。结果表明,接种G.m 20d后烟草侧根中出现H2O2含量的猝发,一定浓度的外源H2O2促进G.m对烟草的侵染,而H2O2清除剂抗坏血酸(AsA)显著削弱烟草侧根和菌丝中的H2O2荧光强度,降低G.m对烟草的侵染率,表明H2O2参与G.m与烟草共生过程;在G.m与烟草共生过程中,PAO和POD活性显著升高,PAO抑制剂二氨基十二烷(DADD)和POD抑制剂水杨羟肟酸(SHAM)显著降低烟草侧根中H2O2荧光强度,对菌丝中H2O2荧光强度无显著影响,表明烟草根部和G.m均可产生H2O2,PAO和POD参与烟草侧根中H2O2的合成,菌丝中可能存在其他来源的H2O2。  相似文献   

20.
The effect of cadmium (Cd) on the expression and activity of NADPH oxidase, peroxidase and oxalate oxidase as well as on the expression of aquaporins and dehydrins was studied in barley root tip. The root tip represented intact apical part of the barley root containing the root cap, meristems and elongation zone. Except stress induced by Cd, barley root tips were analysed after their exposure to phytotoxic concentration of mercury (Hg)-, hydrogen peroxide (H2O2)- or polyethylene glycol (PEG)-induced water stress in order to compare the Cd-induced changes with changes induced by these other stress factors. Cd, Hg, H2O2 and with some exceptions also PEG treatments caused similar alterations in the gene expression of reactive oxygen species (ROS)-generating and water deficiency-related genes, and in the activity of ROS-generating enzymes. These evidences support our opinion that ROS accumulation and water imbalance are the common symptoms of these stress factors and that the elevated production of H2O2 plays, probably as a signal molecule, a key role in the induction of plant responses to abiotic stresses in barley root tip. On the other hand, H2O2 at permanent high concentration is probably the main toxic factor during stress conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号