首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Calf skin collagen was solubilized by incubating acid-extracted calf skin with pepsin at pH 2.0 and 25 degrees C, conditions that did not cause degradation of the triple helical region of collagen. Type III collagen was separated from type I collagen by differential salt precipitation at pH 7.5. The isolated type III collagen contained mainly gamma and higher molecular weight components cross-linked by reducible and/or non-reducible bonds. The isolated alpha1 (III) chains had an amino acid composition characteristic of type III collagen. Denatured but unreduced type III collagen, chromatographed on carboxymethyl-cellulose, eluted in the alpha 2 region, while after reduction and alkylation the alpha1 (III) chains eluted between the positions of alpha1 (I) and alpha2. The mid-point melting temperature temperature (tm) of type III collagen (35.1 degrees C) in a citrate buffer at pH 3.7 was somewhat lower than that of type I collagen (35.9 degrees C). Renaturation experiments at 25 degrees C showed that denatured type III collagen molecules with intact intramolecular disulfide bridges (gamma components) reform the triple helical structure of collagen much faster than reduced and carboxymethylated alpha1 (III) chains.  相似文献   

2.
3.
The methods of quantitating the relative amounts of type I and III collagens in samples containing crosslinked collagen chains were evaluated using electrophoresis of alpha chains and cyanogen bromide peptides. The densitometry areas of the alpha I(I) chains from type I collagen and the alpha I(III) chains from type III collagen were reduced because of the failure of the crosslinked chains to dissociate. However, the ratios of the unit densitometry areas of these chains (area of chain/micrograms type I or III collagen loaded) were constant for type I and III collagens prepared from the same samples of tissue. A calibration factor, which was the same for dermis and mitral valve, was derived to convert the densitometry area ratios to the weight ratios of type I to III collagens. In contrast, the densitometry areas of the alpha I(I) CB8 (type I collagen marker) and the alpha I(III) CB5 (type III collagen marker) were not reduced by crosslinked collagen chains. A calibration factor was also derived to convert the ratios of the densitometry areas of the marker peptides to weight ratios of type I to type III collagens. Almost identical results were obtained when electrophoresis of alpha chains and of cyanogen bromide peptides was used with these calibration factors to quantitate the relative amounts of type I and III collagens in tissue extracts which contained different amounts of crosslinked chains.  相似文献   

4.
Insoluble collagen was prepared from bovine periodontal ligament. Isolation and characterization of CNBr peptides originating from the alpha1(I), alpha2, and alpha1(III) chains showed that the tissue contained both type I and type III collagens. Further evidence for the presence of type III collagen was obtained by the isolation of alpha1(III) chains from pepsin-treated ligament collagen, with properties similar to those of human alpha1(III) chains. Estimates based on the amounts of certain CNBr peptides indicated that about one-fifth of the collagen of periodontal ligament is type III, the remainder being type I collagen.  相似文献   

5.
6.
Rat fibrosarcoma induced by subcutaneous injection of methylcholanthrene was found to contain at least three different types of collagen. Two of them were identified as type I and type III collagens, the third (fraction B) seems to be specific for this tumour. The ratio of type I to type III collagen is lower in fibrosarcoma than in normal rat skin. The number of hydroxyproline residues in alpha 1 (I), alpha 2 (I) and alpha 1 (III) chains of tumour collagen appears to be higher than in the corresponding chains of rat skin collagen. Fraction B is composed of three identical alpha chains connected with disulphide bonds. It contains a relatively low amount of glycine: 234 molecules per 1000 residues. The amount of hydroxyproline and cysteine is similar to that found in the type III collagen.  相似文献   

7.
The C-propeptides of the pro alpha chains of type I and type III procollagens are believed to be essential for correct chain recognition and chain assembly in these molecules. We studied here whether the 30-kDa C-propeptides of the human pC alpha 1(I), pC alpha 2(I), and pC alpha 1(III) chains, i.e. pro alpha chains lacking their N-propeptides, can be replaced by foldon, a 29-amino acid sequence normally located at the C terminus of the polypeptide chains in the bacteriophage T4 fibritin. The alpha foldon chains were expressed in Pichia pastoris cells that also expressed the two types of subunit of human prolyl 4-hydroxylase; the foldon domain was subsequently removed by pepsin treatment, which also digests non-triple helical collagen chains, whereas triple helical collagen molecules are resistant to it. The foldon domain was found to be very effective in chain assembly, as expression of the alpha 1(I)foldon or alpha 1(III)foldon chains gave about 2.5-3-fold the amount of pepsin-resistant type I or type III collagen homotrimers relative to those obtained using the authentic C-propeptides. In contrast, expression of chains with no oligomerization domain led to very low levels of pepsin-resistant molecules. Expression of alpha 2(I)foldon chains gave no pepsin-resistant molecules at all, indicating that in addition to control at the level of the C-propeptide other restrictions at the level of the collagen domain exist that prevent the formation of stable [alpha 2(I)]3 molecules. Co-expression of alpha 1(I)foldon and alpha 2(I)foldon chains led to an efficient assembly of heterotrimeric molecules, their amounts being about 2-fold those obtained with the authentic C-propeptides and the alpha 1(I) to alpha 2(I) ratio being 1.91 +/- 0.31 (S.D.). As the foldon sequence contains no information for chain recognition, our data indicate that chain assembly is influenced not only by the C-terminal oligomerization domain but also by determinants present in the alpha chain domains.  相似文献   

8.
Unlabeled collagenous proteins were quantified as inhibitors of binding of native, soluble, radioiodinated type I collagen to the fibroblast surface. Collagen types IV, V a minor cartilage isotype (1 alpha 2 alpha 3 alpha), and the collagenlike tail of acetylcholinesterase did not inhibit binding. Collagen types II and III behaved as competitive inhibitors of type I binding. Denaturation of native collagenous molecules exposed cryptic inhibitory determinants in the separated constituent alpha chains. Inhibition of binding by unlabeled type I collagen was not changed by enzymatic removal of the telopeptides. Inhibitory determinants were detected in cyanogen bromide-derived peptides from various regions of helical alpha 1 (I) and alpha 1(III) chains. The aminoterminal propeptide of chick pro alpha 1(I) was inhibitory for binding, whereas the carboxyterminal three-chain propeptide fragment of human type I procollagen was not. The data are discussed in terms of the proposal that binding to surface receptors initiates the assembly of periodic collagen fibrils in vivo.  相似文献   

9.
Two overlapping cDNA clones that cover the complete length of the mRNA for human type III procollagen were characterized. The data provided about 2500 base pairs of sequence not previously defined for human type III procollagen. Two tripeptide sequences of -Gly-Xaa-Yaa- were identified that were not detected previously by amino acid sequencing of human type III collagen. The two additional tripeptide units, together with three previously detected, establish that the alpha 1 (III) chain is 15 amino acids longer than either the alpha 1 (I) or alpha 2 (I) chains of type I collagen. The additional tripeptide units made hydropathy plots of the N-terminal and C-terminal regions of type III collagen distinctly different from those of type I collagen. The data also demonstrated that human type III procollagen has the same third base preference in codons for glycine, proline and alanine that was previously found with human and chick type I procollagen. In addition, comparison of two cDNA clones from the same individual revealed a variation in structure in that the codon for amino acid 880 of the alpha 1 (III) chain was -CTT- for leucine in one clone and -TTT- for phenylalanine in the other.  相似文献   

10.
Collagen was extracted from human adult bone by limited pepsin digestion and collagen types were purified by consecutive salt precipitation first under neutral and then under acid conditions. In SDS/PAGE, all collagen type I preparations showed a protein band [alpha 1s(I)] migrating between alpha 1(I) and alpha 2(I) as well as a band [alpha 2s(I)] migrating in front of alpha 2(I). The collagenous nature of the pepsin-stable alpha 1s(I) protein was clearly demonstrated by digestion with human-leucocyte-derived collagenase, immunoblotting with antibodies against collagen type I and amino acid analysis. Partial amino acid sequencing of alpha 1(I) and alpha 1s(I) identified alpha 1s(I) as a shortened alpha 1(I) chain due to a specific cleavage site between residues Leu95 and Asp96 which is in close vicinity to the hydroxylysine-derived crosslink at position 87. In circular dichroism, the proportion of thermally labile collagen molecules was proportional to the amount of shortened alpha 1(I) and alpha 2(I) chains, respectively. The melting temperature was found to be 36 +/- 0.5 degrees C as judged from circular dichroism and susceptibility to proteolysis. Our data provide clear evidence that a shortened alpha 1-derived collagen chain can be extracted from human adult bone whereas it is hardly found in human skin. The unique cleavage site might provide important information about the collagen I molecule embedded in the calcified matrix of human bone.  相似文献   

11.
Native type III collagen and procollagen were prepared from fetal bovine skin. Examination of the cleavage products produced by digestion with tadpole collagenase demonstrated that the three palpha1(III) chains of type III procollagen were linked together by disulfide bonds occurring at both the amino-terminal and carboxy-terminal portions of the molecule. Type III collagen contained interchain disulfide bonds only in the carboxy-terminal region of the molecule. After digestion of procollagen with bacterial collagenase an amino-terminal, triple-stranded peptide fragment was isolated. The reduced and alkylated chain constituents of this fragment had molecular weights of about 21 000. After digestion of procollagen with cyanogen bromide a related triple-stranded fragment was isolated. The chains of the cyanogen bromide fragment had a molecular weight of about 27 000. When the collagenase-derived peptide was fully reduced and alkylated, it became susceptible to further digestion with bacterial collagenase. This treatment released a fragment of about 97 amino acid residues which contained 12 cystein residues and had an amino acid composition typical for globular proteins. A second, non-helical fragment of about 48 amino acid residues contained three cysteines. This latter fragment is formed from sequences that overlap the amino-terminal region in the collagen alpha1(III) chain by 20 amino acids and possesses an antigenic determinant specific for the alpha1(III) chain. The collagenase-sensitive region exposed by reduction comprised about 33 amino acid residues. It was recovered as a mixture of small peptides. These results indicate that the amino-terminal region of type III procollagen has the same type of structure as the homologous region of type I procollagen. It consists of a globular, a collagen-like and a non-helical domain. Interchain disulfide bonding and the occurrence of cysteines in the non-helical domain are, however, unique for type III procollagen.  相似文献   

12.
Hepatocytes were obtained from rat liver and maintained in primary culture for periods up to 14 days. Collagen synthesis was maximal after 3–5 days and declined thereafter. The rate of collagen production was appox. one-tenth that observed by the rat skin fibroblasts of the same animals after 3–5 passages. Type I procollagen, the major macromolecular collagenous species, was identified as a 450 000 dalton molecule which was converted to 120 000 dalton, denatured, reduced procollagen chains. Prior pepsin digestion of the native procollagen released 95 000 dalton collagen chains identified as α1(I) and α2(I) by co-migration with carrier rat skin type I collagen chains. The production of type III procollagen was also tentatively identified by DEAE-cellulose chromatography. This material was isolated and identified with type-specific antibodies developed against the amino-terminal extension peptide of bovine skin type III procollagen. The relative distribution of type I:type III procollagen was estimated at 7:3 similar to the ratio previously found in whole rat liver. No evidence of type IV or type V procollagen biosynthesis was observed. These results suggest that rat hepatocytes in primary culture are capable of interstitial type I and type III collagen biosynthesis in a ratio similar to that found in their parent hepatic tissue in situ. They also suggest that the less abundant type IV (basement membrane-associated) or type V are nor major collagenous products of these cells.  相似文献   

13.
Two genetic types of collagenous proteins, type I and type III, were isolated by extraction and differential salt precipitation from rat skin. The yield of collagen precursors was increased by injecting animals with colchicine 30 min before sacrifice to inhibit secretion of collagen. DEAE-cellulose chromatography was used to separate collagen from collagen precursors. Although these preparations contained more type I collagen than type III collagen, there were always more type III than type I precursors. The precursor chains of type I fractions were separated on CM-cellulose chromatography after denaturation. Three precursor forms were found for each collagen alpha chain, a complete chain (proalpha chain), and a precursor chain with only an amino-terminal (pNalpha chain) and carboxy-terminal extension (pCalpha chain). Species differences were demonstrated between rat collagen precursors and other species using rat calvaria (frontal and parietal) bones extracted with either 0.5 N acetic acid or neutral salt buffers containing protease inhibitors. Native rat procollagen elutes earlier than chicken or human procollagen on DEAE-cellulose chromatography and does not separate significantly from the pC collagen form. The collagenase resistant amino terminal peptides of rat pNalpha1 and pNalpha2 were the same size (16 000) but could be separated by DEAE-cellulose chromatography.  相似文献   

14.
The electrophoretic mobilities of the collagen and procollagen type I and III chains synthesized by the fibroblasts isolated from patients with type I Ehlers-Danlos syndrome as well as a set of peptides obtained by splitting of pro alpha 1(I) and pro alpha 2(I) type I procollagens by cyanbromide are not different from the normal ones. The fact demonstrates the absence of long insertions or deletions, or the sufficient defects in intracellular chain modifications. The changes were also nor registered for the ratio of type I and III collagens from the digested by pepsin preparations of protein accumulating in the culture media of the cultured skin fibroblasts from patients. The studied strains of cultured fibroblasts from patients suffering the Ehlers-Danlos syndrome have the trend to increased accumulation of partially processed chains of proc alpha 1(I) and proc alpha 2(I) type I procollagen and to the increased ratio of pro alpha 1(I) to pro alpha 2(I).  相似文献   

15.
Samples (1-2mg) of purified human type I, II and III collagens and alpha1(I) and alpha2 chains were digested with clostridiopeptidase A and the released peptides analysed by ion-exchange high-pressure liquid chromatography. Specific 'fingerprints' were produced for each type of collagen. The reproducible nature of these 'fingerprints' and the reconstitution of the type I 'fingerprint' from the 'fingerprints' of the component alpha1(I) and alpha2 chains showed that the specificity of these 'fingerprints' was related to the primary structure of each type of collagen. In addition, some of the differences observed between the 'fingerprints' of the alpha1(I) and alpha2 chains of type I collagen were shown to be suitable for the quantitative analysis of these chains.  相似文献   

16.
J M Seyer  A H Kang 《Biochemistry》1977,16(6):1158-1164
Human liver type III collagen was prepared by limited pepsin digestion, differential salt precipitation, and carboxymethylcellulose chromatography. Cyanogen bromide digestion of purified type III collagen chains yielded nine distinct peptides. Three peptides, alpha1(III)-CB3, alpha1(III)-CB7, and alpha1(III)-CB6, were isolated by carboxymethylcellulose chromatography and Sephadex G-50 SF gel filtration. Automated Edman degradation together with selective hydroxylamine cleavage and chymotrypsin and trypsin digestion enabled determination of their complete amino acid sequence. Compared with type I collagen, the data show tentative homology of alpha1(III)-CB3 with alpha1(I)-CB1, alpha1(I)-CB2, and alpha1(I)-CB4; alpha1(III)-CB7 with alpha1(I)-CB5; and alpha1(III)-CB6 with the amino-terminal portion of alpha1(I)-CB8. Close interspecies homology was found between the sequences presented here with 90 residues of alpha1(III)-CB3 and 26 of alpha1(III)-CB8 of calf aorta. The present study establishes the amino acid sequence of 229 residues near the amino terminus or nearly one-quarter of the type III collagen chains. The disaccharide, Glc-Gal, was convalently bound to hydroxylysine at a position corresponding to the same location in the alpha1(I) chain.  相似文献   

17.
A method for the separation of type III collagen from type I collagen by SDS-polyacrylamide gel electrophoresis has been developed. This is based on the observation that the presence of 3-4 M urea decreases the mobility of the alpha 1 [III] chain to a greater extent than those of the alpha 1[I] and alpha 2 chains, although the alpha 1[I] and alpha 1[III] chains move at the same rate in the absence of urea. An attempt to separate the alpha 1[II] chain of type II collagen from the alpha 1[I] chain was unsuccessful under the experimental conditions employed.  相似文献   

18.
Bovine articular type II collagen was prepared by limited pepsin digestion, differential salt fractionation and carboxymethylcellulose chromatography. Cyanogen bromide digestion of purified type II collagen alpha chains yielded twelve distinct peptides designated CB1-12. The peptide alpha 1(II)-CB11 was isolated by carboxymethylcellulose chromatography and Sephadex G-75S gel filtration. Automated Edman degradation together with chymotrypsin, thermolysin and trypsin digestion enabled identification of its complete amino acid sequence. Compared with type I and type III collagen, the data show similarity with alpha 1(I)-CB8 and alpha 1(III)-CB6-1-8-10-2 peptides, respectively. The peptide is located within residues 124-402 of the alpha 1(II) collagen chain and with its identification, now extends the known amino acid sequence of bovine type II cartilage collagen to 660 amino acid residues including alpha 1(II)-CB1-2-6-12-11-8-10 (partial). This corresponds to alpha 1(I)-CB0-1-2-4-5-8-3-7 (partial; 1-660) and alpha 1(III)-CB3A-3B-3C-7-6-1-8-10-2-4-5 (partial; 1-660) of bovine alpha 1(I) and alpha 1(III) collagen chains.  相似文献   

19.
[Alpha 1(III)]3 collagen was solubilized by pepsin digestion of normal human placental membranes and was purified by differential salt precipitation and carboxymethylcellulose chromatography. This collagen was digested with CNBr, and the resultant nine peptides were isolated and characterized. The chains are cross-linked by cysteinyl residues in the COOH-terminal peptide. Isolation of peptides derived from CNBr digestion of insoluble tissues was used as an assay for the presence of [alpha 1(I)]2alpha 2 and [alpha 1(III)]3 collagens. Both types are present in human skin, intestine, liver, spleen, kidney, lung, aorta, umbilical cord, placental membranes, and myocardium. Bone and tendon contain [alpha 1(I)]2alpha 2 collagen but, unlike the other tissues, lack [alpha 1(III)]3 collagen. Both [alpha 1(I)]2alpha 2 and[alpha 1(III)]3 collagens are present in scars of human skin, myocardium, tendon, and liver and of rabbit skin. The degree of hydroxylation of proline was 4 to 5% lower in the same peptides in skin, bone, and tendon than in the other tissues. The degree of hydroxylation of lysine in the same peptides derived from different tissues varied more widely.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号