首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bacillus brevis strain Nagano and its gramicidin S-negative mutant, BI-7, were compared with respect to germination of their spores produced in several media. Germination initiation occurred in the presence of nutrient broth orL-alanine but not with inosine, glucose, glycerol or fructose; the process was activated by heat. Parental and mutant spores behaved similarly in these experiments. During outgrowth, parental spores remained in this phase of germination much longer than did mutant spores, but only when the parental spores had been harvested from a sporulation medium where significant gramicidin S synthesis had occurred. When parental spores were extracted or treated with an enzyme that hydrolyzes gramicidin S, rapid outgrowth occurred. Adding exogenous gramicidin S or the extract from parental spores to mutant spores lengthened the outgrowth in a dose-dependent manner. The uptake of labeledL-alanine by parental spores was delayed compared to mutant spores in the presence or absence of chloramphenicol. These data suggest a mechanism of action for gramicidin S whereby it interferes in membrane function, such as transport or energy metabolism, in outgrowing spores.Abbreviations GS Gramicidin S - CFU colony-forming units  相似文献   

2.
Gramicidin-S-negative mutants of Bacillus brevis ATCC9999 have been isolated with a remarkly higher yield after ethidium bromide or acridine orange treatment, than after N-methyl-N'-nitro-N-nitrosoguanidine treatment. Four (MIV, Smr170, R5 and EB 16) of 38 isolated mutants were characterized with respect to the lesion in gramicidin-S-synthesizing activity. The mutants sporulate to the same extent as the parental strain except mutant Smr 170 which sporulates less. However, mutant spores were more heat-sensitive and possessed a reduced level of dipicolinic acid content. No significant difference was observed in the germination time of wild-type and mutant spores. All spores germinated after 80--110 min, but the outgrowth time was different: all gramicidin-S-negative mutants grew out immediately after germination whereas wild-type spores required a lag period of 9--10 h. When the mutants were allowed to sporulate in the presence of gramicidin S, the spores were found to be heat-resistant and their outgrowth postponed to the same period as the parent spores. The addition of gramicidin also eliminated the deficiency of dipicolinic acid. A new class of gramicidin-S-negative mutant, R5, which only activates L-valine and L-leucine, is described. A possible biological function of gramicidin S in the heat-resistance and in the timing of spore outgrowth is discussed.  相似文献   

3.
Gramicidin S is known to prolong the outgrowth stage of spore germination in the producing culture. Bacillus brevis strain Nagano and its gramicidin S-negative mutant, BI-7, were compared with respect to cell-surface hydrophobicity and germination of their spores. Parental spores were hydrophobic as determined by adhesion to hexadecane, whereas mutant spores showed no affinity to hexadecane. Addition of gramicidin S to mutant spores resulted in a high cell surface hydrophobicity and a delay in germination outgrowth. The hydrophobicity of parental spores was retained throughout most of the germination period. Hydrophobicity was lost as outgrowing spores entered into the stage of vegetative growth. The data indicate that gramicidin S is responsible for the hydrophobicity of B. brevis spores. It is suggested that in making spores hydrophobic, the antibiotic plays a role in concentrating the spores at interfaces where there is a higher probability of finding nutrients for germination and growth.Abbreviation GS Gramicidin S  相似文献   

4.
Viability, antibiotic properties and variation of 4 variants of Bac. brevis var. G.-B. were studied after lyophilization and storage for a year in the lyophilized state. It was shown that the spores and vegetative cells of S and P- variants not synthesizing gramicidin S were somewhat more stable than the spores and cells of R and P+ variants producing the antibiotic. The latter dissociated by 10 per cent towards the cells producing and not producing gramicidin. The developmental rate of the lyophilized vegetative cells was higher than that of the lyophilized spores. Under analogous cultivation conditions they produced higher amounts of the biomass and antibiotic. The lyophilization method described may be recommended for the maintenance of viability and stability of the spores and vegetative cells of Bacillus brevis var. G.-B. producing gramicidin S.  相似文献   

5.
The effect of gramicidin S added to the cultivation medium on sporulation of the gramicidin S-producing P+ variant and gramicidin S-nonproducing P- variant of Bacillus brevis var. G.-B. was studied. Gramicidin S added to the synthetic medium with glucose in an amount of 30 and 100 microgram/ml 4 and 7 hours after inoculation with the vegetative cells of R- variant had no effect on the growth of the culture but retarded its sporulation. When gramicidin S was added in an amount of 100 microgram/ml 4 hours after inoculation, the sporulation rate of R- variant strongly decreased, rohile sporulation was not suppressed as it was noted before with respect to R+ variant. Active stimulation of Bacillus brevis var. G.-B. sporulation was observed after addition of gramicidin S 13 hours after development of R+ and R- variants without the antibiotic biosynthesis. Synthesis of gramicidin S by R+ strain was suppressed by the specific inhibitor beta-phenyl-beta-alanine. The amount of gramicidin S added to the medium during the sporulation process of R+ and R- variants decreased. On addition of 30 microgram/ml of the antibiotic it was practically not detectable when the culture showed the greatest number of the spores. Therefore, gramicidin S added to the medium is probably adsorbed by the cells of Bac. brevis var. G.-B. and affects sporulation of R- and R+ variants thus accelerating or retarding this process depending on the cultivation conditions.  相似文献   

6.
The effect of temperature, duration of heating and the presence of L-alanine and L-glutamine in the medium on the spore germination was studied with the S and P- variants of Bacillus brevis which did not contain gramicidin S and with the R and P+ varants obtained on a defined medium with beta-phenyl-beta-alanine, an inhibitor of the biosynthesis of gramicidin S. The experiments were carried out according to the scheme of complete factor experiment. Germination of the spores was found upon their incubation in a defined medium with L-alanine within two hours after their preliminary heating at 80 degrees C during 45 minutes (S variant), at 60 degrees C during 45 minutes (R variant+trace amounts of gramicidin S), at 80 degrees C during 15 minutes (P+ variant/trace amounts of gramicidin S). Germination of the spores of the P- variant was best upon heating to 60 degrees C during 45 minutes. Gramicidin S is presumed to inhibit, to a certain extent, germination of the spores of its producing culture.  相似文献   

7.
The pantothenic acid content of gramicidin S synthetase 2(GS 2) was estimated microbiologically with enzymes obtained from the wild strain and gramicidin S-lacking mutant strains of Bacillus brevis. Four mutant enzymes from BI-4, C-3, E-1, and E-2 lacked pantothenic acid. Other mutant enzymes from BII-3, BI-3, BI-9, and BI-2 contained the same amount of pantothenic acid as the wild-type enzyme. Pantothenic acid-lacking GS 2 belonged to group V of mutant enzymes, which could activate all amino acids related to gramicidin S; their complementary enzyme, gramicidin S synthetase 1(GS 1), lacked racemizing activity. To ascertain whether 4'-phosphopantetheine is involved in the formation of D-phenylalanyl-L-prolyl diketopiperazine (DKP) and gramicidin S, combinations were tested of intact GS 1 from the wild strain with various mutant GS 2 either containing or lacking pantothenic acid. Only the combinations of wild-type GS 1 with mutant GS 2 containing pantothenic acid could synthesize DKP. Combinations with pantothenic acid-lacking GS 2 also failed to elongate peptide chains. Pantothenic acid-lacking GS 2 could bind the four amino acids which constitute gramicidin S as acyladenylates and thioesters, but the binding abilities were lower than those of the wild-type enzyme and other mutant enzymes containing the pantothenic group.  相似文献   

8.
Initiated spores and vegetative cells of the gramicidin S-producing Bacillus brevis Nagano were compared with respect to their resistance to various forms of stress (osmotic shock-starvation, exposure to ethanol, sonic oscillation, and heat). The resistance of initiated spores to all of these stress situations was considerably greater than that of vegetative cells and approached that of dormant spores. The period during which the initiated spores remained resistant to heat was extended by addition of gramicidin S. The antibiotic may therefore be of survival value to the species in nature by slowing down the development of initiated spores in the outgrowth phase of germination, thereby extending the period during which the cells are resistant to environmental stress.  相似文献   

9.
AIMS: To develop a selective medium for the enumeration of Brevibacillus brevis Nagano spores from soil and plant material. METHODS AND RESULTS: Tyrosine agar was developed as a selective medium and compared with nutrient agar for the enumeration of B. brevis Nagano spores from sterile and non-sterile plant and soil extracts. Brevibacillus brevis Nagano colonies could be easily identified only on tyrosine agar due to their clear halo and distinct colony morphology. Identification was confirmed by thin layer chromatography of the antibiotic, gramicidin S, produced by this strain. CONCLUSIONS: Tyrosine agar was shown to be a suitable selective medium for the enumeration of B. brevis Nagano. SIGNIFICANCE AND IMPACT OF THE STUDY: The medium developed, tyrosine agar, can be used to monitor the population of the biological control agent, B. brevis Nagano, and will allow detailed studies within the crop environment.  相似文献   

10.
Gramicidin S, as well as being sporicidal to Bacillus spores, also inhibits germination and emergence of fungal-like spores of Dictyostelium discoideum . The fungal plant pathogen Fusarium nivale is also inhibited and gramicidin S, therefore, is a sporicidal and antifungal antibiotic. Considering these findings the potential use of this antibiotic and its producer organism Bacillus brevis as a biocontrol is discussed.  相似文献   

11.
It was shown that malate dehydrogenase of isolated membranes of the gramicidin S producer Bacillus brevis var. G.-B. (R.-form) is completely inhibited by the antibiotic (approximately 200 mkg/mg of protein). Succinate and NADH dehydrogenases at concentration up to 1 mg per mg of protein are insensitive to it, while corresponding oxidases are inhibited by the antibiotic not more than by 65 -- 75% apparently due to partial damage of the terminal parts of the respiratory chain. The respiration of the producer intact cells is inhibited by exogenous gramicidin S by not more than 55 -- 60%, while the respiration of antibiotic-sensitive cells of M.lysodeikticus is inhibited completely. It was shown that phosphatidyl ethanolamine (50%), phosphatidyl glycerol (15% and diphosphatidyl glycerol (25%) are the major phospholipid components of the membranes of the given strain of Bac. brevis. It was assumed that the resistance of Bac. brevis cells to gramicidin S is partly due to the constant ratio of the charged and amphoteric phospholipids. Using 31P-NMR spectroscopy, the kinetics of free phosphoric compounds in the cells and cell extracts of Bac. brevis during culture growth and gramicidin S synthesis were studied. The content of carbohydrate monophosphate, remained unaffected, while that of nucleoside di- and triphosphates and dinucleotides was low and at definite density and gramicidin S content (above 100 mkg/ml) fell down below the resolution capacity of the method employed. Evidence for gramicidin S localization of the Bac. brevis membrane and possible causes for the manifestation of the NADH dehydrogenase activity at a certain stage of culture growth are discussed.  相似文献   

12.
Germinating spores of Bacillus brevis are sensitive to inhibition by gramicidin S prior to emergence whereas once emergence is underway inhibition is lost and newly emerged vegetative cells are not affected by the antibiotic. Under conditions of overcrowding the concentration of antibiotic released is sufficient to render the germinated spores non-viable although dormant spores still retain their viability. Considering these points and the manner in which spore populations germinate we outline a strategy of germination for survival of Bacillus brevis .  相似文献   

13.
The phenylalanine-activating and/or-racemizing enzyme, i.e., the light enzyme, of gramicidin S synthetase was purified to a homogenous state by D-phenylalanine-Sepharose 4B chromatography from a wild and some gramicidin S-lacking mutant strains of Bacillus brevis. The light enzyme obtained from a mutant strain E-1 could activate phenylalanine but not racemize it, and had no phenylalanine-dependent ATP-[14C]AMP exchange activity, whereas the same enzyme obtained from other mutants and the wild strain had all three activities. Furthermore, the light enzyme of the mutant E-1 could form only acid-labile enzyme-bound phenylalanine, while the same fraction of the wild strain carried half of the enzyme-bound phenylalanine as acid-labile adenylate and half as a acid-stable thioester. These results suggest that the thiol site of the light enzyme of mutant E-1 might be damaged.  相似文献   

14.
Some features of the Bacillus brevis 101 mutant producing the antibiotic gramicidin S are described. The mutant is very close to the initial P+-variant of Bacillus brevis var. G-B by cultural, physiological and biochemical characteristics. The most typical features of Bacillus brevis 101 are high antibiotic activity (up to 2 g/l) and the specific phenotype of the colonies. The phenotypical features of Bacillus brevis 101 are dependent on the conditions of its cultivation. On minimal media rich in organics a change of the culture correlated with a lower antibiotic activity.  相似文献   

15.
AIMS: To assess the activity of Brevibacillus brevis (formerly Bacillus brevis) Nagano and the antibiotic it produces, gramicidin S, against the plant pathogen Botrytis cinerea. METHODS AND RESULTS: Germination and growth of Bot. cinerea were assessed in the presence of B. brevis or gramicidin S in liquid media, on solid media and on leaf sections of Chinese cabbage. Germination was 10-fold more sensitive to gramicidin S than growth. Inhibition of Bot. cinerea was greater in liquid media compared with on solid media. Activity of gramicidin S against Bot. cinerea on leaf sections was much lower than in vitro. In vitro inhibition of Bot. cinerea by B. brevis Nagano was similar to equivalent levels of gramicidin. CONCLUSIONS: Antibiosis, via gramicidin S, is the mode of antagonism exhibited by B. brevis Nagano against Bot. cinerea in vitro. SIGNIFICANCE AND IMPACT OF THE STUDY: The mode of antagonism of B. brevis against Bot. cinerea was elucidated. The differing activity of gramicidin S against Bot. Cinerea in vitro and on leaf sections indicates one mechanism by which biocontrol activity may differ between laboratory and field conditions.  相似文献   

16.
Bacillus brevis strain Nagano and its gramicidin S-negative mutant, BI-7, were compared in separate as well as in mixed cultures with respect to germination of their spores in several media. Mixed-culture experiments were facilitated by the observation that colonies of wild and mutant cultures are distinctly different in appearance on nutrient agar. We found that there was complete coexistence in both strains throughout the outgrowth phase of germination, during which gramicidin S-induced suicide normally occurs in the wild-type prior to vegetative growth. Coexistence was also observed in media supporting germination but not growth, i.e., alanine-salts and alanine-water. The same was found when spores of the two strains were incubated in a soil suspension. We found that both strains become sensitive to starvation in a salts mixture only after development into vegetative cells, the mutant strain being more sensitive than the parent in this regard, but again coexistence was observed in mixed culture.  相似文献   

17.
Temperature-sensitive sporulation mutants of Bacillus cereus were screened for intracellular protease activity that was more heat labile than that of the parental strain. One mutant grew as well as the wild type at 30 and 37 degrees C but sporulated poorly at 37 degrees C in an enriched or minimal medium. These spores germinated very slowly in response to alanine plus adenosine or calcium dipicolinate. During germination, spores produced by the mutant rapidly became heat sensitive, but released dipicolonic acid and mucopeptide fragments more slowly than the wild type and decreased only partially in density while remaining phase white (semirefractile). In freeze-etch electron micrographs, the mature spores were deficient in the outer cross-patched coat layer. During germination, the spore coat changes associated with wild-type germination occurred very slowly in this mutant. Although the original mutant was also a pyrimidine auxotroph, reversion to prototrophy did not alter any of the phenotypic properties discussed. Selection of revertants that germinated rapidly or sporulated well at 37 degrees C, however, resulted in restoratin of all wild-type properties (exclusive of the pyrimidine requirement) including heat-stable protease activity. The reversion frequency was consistent with an initial point mutation, indicating that a protease alteration resulted in production of spores defective in a very early stage of germination.  相似文献   

18.
Ferric iron reductase of Rhodopseudomonas sphaeroides.   总被引:5,自引:1,他引:4  
Partially digested chromosomal DNA of Bacillus brevis ATCC 9999, a producer of the cyclic peptide antibiotic gramicidin S, was ligated into the BamHI site of the Escherichia coli expression vector pUR2-Bam. The ligated molecules were used to transfer E. coli to ampicillin resistance. Of 5 X 10(3) colonies tested by in situ immunoassay for a cross-reaction with antibodies against the gramicidin S synthetase 2, 6 colonies were found to be immunoreactive. A clone designated MK2, which had a 3.9-kilobase insert of B. brevis DNA, directed in E. coli under the lac promoter control the synthesis of polypeptides that were cross-reactive with the antibody to the gramicidin S synthetase 2. Partial purification of the gene products by gel filtration revealed a major fraction with an approximate molecular weight of 140,000 and with specific ornithine-dependent ATP-32PPi and 2'-dATP-32PPi exchange activities. These unique activities of the gramicidin S synthetase 2 were not detected in the E. coli strain harboring the vector.  相似文献   

19.
Complexation and phase transfer of nucleic acids by gramicidin S   总被引:1,自引:0,他引:1  
A novel interaction between gramicidin S (GrS) and nucleic acids is characterized which, like that between GrS and nucleotides, exploits both the dicationic and amphiphilic properties of the peptide. Complex formation between calf thymus DNA and GrS is demonstrated by (i) phase transfer to CHCl3 of ultrasonically irradiated DNA and (ii) inhibition of phase transfer to CHCl3 of adenosine 5'-triphosphate by either native or ultrasonically irradiated DNA. The stoichiometry of the interaction is 2:1 (DNA-P:GrS), which is consistent with a predominantly electrostatic mode of binding. The apparent affinity of GrS for DNA is considerably higher than it is for free nucleotides. The interaction of the monocationic derivative [2-N delta-acetylornithyl]gramicidin S with calf thymus DNA is considerably weaker. DNA binding by GrS provides a rationale for the lag between germination and RNA synthesis exhibited by wild-type spores of producer strains of Bacillus brevis but not by GrS-negative mutants. On the basis of these results in vitro, a protective role is proposed for GrS in the dormant spore.  相似文献   

20.
Gramicidin S synthetase, the enzyme complex catalyzing the biosynthesis of the antibiotic gramicidin S in Bacillus brevis, is subject to O(2)-dependent in vivo inactivation during exponential aerobic growth after reaching a peak in specific activity. The five amino acid substrates of the synthetase are capable of stabilizing its activity to varying degrees in whole cells shaken aerobically. Depending on the time of cell harvesting before, during, or after the peak in intracellular gramicidin S synthetase specific activity, the enzyme has a long, medium, or short half-life, respectively. The kinetic profiles of gramicidin S synthetase in B. brevis cells indicate that both the kinetics of synthetase loss and the degree of its amino-acid-mediated stabilization are a strong function of the cells' physiological development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号