首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
Abstract The microbial mat was chosen as a model ecosystem to study dynamics of dimethyl sulfide (DMS) in marine sediments in order to gain insight into key processes and factors which determine emission rates. A practical advantage, compared to open ocean ecosystems, is that microbial mats contain high biomasses of different functional groups of bacteria involved in DMS dynamics, and that DMS concentrations are generally high enough to allow direct measurement of emission rates. Field data showed that, during the seasonal development of microbial mats, concentrations of chlorophyll a corresponded to dimethylsulfoniopropionate (DMSP). DMSP is an important precursor of DMS. It was demonstrated, with laboratory cultures, that various species of benthic diatoms produce substantial amounts of DMSP. The abundances of aerobic and anaerobic DMS- or DMSO-utilizing bacteria were estimated using the most-probable-number technique. Laboratory experiments with relatively undisturbed sediment cores showed that microbial mats act as a sink for DMS under oxic/light (day) conditions, and as a source of DMS under anoxic/dark (night) conditions. Axenic culture studies with Chromatium vinosum M2 and Thiocapsa pfennigii M8 (isolated from a microbial mat) showed that, under anoxic/light conditions, DMS was quantitatively converted to dimethylsulfoxide (DMSO). T. roseopersicina M11 converted DMSP to DMS and acrylate, apparently without use of either substrate. Received: 5 May 1997; Accepted: 21 August 1997  相似文献   

2.
The roles of several trophic groups of organisms (methanogens and sulfate- and nitrate-reducing bacteria) in the microbial degradation of methanethiol (MT) and dimethyl sulfide (DMS) were studied in freshwater sediments. The incubation of DMS- and MT-amended slurries revealed that methanogens are the dominant DMS and MT utilizers in sulfate-poor freshwater systems. In sediment slurries, which were depleted of sulfate, 75 micromol of DMS was stoichiometrically converted into 112 micromol of methane. The addition of methanol or MT to DMS-degrading slurries at concentrations similar to that of DMS reduced DMS degradation rates. This indicates that the methanogens in freshwater sediments, which degrade DMS, are also consumers of methanol and MT. To verify whether a competition between sulfate-reducing and methanogenic bacteria for DMS or MT takes place in sulfate-rich freshwater systems, the effects of sulfate and inhibitors, like bromoethanesulfonic acid, molybdate, and tungstate, on the degradation of MT and DMS were studied. The results for these sulfate-rich and sulfate-amended slurry incubations clearly demonstrated that besides methanogens, sulfate-reducing bacteria take part in MT and DMS degradation in freshwater sediments, provided that sulfate is available. The possible involvement of an interspecies hydrogen transfer in these processes is discussed. In general, our study provides evidence for methanogenesis as a major sink for MT and DMS in freshwater sediments.  相似文献   

3.
The roles of several trophic groups of organisms (methanogens and sulfate- and nitrate-reducing bacteria) in the microbial degradation of methanethiol (MT) and dimethyl sulfide (DMS) were studied in freshwater sediments. The incubation of DMS- and MT-amended slurries revealed that methanogens are the dominant DMS and MT utilizers in sulfate-poor freshwater systems. In sediment slurries, which were depleted of sulfate, 75 μmol of DMS was stoichiometrically converted into 112 μmol of methane. The addition of methanol or MT to DMS-degrading slurries at concentrations similar to that of DMS reduced DMS degradation rates. This indicates that the methanogens in freshwater sediments, which degrade DMS, are also consumers of methanol and MT. To verify whether a competition between sulfate-reducing and methanogenic bacteria for DMS or MT takes place in sulfate-rich freshwater systems, the effects of sulfate and inhibitors, like bromoethanesulfonic acid, molybdate, and tungstate, on the degradation of MT and DMS were studied. The results for these sulfate-rich and sulfate-amended slurry incubations clearly demonstrated that besides methanogens, sulfate-reducing bacteria take part in MT and DMS degradation in freshwater sediments, provided that sulfate is available. The possible involvement of an interspecies hydrogen transfer in these processes is discussed. In general, our study provides evidence for methanogenesis as a major sink for MT and DMS in freshwater sediments.  相似文献   

4.
There is a relative absence of studies dealing with mats of purple sulphur bacteria in the intertidal zone. These bacteria display an array of metabolic pathways that allow them to disperse and develop under a wide variety of conditions, making these mats important in terms of ecosystem processes and functions. Mass blooms of purple sulphur bacteria develop during summer on sediments in the intertidal zone especially on macroalgal deposits. The microbial composition of different types of mats differentially affected by the development of purple sulphur bacteria was examined, at low tide, using a set of biochemical markers (fatty acids, pigments) and composition was assessed against their influence on ecosystem functions (sediment cohesiveness, CO2 fixation). We demonstrated that proliferation of purple sulphur bacteria has a major impact on intertidal mats diversity and functions. Indeed, assemblages dominated by purple sulphur bacteria (Chromatiaceae) were efficient exopolymer producers and their biostabilisation potential was significant. In addition, the massive growth of purple sulphur bacteria resulted in a net CO2 degassing whereas diatom dominated biofilms represented a net CO2 sink.  相似文献   

5.
Microbial consumption is one of the main processes, along with photolysis and ventilation, that remove the biogenic trace gas dimethylsulfide (DMS) from the surface ocean. Although a few isolates of marine bacteria have been studied for their ability to utilize DMS, little is known about the characteristics or phylogenetic affiliation of DMS consumers in seawater. We enriched coastal and open-ocean waters with different carbon sources to stimulate different bacterial communities (glucose-consuming bacteria, methyl group-consuming bacteria and DMS consumers) in order to test how this affected DMS consumption and to examine which organisms might be involved. Dimethylsulfide consumption was greatly stimulated in the DMS addition treatments whereas there was no stimulation in the other treatments. Analysis of microbial DNA by two different techniques (sequenced bands from DGGE gels and clone libraries) showed that bacteria grown specifically with the presence of DMS were closely related to the genus Methylophaga. We also followed the fate of consumed DMS in some of the enrichments. Dimethylsulfide was converted mostly to DMSO in glucose or methanol enrichments, whereas it was converted mostly to sulfate in DMS enrichments, the latter suggesting use of DMS as a carbon and energy source. Our results indicate that unlike the biochemical precursor of DMS, dimethylsulfoniopropionate (DMSP), which is consumed by a broad spectrum of marine microorganisms, DMS seems to be utilized as a carbon and electron source by specialists. This is consistent with the usual observation that DMSP turns over at much higher rates than DMS.  相似文献   

6.
The algal osmolyte, dimethylsulphoniopropionate (DMSP), is abundant in the surface oceans and is the major precursor of dimethyl sulphide (DMS), a gas involved in global climate regulation. Here, we report results from an in situ Lagrangian study that suggests a link between the microbially driven fluxes of dissolved DMSP (DMSPd) and specific members of the bacterioplankton community in a North Sea coccolithophore bloom. The bacterial population in the bloom was dominated by a single species related to the genus Roseobacter , which accounted for 24% of the bacterioplankton numbers and up to 50% of the biomass. The abundance of the Roseobacter cells showed significant paired correlation with DMSPd consumption and bacterioplankton production, whereas abundances of other bacteria did not. Consumed DMSPd (28 nM day−1) contributed 95% of the sulphur and up to 15% of the carbon demand of the total bacterial populations, suggesting the importance of DMSP as a substrate for the Roseobacter -dominated bacterioplankton. In dominating DMSPd flux, the Roseobacter species may exert a major control on DMS production. DMSPd turnover rate was 10 times that of DMS (2.7 nM day−1), indicating that DMSPd was probably the major source of DMS, but that most of the DMSPd was metabolized without DMS production. Our study suggests that single species of bacterioplankton may at times be important in metabolizing DMSP and regulating the generation of DMS in the sea.  相似文献   

7.
Anoxic salt marsh sediments were amended with dl-methionine and dimethylsulfoniopropionate (DMSP). Microbial metabolism of methionine yielded methane thiol (MSH) as the major volatile organosulfur product, with the formation of lesser amounts of dimethylsulfide (DMS). Biological transformation of DMSP resulted in the rapid release of DMS and only small amounts of MSH. Experiments with microbial inhibitors indicated that production of MSH from methionine was carried out by procaryotic organisms, probably sulfate-reducing bacteria. Methane-producing bacteria did not metabolize methionine. The involvement of specific groups of organisms in DMSP hydrolysis could not be determined with the inhibitors used, because DMSP was hydrolyzed in all samples except those which were autoclaved. Unamended sediment slurries, prepared from Spartina alterniflora sediments, contained significant (1 to 10 muM) concentrations of DMS. Endogenous methylated sulfur compounds and those produced from added methionine and DMSP were consumed by sediment microbes. Both sulfate-reducing and methane-producing bacteria were involved in DMS and MSH consumption. Methanogenesis was stimulated by the volatile organosulfur compounds released from methionine and DMSP. However, apparent competition for these compounds exists between methanogens and sulfate reducers. At low (1 muM) concentrations of methionine, the terminal S-methyl group was metabolized almost exclusively to CO(2) and only small amounts of CH(4). At higher (>100 muM) concentrations of methionine, the proportion of the methyl-sulfur group converted to CH(4) increased. The results of this study demonstrate that methionine and DMSP are potential precursors of methylated sulfur compounds in anoxic sediments and that the microbial community is capable of metabolizing volatile methylated sulfur compounds.  相似文献   

8.
Microbial mats have arguably been the most important ecosystem on Earth over its 3.5 Gyr inhabitation. Mats have persisted as consortia for billions of years and occupy some of Earth's most hostile environments. With rare exceptions (e.g. microbial mats developed on geothermal springs at Yellowstone National Park, USA), today's mats do not exist under conditions analogous to Precambrian habitats with substantially lower oxygen and sulphate concentrations. This study uses a numerical model of a microbial mat to investigate how mat composition in the past might have differed from modern mats. We present a numerical model of mat biogeochemistry that simulates the growth of cyanobacteria (CYA), colourless sulphur bacteria (CSB), and purple sulphur bacteria (PSB), with sulphate‐reducing bacteria (SRB) and heterotrophic bacteria represented by parameterized sulphate reduction rates and heterotrophic consumption rates, respectively. Variations in the availability of light, oxygen, sulphide, and sulphate at the upper boundary of the mat are the driving forces in the model. Mats with remarkably similar biomass and chemical profiles develop in models under oxygen boundary conditions ranging from 2.5 × 10?13 to 0.25 mm and sulphate boundary concentrations ranging from 0.29 to 29 mm , designed to simulate various environments from Archean to modern. The modelled mats show little sensitivity to oxygen boundary conditions because, independent of the overlying oxygen concentrations, cyanobacterial photosynthesis creates similar O2 concentrations of 0.45–0.65 mm in the upper reaches of the mat during the photoperiod. Varying sulphate boundary conditions have more effect on the biological composition of the mat. Sulphide generated from sulphate reduction controls the magnitude and distribution of the PSB population, and plays a part in the distribution of CSB. CSB are the most sensitive species to environmental change, varying with oxygen and sulphide.  相似文献   

9.
Dimethylsulfoniopropionate (DMSP) is a natural product of algae and aquatic plants, particularly those from saline environments. We investigated whether DMSP could serve as a precursor of thiols in anoxic coastal marine sediments. The addition of 10 or 60 μM DMSP to anoxic sediment slurries caused the concentrations of 3-mercaptopropionate (3-MPA) and methanethiol (MSH) to increase. Antibiotics prevented the appearance of these thiols, indicating biological formation. Dimethyl sulfide (DMS) and acrylate also accumulated after the addition of DMSP, but these compounds were rapidly metabolized by microbes and did not reach high levels. Acrylate and DMS were probably generated by the enzymatic cleavage of DMSP. MSH arose from the microbial metabolism of DMS, since the direct addition of DMS greatly increased MSH production. Additions of 3-methiolpropionate gave rise to 3-MPA at rates similar to those with DMSP, suggesting that sequential demethylation of DMSP leads to 3-MPA formation. Only small amounts of MSH were liberated from 3-methiolpropionate, indicating that demethiolation was not a major transformation for 3-methiolpropionate. We conclude that DMSP was degraded in anoxic sediments by two different pathways. One involved the well-known enzymatic cleavage to acrylate and DMS, with DMS subsequently serving as a precursor of MSH. In the other pathway, successive demethylations of the sulfur atom proceeded via 3-methiolpropionate to 3-MPA.  相似文献   

10.
Aims: To investigate the production of volatile sulphur compounds (VSC) in the segments of the large intestine of pigs and to assess the impact of diet on this production. Methods and Results: Pigs were fed two diets based on either wheat and barley (STD) or wheat and dried distillers grains with solubles (DDGS). Net production of VSC and potential sulphate reduction rate (SRR) (sulphate saturated) along the large intestine were determined by means of in vitro incubations. The net production rate of hydrogen sulphide and potential SRR increased from caecum towards distal colon and were significantly higher in the STD group. Conversely, the net methanethiol production rate was significantly higher in the DDGS group, while no difference was observed for dimethyl sulphide. The number of sulphate‐reducing bacteria and total bacteria were determined by quantitative PCR and showed a significant increase along the large intestine, whereas no diet‐related differences were observed. Conclusion: VSC net production varies widely throughout the large intestine of pigs and the microbial processes involved in this production can be affected by diet. Significance and Impact of the Study: This first report on intestinal production of all VSC shows both spatial and dietary effects, which are relevant to both bowel disease‐ and odour mitigation research.  相似文献   

11.
Bacterial degradation of dimethylsulfoniopropionate (DMSP) represents one of the main sources of the climatically–active trace gas dimethylsulfide (DMS) in the upper ocean. Short-term enrichment studies to stimulate specific pathways of DMSP degradation in oligotrophic waters from the Sargasso Sea were used to explore regulatory connections between the different bacterial DMSP degradation steps and determine potential biological controls on DMS formation in the open ocean. Experiments were conducted with surface water at the BATS station in the western North Atlantic Ocean. We added selected organic substrates (25 nmol L?1 final concentration) to induce different steps of DMSP degradation in the microbial community, and then measured DMSP dynamics (assimilation and turnover rates), DMS yields (using 35sulfur-DMSP tracer), and bacterial production rates. In most treatments, the main fate of consumed S-DMSP was excretion as a non-volatile S product. 35S-DMSP tracer turnover rates (accumulation + assimilation + excretion of transformed products as DMS or others) increased upon addition of DMSP and glucose, but not acrylate, methymercaptopropionate (MMPA), methanethiol, DMS or glycine betaine. DMS yields from 35S-DMSP never exceeded 16 % except in a short term DMSP enrichment, for which the yield reached 45 % (±17 %). Results show that availability of non-sulfur containing labile C sources (glucose, acrylate) decreased bacterial DMS production while stimulating bacterial heterotrophic production, and suggest an influence of bacterial sulfur demand in controlling DMS-yielding pathways. However, regulatory effects on 35S-DMSP fate were not consistent across all reduced sulfur compounds (i.e., methanethiol or MMPA), and may reflect alternate roles of DMSP as a bacterial energy source and osmolyte.  相似文献   

12.
New Routes for Aerobic Biodegradation of Dimethylsulfoniopropionate   总被引:7,自引:6,他引:1       下载免费PDF全文
Dimethylsulfoniopropionate (DMSP), an osmolyte in marine plants, is biodegraded by cleavage of dimethyl sulfide (DMS) or by demethylation to 3-methiolpropionate (MMPA) and 3-mercaptopropionate (MPA). Sequential demethylation has been observed only with anoxic slurries of coastal sediments. Bacteria that grew aerobically on MMPA and DMSP were isolated from marine environments and phytoplankton cultures. Enrichments with DMSP selected for bacteria that generated DMS, whereas MMPA enrichments selected organisms that produced methanethiol (CH3SH) from either DMSP or MMPA. A bacterium isolated on MMPA grew on MMPA and DMSP, but rapid production of CH3SH from DMSP occurred only with DMSP-grown cells. Low levels of MPA accumulated during growth on MMPA, indicating demethylation as well as demethiolation of MMPA. The alternative routes for DMSP biodegradation via MMPA probably impact on net DMS fluxes to the marine atmosphere.  相似文献   

13.
In temperate coastal seas, phytodetritus settling from the spring phytoplankton bloom is a potential food source for benthic deposit-feeders. The ability to exploit this seasonally variable resource could be enhanced by sensitivity to chemical cues signalling its arrival at the seabed. The biogenic sulphur compound dimethylsulphide (DMS), a breakdown product of dimethylsulphonioproprionate (DMSP) produced by some phytoplankton species, is a potential candidate for this role. We investigated the behavioural response of a sedentary surface deposit-feeder, the echiuran worm Maxmuelleria lankesteri, to DMS by observations and manipulative experimentation under natural conditions in a Scottish sea loch. Experimental addition of sediment enriched with DMSP-producing phytoplankton caused no significant increase in either the frequency of feeding by M. lankesteri or the rate of sediment ejection from observed burrows. Naturally occurring (DMSP+DMS) content of surface sediment was low during the winter, then peaked in April before declining in May. There was no consistent relationship between this parameter and rate of sediment ejection from M. lankesteri burrows. The results therefore provide no evidence that M. lankesteri uses DMSP or DMS as a stimulus to increased activity. An observed imbalance between the frequency of surface deposit-feeding and sediment ejection from individual burrows remains unexplained.  相似文献   

14.
15.
Marinobacterium sp. strain DMS-S1 is a unique marine bacterium that can use dimethyl sulphide (DMS) as a sulphur source only in the presence of light. High-performance liquid chromatography (HPLC) analyses of the culture supernatant revealed that excreted factors, which could transform DMS to dimethyl sulphoxide (DMSO) under light, are FAD and riboflavin. In addition, FAD appeared to catalyse the photolysis of DMS to not only DMSO but also methanesulphonate (MSA), formate, formaldehyde and sulphate. As strain DMS-S1 can use sulphate and MSA as a sole sulphur source independently of light, the excretion of flavins appeared to support the growth on DMS under light. Furthermore, three out of 12 marine bacteria from IAM culture collection were found to be able to grow on DMS with the aid of photolysis by the flavins excreted. This is the first report that bacteria can use light to assimilate oceanic organic sulphur compounds outside the cells by excreting flavins as photosensitizers.  相似文献   

16.
17.
Abstract: Three strains of aerobic bacteria were isolated from water and sediment samples of Mono Lake, a moderately hypersaline (90 ppt), alkaline (pH 9.7) lake in California. The organisms, Gram-negative rods, grew fastest at about pH 9.7 with no growth or much slower growth at pH 7.0. All three isolates grew on glycine betaine (GB) and respirometric experiments indicated that catabolism was by sequential demethylation with dimethyl glycine and sarcosine as intermediates. Two of the isolates also grew on dimethylsulfoniopropionate (DMSP), one with cleavage of the DMSP to yield dimethyl sulfide (DMS) and acrylate, and the other by demethylation with 3-methiolpropionate (MMPA) as an intermediate and the production of methanethiol from MMPA. The methylated osmolytes supported growth at salinities similar to those in Mono Lake, but, at higher salinities, catabolism was suppressed and GB and DMSP functioned as osmolytes. GB and DMSP probably originate from cyanobacteria and/or phytoplankton in Mono Lake and this report is the first indication of both the DMS and demethylation/methanethiol-producing pathways for DMSP degradation in a nonmarine environment.  相似文献   

18.
Dimethylsulfoniopropionate (DMSP), an abundant osmoprotectant found in marine algae and salt marsh cordgrass, can be metabolized to dimethyl sulfide (DMS) and acrylate by microbes having the enzyme DMSP lyase. A suite of DMS-producing bacteria isolated from a salt marsh and adjacent estuarine water on DMSP agar plates differed markedly from the pelagic strains currently in culture. While many of the salt marsh and estuarine isolates produced DMS and methanethiol from methionine and dimethyl sulfoxide, none appeared to be capable of producing both methanethiol and DMS from DMSP. DMSP, and its degradation products acrylate and beta-hydroxypropionate but not methyl-3-mecaptopropionate or 3-mercaptopropionate, served as a carbon source for the growth of all the alpha- and beta- but only some of the gamma-proteobacterium isolates. Phylogenetic analysis of 16S rRNA gene sequences showed that all of the isolates were in the group Proteobacteria, with most of them belonging to the alpha and gamma subclasses. Only one isolate was identified as a beta-proteobacterium, and it had >98% 16S rRNA sequence homology with a terrestrial species of Alcaligenes faecalis. Although bacterial population analysis based on culturability has its limitations, bacteria from the alpha and gamma subclasses of the Proteobacteria were the dominant DMS producers isolated from salt marsh sediments and estuaries, with the gamma subclass representing 80% of the isolates. The alpha-proteobacterium isolates were all in the Roseobacter subgroup, while many of the gamma-proteobacteria were closely related to the pseudomonads; others were phylogenetically related to Marinomonas, Psychrobacter, or Vibrio species. These data suggest that DMSP cleavage to DMS and acrylate is a characteristic widely distributed among different phylotypes in the salt marsh-estuarine ecosystem.  相似文献   

19.
Dimethyl sulfide(DMS) is the most abundant form of volatile sulfur in Earth's oceans, and is mainly produced by the enzymatic clevage of dimethylsulfoniopropionate(DMSP). DMS and DMSP play important roles in driving the global sulfur cycle and may affect climate. DMSP is proposed to serve as an osmolyte, a grazing deterrent, a signaling molecule, an antioxidant, a cryoprotectant and/or as a sink for excess sulfur. It was long believed that only marine eukaryotes such as phytoplankton produce DMSP. However, we recently discovered that marine heterotrophic bacteria can also produce DMSP, making them a potentially important source of DMSP. At present, one prokaryotic and two eukaryotic DMSP synthesis enzymes have been identified.Marine heterotrophic bacteria are likely the major degraders of DMSP, using two known pathways: demethylation and cleavage.Many phytoplankton and some fungi can also cleave DMSP. So far seven different prokaryotic and one eukaryotic DMSP lyases have been identified. This review describes the global distribution pattern of DMSP and DMS, the known genes for biosynthesis and cleavage of DMSP, and the physiological and ecological functions of these important organosulfur molecules, which will improve understanding of the mechanisms of DMSP and DMS production and their roles in the environment.  相似文献   

20.
The Roseobacter clade of marine bacteria is often found associated with dinoflagellates, one of the major producers of dimethylsulfoniopropionate (DMSP). In this study, we tested the hypothesis that Roseobacter species have developed a physiological relationship with DMSP-producing dinoflagellates mediated by the metabolism of DMSP. DMSP was measured in Pfiesteria and Pfiesteria-like (Cryptoperidiniopsis) dinoflagellates, and the identities and metabolic potentials of the associated Roseobacter species to degrade DMSP were determined. Both Pfiesteria piscicida and Pfiesteria shumwayae produce DMSP with an average intracellular concentration of 3.8 microM. Cultures of P. piscicida or Cryptoperidiniopsis sp. that included both the dinoflagellates and their associated bacteria rapidly catabolized 200 microM DMSP (within 30 h), and the rate of catabolism was much higher for P. piscicida cultures than for P. shumwayae cultures. The community of bacteria from P. piscicida and Cryptoperidiniopsis cultures degraded DMSP with the production of dimethylsulfide (DMS) and acrylate, followed by 3-methylmercaptopropionate (MMPA) and methanethiol (MeSH). Four DMSP-degrading bacteria were isolated from the P. piscicida cultures and found to be taxonomically related to Roseobacter species. All four isolates produced MMPA from DMSP. Two of the strains also produced MeSH and DMS, indicating that they are capable of utilizing both the lyase and demethylation pathways. The diverse metabolism of DMSP by the dinoflagellate-associated Roseobacter spp. offers evidence consistent with a hypothesis that these bacteria benefit from association with DMSP-producing dinoflagellates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号