首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2-Arachidonoylglycerol (2-AG (1)) is an endogenous ligand for the cannabinoid receptors (CB1 and CB2). There is growing evidence that 2-arachidonoylglycerol plays important physiological and pathophysiological roles in various mammalian tissues and cells, though the details remain to be clarified. In this study, we synthesized several remarkable analogs of 2-arachidonoylglycerol, closely related in chemical structure to 2-arachidonoylglycerol: an analog containing an isomer of arachidonic acid with migrated olefins (2-AGA118 (3)), an analog containing a one-carbon shortened fatty acyl moiety (2-AGA113 (4)), an analog containing an one-carbon elongated fatty acyl moiety (2-AGA114 (5)), a hydroxy group-containing analog (2-AGA105 (6)), a ketone group-containing analog (2-AGA109 (7)), and a methylene-linked analog (2-AGA104 (8)). We evaluated their biological activities as cannabinoid receptor agonists using NG108-15 cells which express the CB1 receptor and HL-60 cells which express the CB2 receptor. Notably, these structural analogs of 2-arachidonoylglycerol exhibited only weak agonistic activities toward either the CB1 receptor or the CB2 receptor, which is in good contrast to 2-arachidonoylglycerol which acted as a full agonist at these cannabinoid receptors. These results clearly indicate that the structure of 2-arachidonoylglycerol is strictly recognized by the cannabinoid receptors (CB1 and CB2) and provide further evidence that the cannabinoid receptors are primarily the intrinsic receptors for 2-arachidonoylglycerol.  相似文献   

2.
Alpha-methylated analogues of the endogenous cannabinoid, 2-arachidonoyl glycerol (2-AG), were synthesized aiming to the improved enzymatic stability of 2-AG. In addition, the CB1 activity properties of fluoro derivatives of 2-AG were studied. The CB1 receptor activity was determined by the [35S]GTPgammaS binding assay, and the enzymatic stability of alpha-methylated analogues was determined in rat cerebellar membranes. The results indicate that even if the alpha-methylated 2-AG derivatives are slightly weaker CB1 receptor agonists than 2-AG, they are clearly more stable than 2-AG. In addition, the results showed that the replacement of the hydroxyl group(s) of 2-AG by fluorine does not improve the CB1 activity of 2-AG.  相似文献   

3.
Little is known as to the structural requirements of the acyl side chain for interaction of acylglycerols with monoacylglycerol lipase (MAGL), the enzyme chiefly responsible for the metabolism of the endocannabinoid 2-arachidonoylglycerol (2-AG) in the brain. In the present study, a series of twelve analogues of 1-AG (the more stable regioisomer of 2-AG) were investigated with respect to their ability to inhibit the metabolism of 2-oleoylglycerol by cytosolic and membrane-bound MAGL. In addition, the ability of the compounds to inhibit the hydrolysis of anandamide by fatty acid amide hydrolase (FAAH) was investigated. For cytosolic MAGL, compounds with 20 carbon atoms in the acyl chain and 2-5 unsaturated bonds inhibited the hydrolysis of 2-oleoylglycerol with similar potencies (IC50 values in the range 5.1-8.2 microM), whereas the two compounds with a single unsaturated bond were less potent (IC50 values 19 and 21 microM). The fully saturated analogue 1-monoarachidin did not inhibit the enzyme, whereas the lower side chain analogues 1-monopalmitin and 1-monomyristin inhibited the enzyme with IC50 values of 12 and 32 microM, respectively. The 22-carbon chain analogue of 1-AG was also potent (IC50 value 4.5 microM). Introduction of an alpha-methyl group for the C20:4, C20:3, and C22:4 compounds did not affect potency in a consistent manner. For the FAAH and the membrane-bound MAGL, there was no obvious relationship between the degree of unsaturation of the acyl side chain and the ability to inhibit the enzymes. It is concluded that increasing the number of unsaturated bonds on the acyl side chain of 1-AG from 1 to 5 has little effect on the affinity of acylglycerols for cytosolic MAGL.  相似文献   

4.
Novel monocyclic analogues of 2-arachidonoylglycerol (2-AG) were designed in order to explore the pharmacophoric conformations of this endocannabinoid ligand at the key cannabinergic proteins. All 2-arachidonoyl esters of 1,2,3-cyclohexanetriol [meso-7 (AM5504), (+/-)-8 (AM5503), and meso-9 (AM5505)] were synthesized by regioselective acylation of 2,3-dihydroxycyclohexanone followed by selective reductions. The optically active isomers (+)-8 (AM4434) and (-)-8 (AM4435) were synthesized from (2S,3S)- and (2R,3R)-2,3-dihydroxycyclohexanone, respectively, via a chemoenzymatic route. These head group constrained and conformationally restricted analogues of 2-AG as well as the 1-keto precursors were evaluated as substrates for the endocannabinoid deactivating hydrolytic enzymes monoacylglycerol lipase (MGL) and fatty acid amide hydrolase (FAAH), and also were tested for their affinities for CB1 and CB2 cannabinoid receptors. The observed biochemical differences between these ligands can help define the conformational requirements for 2-AG activity at each of the above endocannabinoid protein targets.  相似文献   

5.
Results from a factor analysis and activity studies of commercially available endocannabinoid-type compounds set the starting point for the current study where dimethylheptyl (DMH) analogues of two endocannabinoids, 2-arachidonoyl glycerol (2-AG) and 2-arachidonyl glyceryl ether (2-AGE), were synthesized and their ability to activate the CB1 receptors was determined by the [35S]GTPgammaS binding assay using rat cerebellar membranes. The main goal of the study was to examine how the DMH end tail affects the activity properties of 2-AG (1) and its stable ether (2) and urea analogues (5). The importance of the chain length was also explored by synthesizing 2-AG and 2-AGE derivatives (3 and 4) possessing the chain length C21 instead of C22. Replacement of the pentyl end chain with the DMH resulted in distinct potency decrease as compared to the reference compounds. The modification did not have such a strong impact on the efficacy values. In fact, the efficacy of the derivatives of 2-AGE (2 and 4) was comparable or even improved. Introducing a more stable and hydrophilic urea bond led to a dramatic decrease in biological activity.  相似文献   

6.
Cyclooxygenase-2 (COX-2) oxygenates arachidonic acid (AA) and the endocannabinoids 2-arachidonoylglycerol (2-AG) and arachidonylethanolamide to prostaglandins, prostaglandin glyceryl esters, and prostaglandin ethanolamides, respectively. A structural homodimer, COX-2 acts as a conformational heterodimer with a catalytic and an allosteric monomer. Prior studies have demonstrated substrate-selective negative allosteric regulation of 2-AG oxygenation. Here we describe AM-8138 (13(S)-methylarachidonic acid), a substrate-selective allosteric potentiator that augments 2-AG oxygenation by up to 3.5-fold with no effect on AA oxygenation. In the crystal structure of an AM-8138·COX-2 complex, AM-8138 adopts a conformation similar to the unproductive conformation of AA in the substrate binding site. Kinetic analysis suggests that binding of AM-8138 to the allosteric monomer of COX-2 increases 2-AG oxygenation by increasing kcat and preventing inhibitory binding of 2-AG. AM-8138 restored the activity of COX-2 mutants that exhibited very poor 2-AG oxygenating activity and increased the activity of COX-1 toward 2-AG. Competition of AM-8138 for the allosteric site prevented the inhibition of COX-2-dependent 2-AG oxygenation by substrate-selective inhibitors and blocked the inhibition of AA or 2-AG oxygenation by nonselective time-dependent inhibitors. AM-8138 selectively enhanced 2-AG oxygenation in intact RAW264.7 macrophage-like cells. Thus, AM-8138 is an important new tool compound for the exploration of allosteric modulation of COX enzymes and their role in endocannabinoid metabolism.  相似文献   

7.
2-Eicosa-5',8',11',14'-tetraenylglycerol (2-AG ether, HU310, noladin ether) is a metabolically stable ether-linked analogue of 2-arachidonoylglycerol (2-AG), an endogenous cannabinoid receptor ligand. 2-AG ether has been used as a valuable experimental tool by a number of investigators. Recently, several groups reported that 2-AG ether is present in mammalian brains. We examined in detail whether 2-AG ether actually exists in the brains of various mammalian species. We found that 2-AG ether is not present, at least in an appreciable amount, in the rat brain by gas chromatography-mass spectrometry analysis and fluorometric high performance liquid chromatography analysis. The level of 2-AG ether in the rat brain was below 0.2 pmol/g brain, if at all present. Similar results were obtained for the mouse brain, hamster brain, guinea-pig brain and pig brain. The fact that 2-AG ether was not detected in the brains of various mammalian species is consistent with the fact that an ether bond is formed through enzymatic replacement of the fatty acyl moiety of 1-acyl dihydroxyacetone phosphate by a fatty alcohol, the resultant 1-O-alkyl dihydroxyacetone phosphate being a common intermediate of the biosynthesis of ether-linked lipids in mammalian tissues. It is rather questionable whether 2-AG ether is present in appreciable amounts in the brain and acts as an 'endogenous' cannabinoid receptor ligand.  相似文献   

8.
Although endocannabinoids are important players in nociception and obesity, their roles as immunomodulators remain elusive. The main endocannabinoids described to date, namely 2-arachidonoyl-glycerol (2-AG) and arachidonyl-ethanolamide (AEA), induce an intriguing profile of pro- and anti-inflammatory effects. This could relate to cell-specific cannabinoid receptor expression and/or the action of endocannabinoid-derived metabolites. Importantly, 2-AG and AEA comprise a molecule of arachidonic acid (AA) in their structure and are hydrolyzed rapidly. We postulated the following: 1) the released AA from endocannabinoid hydrolysis would be metabolized into eicosanoids; and 2) these eicosanoids would mediate some of the effects of endocannabinoids. To confirm these hypotheses, experiments were performed in which freshly isolated human neutrophils were treated with endocannabinoids. Unlike AEA, 2-AG stimulated myeloperoxidase release, kinase activation, and calcium mobilization by neutrophils. Although 2-AG did not induce the migration of neutrophils, it induced the release of a migrating activity for neutrophils. 2-AG also rapidly (1 min) induced a robust biosynthesis of leukotrienes, similar to that observed with AA. The effects of 2-AG were not mimicked nor prevented by cannabinoid receptor agonists or antagonists, respectively. Finally, the blockade of either 2-AG hydrolysis, leukotriene (LT) B(4) biosynthesis, or LTB(4) receptor 1 activation prevented all the effects of 2-AG on neutrophil functions. In conclusion, we demonstrated that 2-AG potently activates human neutrophils. This is the consequence of 2-AG hydrolysis, de novo LTB(4) biosynthesis, and an autocrine activation loop involving LTB(4) receptor 1.  相似文献   

9.
2-Arachidonoylglycerol (2-AG) is a unique molecular species of monoacylglycerol isolated in 1995 from rat brain and canine gut as an endogenous ligand for the cannabinoid receptors. 2-AG is rapidly formed from arachidonic acid-containing phospholipids through increased phospholipid metabolism, such as enhanced inositol phospholipid turnover, in various tissues and cells upon stimulation. 2-AG binds to the cannabinoid receptors (CB1 and CB2) and exhibits a variety of cannabimimetic activities in vitro and in vivo. Notably, anandamide, another endogenous ligand for the cannabinoid receptors, often acts as a partial agonist at these cannabinoid receptors, whereas 2-AG acts as a full agonist in most cases. The results of structure-activity relationship studies suggested that 2-AG rather than anandamide is the true natural ligand for both the CB1 and the CB2 receptors. Evidence is gradually accumulating which shows that 2-AG plays physiologically essential roles in diverse biological systems. For example, several lines of evidence indicate that 2-AG plays an important role as a retrograde messenger molecule in the regulation of synaptic transmission. 2-AG has also been shown to be involved in the regulation of various types of inflammatory reactions and immune responses. In this review, we focused on 2-AG, and summarized information concerning its biosynthesis, metabolism, bioactions and physiological significance, including our latest experimental results.  相似文献   

10.
2-Arachidonoylglycerol (2-AG), an endogenous cannabinoid receptor ligand, was shown to induce rapid phosphorylation of p42/44 mitogen-activated protein kinase (MAP kinase) in HL-60 cells. We confirmed that the enzyme activity of p42/44 MAP kinase in HL-60 cells was augmented markedly when the cells were stimulated with 2-AG. The addition of SR144528, a cannabinoid CB2 receptor-specific antagonist, to the cells prior to the addition of 2-AG abolished the response induced by 2-AG, indicating that the CB2 receptor is involved in the response. G protein G(i) or G(o) is also assumed to be involved, because pertussis toxin treatment of the cells nullified the response induced by 2-AG. CP55940 and anandamide also induced the activation of p42/44 MAP kinase, although the activation by anandamide was less pronounced than that by 2-AG or CP55940. These results suggest that 2-AG may play an important physiological role in this type of cell through the activation of the p42/44 MAP kinase cascade.  相似文献   

11.
2-Arachidonoyl glycerol (2-AG) is a major endocannabinoid and an important regulator of neuroendocrine system. In Syrian hamster and human, we found that 2-AG is synthesized in the hypophysial pars tuberalis (PT), an interface between photoperiodic melatonin signals and neuroendocrine output pathways. The target of 2-AG produced in the PT is likely to be the pars distalis (PD). Here we demonstrate that 2-AG in combination with forskolin stimulated prolactin secretion from PD organ cultures of Syrian hamsters, whereas incubation with 2-AG alone had no effect. Forskolin-induced prolactin secretion was also significantly enhanced when cultured PD tissue was preincubated with 2-AG. The stimulatory effects of 2-AG on prolactin secretion were blocked by AM251, a selective CB1 antagonist, and were still observed in the presence of quinpirole, a D2-class dopamine receptor agonist. 2-AG also enhanced prolactin secretion in the presence of adenosine, while it had little effect when applied together with adenosine diphosphate (ADP) and adenosine triphosphate (ATP). Moreover, the effect of forskolin was mimicked by adenosine in a dose-dependent manner. In conclusion, our data suggest that 2-AG sensitizes the PD tissue to potentiate the stimulating effects of forskolin and adenosine on prolactin secretion and thus provide novel insight into the mode of action of 2-AG in the PD.  相似文献   

12.
Moody JS  Kozak KR  Ji C  Marnett LJ 《Biochemistry》2001,40(4):861-866
The endogenous cannabinoid system appears to serve vascular, neurological, immunological, and reproductive functions. The identification of 2-arachidonylglycerol (2-AG) as an endogenous ligand for the central (CB1) and peripheral (CB2) cannabinoid receptors has prompted interest in enzymes capable of modifying or inactivating this endocannabinoid. Porcine leukocyte 12-liopoxygenase (12-LOX) oxygenated 2-AG to the 2-glyceryl ester of 12(S)-hydroperoxyeicosa-5,8,10,14-tetraenoic acid (12-HPETE-G). The k(cat)/K(M) for oxygenation of 2-AG was 40% of the value for arachidonic acid. In contrast to the results with leukocyte 12-LOX, 2-AG oxygenation was not detected with platelet-type 12-LOX. Among a series of structurally related arachidonyl esters, 2-AG served as the preferential substrate for leukocyte 12-LOX. 12(S)-Hydroxyeicosa-5,8,10,14-tetraenoic acid glyceryl ester (12-HETE-G) was produced following addition of 2-AG to COS-7 cells transiently transfected with leukocyte 12-LOX. These results demonstrate that leukocyte-type 12-LOX efficiently oxidizes 2-AG in vitro and in intact cells, suggesting a role for this oxygenase in the endogenous cannabinoid system.  相似文献   

13.
Monoglyceride lipase (MGL) is required for efficient hydrolysis of the endocannabinoid 2-arachidonoylglyerol (2-AG) in the brain generating arachidonic acid (AA) and glycerol. This metabolic function makes MGL an interesting target for the treatment of neuroinflammation, since 2-AG exhibits anti-inflammatory properties and AA is a precursor for pro-inflammatory prostaglandins. Astrocytes are an important source of AA and 2-AG, and highly express MGL. In the present study, we dissected the distinct contribution of MGL in astrocytes on brain 2-AG and AA metabolism by generating a mouse model with genetic deletion of MGL specifically in astrocytes (MKOGFAP). MKOGFAP mice exhibit moderately increased 2-AG and reduced AA levels in brain. Minor accumulation of 2-AG in the brain of MKOGFAP mice does not cause cannabinoid receptor desensitization as previously observed in mice globally lacking MGL. Importantly, MKOGFAP mice exhibit reduced brain prostaglandin E2 and pro-inflammatory cytokine levels upon peripheral lipopolysaccharide (LPS) administration. These observations indicate that MGL-mediated degradation of 2-AG in astrocytes provides AA for prostaglandin synthesis promoting LPS-induced neuroinflammation. The beneficial effect of astrocyte-specific MGL-deficiency is not fully abrogated by the inverse cannabinoid receptor 1 agonist SR141716 (Rimonabant) suggesting that the anti-inflammatory effects are rather caused by reduced prostaglandin synthesis than by activation of cannabinoid receptors. In conclusion, our data demonstrate that MGL in astrocytes is an important regulator of 2-AG levels, AA availability, and neuroinflammation.  相似文献   

14.
2-Arachidonoylglycerol (2-AG) is an endogenous ligand for cannabinoid receptors. There are two types of cannabinoid receptors, CB1 and CB2. We investigated the chemotactic activity of 2-AG using mouse lymphocytes because cells in the immune system are known to express CB2 . Spleen cell migration toward 2-AG was observed, which was completely inhibited by SR144528, a CB2-specific antagonist. 2-AG has been reported to induce a preferential B cell chemotaxis. We examined whether there is any difference in responsiveness during the activation of B cells. When spleen cells from immunized mice were tested, naive B cells but not germinal center B cells (GL7-positive) were increased in the fraction attracted by 2-AG. Furthermore, when Peyer's patch lymphocytes were tested after oral administration of cholera toxin, the number of IgA* B cells was increased in the fraction attracted by 2-AG. These results suggested that 2-AG preferentially attracts unstimulated naive B cells rather than activated and/or class-switched B cells. This property may influence the structure of B cell compartments in secondary lymphoid tissues.  相似文献   

15.
2-Arachidonoylglycerol (2-AG) is a monoacylglycerol (MAG) molecule containing an esterified arachidonic acid chain at sn-2 position of the glycerol backbone. Together with structurally similar N-arachidonoylethanolamine (anandamide), 2-AG has been extensively studied as an endogenous ligand of cannabinoid receptors (an endocannabinoid) in brain and other mammalian tissues. Accumulating evidence demonstrates that the endocannabinoid system, including the central-type cannabinoid receptor CB1 and 2-AG, is responsible for synaptic retrograde signaling in the central nervous system. As 2-AG is rapidly formed from membrane phospholipids on cellular stimuli and degraded to arachidonic acid and glycerol, the enzymes catalyzing its biosynthesis and degradation are believed to play crucial roles in the regulation of its tissue levels. The major biosynthetic pathway appears to consist of sequential hydrolyses of inositol phospholipids via diacylglycerol (DAG) by β-type phospholipase C and DAG lipase, while MAG lipase is a principal enzyme in the degradation. In this short review, we will briefly outline rapid advances in enzymological research on the biosynthetic and degradative pathways of 2-AG.  相似文献   

16.
The recent demonstrations that cyclooxygenase-2 and leukocyte-type 12-lipoxygenase (LOX) efficiently oxygenate 2-arachidonylglycerol (2-AG) prompted an investigation into related oxygenases capable of metabolizing this endogenous cannabinoid receptor ligand. We evaluated the ability of six LOXs to catalyze the hydroperoxidation of 2-AG. Soybean 15-LOX, rabbit reticulocyte 15-LOX, human 15-LOX-1, and human 15-LOX-2 oxygenate 2-AG, providing 15(S)-hydroperoxyeicosatetraenoic acid glyceryl ester. In contrast, potato and human 5-LOXs do not efficiently metabolize this endocannabinoid. Among a series of structurally related arachidonyl esters, arachidonylglycerols serve as the preferred substrates for 15-LOXs. Steady-state kinetic analysis demonstrates that both 15-LOX-1 and 15-LOX-2 oxygenate 2-AG comparably or preferably to arachidonic acid. Furthermore, 2-AG treatment of COS-7 cells transiently transfected with human 15-LOX expression vectors or normal human epidermal keratinocytes results in the production and extracellular release of 15-hydroxyeicosatetraenoic acid glyceryl ester (15-HETE-G), establishing that lipoxygenase metabolism of 2-AG occurs in an eukaryotic cellular environment. Investigations into the potential biological actions of 15-HETE-G indicate that this lipid, in contrast to its free-acid counterpart, acts as a peroxisome proliferator-activated receptor alpha agonist. The results demonstrate that 15-LOXs are capable of acting on 2-AG to provide 15-HETE-G and elucidate a potential role for endocannabinoid oxygenation in the generation of peroxisome proliferator-activated receptor alpha agonists.  相似文献   

17.
2-arachidonoylglycerol (2-AG) is an endogenous ligand for the cannabinoid receptors with a variety of potent biological activities. In this study, we first examined the effects of potassium-induced depolarization on the level of 2-AG in rat brain synaptosomes. We found that a significant amount of 2-AG was generated in the synaptosomes following depolarization. Notably, depolarization did not affect the levels of other molecular species of monoacylglycerols. Furthermore, the level of anandamide was very low and did not change markedly following depolarization. It thus appeared that the depolarization-induced accelerated generation is a unique feature of 2-AG. We obtained evidence that phospholipase C is involved in the generation of 2-AG in depolarized synaptosomes: U73122, a phospholipase C inhibitor, markedly reduced the depolarization-induced generation of 2-AG, and the level of diacylglycerol was rapidly elevated following depolarization. A significant amount of 2-AG was released from synaptosomes upon depolarization. Interestingly, treatment of the synaptosomes with SR141716A, a CB1 receptor antagonist, augmented the release of glutamate from depolarized synaptosomes. These results strongly suggest that the endogenous ligand for the cannabinoid receptors, i.e. 2-AG, generated through increased phospholipid metabolism upon depolarization, plays an important role in attenuating glutamate release from the synaptic terminals by acting on the CB1 receptor.  相似文献   

18.
《Process Biochemistry》2014,49(9):1415-1421
2-Arachidonoyl glycerol (2-AG) is an endogenous agonist for cannabinoid receptors and has exhibited various biological activities. In this study, we reported an improved method for the synthesis of 2-AG by enzymatic ethanolysis of arachidonic acid-rich oil. The effects of solvent type, addition amounts of solvent and lipase, and reaction time on the content of 2-monoacylglycerols (2-MAGs) in the crude reaction mixture were investigated. Under the optimal conditions, 34.1% (area/area) 2-MAGs were produced in the crude mixture. 2-MAGs were obtained at 98–99% purity and 85.3% 2-MAGs yield (mol/mol) after solvent fractionation to fully remove impurities, including diacylglycerols (DAGs), triacylglycerols (TAGs) and fatty acid ethyl esters. Subsequently, pure 2-MAGs were further purified by crystallization in hexane to remove all saturated and partially unsaturated 2-MAGs to enrich 2-AG. After a two-step purification, 79.4% 2-AG was obtained at 42.9% 2-MAGs yield. Compared to previous methods for the synthesis of 2-AG, the method reported herein is easier to scale, greener, simpler and more economical.  相似文献   

19.
In recent years, endocannabinoids emerged as new players in various reproductive events. Recently, we demonstrated the involvement of 2-arachidonoylglycerol (2-AG) in human cytotrophoblast apoptosis and syncytialization. However, 2-AG impact in hormone production by the syncytiotrophoblast (hST) was never studied. In this work, we demonstrate that 2-AG activates cannabinoid (CB) receptors, exerting an inhibitory action on cyclic AMP/protein kinase A (cAMP/PKA) and mitogen-activated protein kinase (MAPK) p38 pathways, and enhancing ERK 1/2 phosphorylation. Furthermore, 2-AG affects the synthesis of human chorionic gonadotropin (hCG), leptin, aromatase, 3-β-hydroxysteroid dehydrogenase (3-β-HSD), and placental protein 13 (PP13). These 2-AG effects are mediated by the activation of CB receptors, in a mechanism that may involve p38, ERK 1/2 and cAMP/PKA pathways, which participate in the regulation of placental proteins expression.To our knowledge, this is the first study that associates the endocannabinoid signalling and endocrine placental function, shedding light on a role for 2-AG in the complex network of molecules that orchestrate the production of placental proteins essential for the gestational success.  相似文献   

20.
In response to traumatic brain injury, there is local and transient accumulation of 2-AG at the site of injury, peaking at 4 h and sustained up to at least 24 h. Neuroprotection exerted by exogenous 2-AG suggests that the formation of 2-AG may serve as a molecular regulator of pathophysiological events, attenuating the brain damage. Inhibition of this protective effect by SR-141716A, a CB1 cannabinoid receptor antagonist, and the lack of effect of 2-AG in CB1 knockout mice suggest that 2-AG and the CB1 receptor may be important in the pathophysiology of traumatic brain injury. 2-AG exerts its neuroprotective effect after traumatic brain injury, at least in part, by inhibition of NF-κB transactivation. 2-AG also inhibits, at an early stage (2–4 h), the expression of the main proinflammatory cytokines, TNF-α, IL-6, and IL-1β, and is accompanied by reduction of BBB permeability. Moreover, the CB1, CB2, and TRVP1 receptors are expressed on microvascular endothelial cells, and their activation by 2-AG counteracts endothelin (ET-1)-induced cerebral microvascular responses (namely, Ca2+ mobilization and cytoskeleton rearrangement). This suggests that the functional interaction between 2-AG and ET-1 may provide a potential alternative pathway for abrogating ET-1-inducible vasoconstriction after brain injury and play a role in the neuroprotective effects exerted by 2-AG, as a potent vasodilator.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号