首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The establishment of culture systems that promote haemopoietic stem cell (HSC) self-renewal and expansion ex vivo will increase the clinical potential of umbilical cord blood (CB) HSC transplantation. Studies defining key signalling pathways that regulate development and expansion of HSC in vivo have greatly facilitated development of protocols for expanding HSC in ex vivo culture. Recently a number of soluble factors with novel stem cell expansion activity have been identified as part of pathways associated with mesodermal induction, or as factors produced by supportive stroma. These have been reported to support, to varying degrees, HSC self-renewal under in vitro conditions. Here we review the activities of these new factors and consider their future potential as components in ex vivo expansion culture for CB HSC. Finally we discuss the challenges associated with applying these factors to clinically relevant culture systems.  相似文献   

3.
HOXB4-induced expansion of adult hematopoietic stem cells ex vivo   总被引:48,自引:0,他引:48  
  相似文献   

4.
With the advent of the era of International Space Station (ISS) and Mars exploration, it is important more than ever to develop means to cure genetic and acquired diseases, which include cancer and AIDS, for these diseases hamper human activities. Thus, our ultimate goal is to develop protocols for gene therapy, which are suitable to humans on the earth as well as in space. Specifically, we are trying to cure the hemoglobinopathies, beta-thalassemia (Cooley's anemia) and sickle cell anemia, by gene therapy. These well-characterized molecular diseases serve as models for developing ex vivo gene therapy, which would apply to other disorders as well. For example, the procedure may become directly relevant to treating astronauts for space-anemia, immune suppression and bone marrow derived tumors, e.g. leukemia. The adeno-associated virus serotype 2 (AAV2) is a non-pathogenic human parvovirus with broad host-range and tissue specificity. Exploiting these characteristics we have been developing protocols for recombinant AAV2 (rAAV)-based gene therapy. With the rAAV constructs and hematopoietic stem cell (HSC) culture systems in hand, we are currently attempting to cure the mouse model of beta-thalassemia [C57BL/6- Hbbth/Hbbth, Hb(d-minor)] by HSC transplantation (HST) as well as by gene therapy. This paper describes the current status of our rAAV-gene therapy research.  相似文献   

5.
6.
The retroviral-mediated transfer of a suicide gene into donor T cells has been proposed as a method to control alloreactivity after hematopoietic stem cell (HSC) transplantation. Gene-modified cells (GMC) may be infused into the patient either at the time of transplantation, together with a T-cell depleted HSC graft, or after transplantation, as a donor lymphocyte infusion. Administration of a so-called pro-drug activating the "suicide" mechanism only after occurrence of GvHD should selectively destroy the alloreactive GMC in vivo, eventually leading to GvHD abrogation. Although phase I-II clinical trials provided vital proof of the principle of GvHD control by suicide-gene therapy, this approach is still suboptimal. Indeed, current gene transfer strategies rely on gamma-retroviral vectors that require extensive T-cell activation and expansion for efficient transduction. Both in vitro and in vivo studies have shown that the activation, cell expansion, transduction and selection steps lead to TCR repertoire alterations and impairment of crucial T-cell functions, such as alloreactivity and anti-EBV reactivity. Thus, improvements of the suicide-gene transfer processes are required in order to preserve T-cell function. This could be achieved by using CD3/CD28 co-stimulation and immunomagnetic selection of transduced cells. In future clinical trials, lentiviral vectors may prove to be a better alternative to gamma-retroviral-mediated gene transfer, by reducing the need for prolonged ex vivo culture.  相似文献   

7.
BACKGROUND: Extensive efforts to develop hematopoietic stem cell (HSC) based gene therapy have been hampered by low gene marking. Major emphasis has so far been directed at improving gene transfer efficiency, but low gene marking in transplanted recipients might equally well reflect compromised repopulating activity of transduced cells, competing for reconstitution with endogenous and unmanipulated stem cells. METHODS: The autologous settings of clinical gene therapy protocols preclude evaluation of changes in repopulating ability following transduction; however, using a congenic mouse model, allowing for direct evaluation of gene marking of lympho-myeloid progeny, we show here that these issues can be accurately addressed. RESULTS: We demonstrate that conditions supporting in vitro stem cell self-renewal efficiently promote oncoretroviral-mediated gene transfer to multipotent adult bone marrow stem cells, without prior in vivo conditioning. Despite using optimized culture conditions, transduction resulted in striking losses of repopulating activity, translating into low numbers of gene marked cells in competitively repopulated mice. Subjecting transduced HSCs to an ex vivo expansion protocol following the transduction procedure could partially reverse this loss. CONCLUSIONS: These studies suggest that loss of repopulating ability of transduced HSCs rather than low gene transfer efficiency might be the main problem in clinical gene therapy protocols, and that a clinically feasible ex vivo expansion approach post-transduction can markedly improve reconstitution with gene marked stem cells.  相似文献   

8.
The ability of various cytokines to hamper tumor growth or to induce anti-tumor immune response has resulted in their study as antitumor agents in gene therapy approaches. In this review we will concentrate on the costimulation of antitumor immune responses using modification of various cell types by cytokine genes. Several strategies have emerged such as (i). modification of tumor cells with cytokine genes ex vivo (whole tumor cell vaccines), (ii). ex vivo modification of other cell types for cytokine gene delivery, (iii). delivery of cytokine genes into tumor microenvironment in vivo, (iv). modification of dendritic cells with cytokine genes ex vivo. Originally single cytokine genes were used. Subsequently, multiple cytokine genes were applied simultaneously, or in combination with other factors such as chemokines, membrane bound co-stimulatory molecules, or tumor associated antigens. In this review we discuss these strategies and their use in cancer treatment as well as the promises and limitations of cytokine based cancer gene therapy. Clinical trials, including our own experience, employing the above strategies are discussed.  相似文献   

9.
Bone marrow mesenchymal stromal cells (BMMSCs) have been used as feeder support for the ex vivo expansion of hematopoietic stem cells (HSCs) but have the limitations of painful harvest, morbidity, and risk of infection to the patient. This prompted us to explore the use of human umbilical cord Wharton's jelly MSCs (hWJSCs) and its conditioned medium (hWJSC-CM) for ex vivo expansion of HSCs in allogeneic and autologous settings because hWJSCs can be harvested in abundance painlessly, are proliferative, hypoimmunogenic, and secrete a variety of unique proteins. In the presence of hWJSCs and hWJSC-CM, HSCs put out pseudopodia-like outgrowths and became highly motile. Time lapse imaging showed that the outgrowths helped them to migrate towards and attach to the upper surfaces of hWJSCs and undergo proliferation. After 9 days of culture in the presence of hWJSCs and hWJSC-CM, MTT, and Trypan blue assays showed significant increases in HSC numbers, and FACS analysis generated significantly greater numbers of CD34(+) cells compared to controls. hWJSC-CM produced the highest number of colonies (CFU assay) and all six classifications of colony morphology typical of hematopoiesis were observed. Proteomic analysis of hWJSC-CM showed significantly greater levels of interleukins (IL-1a, IL-6, IL-7, and IL-8), SCF, HGF, and ICAM-1 compared to controls suggesting that they may be involved in the HSC multiplication. We propose that cord blood banks freeze autologous hWJSCs and umbilical cord blood (UCB) from the same umbilical cord at the same time for the patient for future ex vivo HSC expansion and cell-based therapies.  相似文献   

10.

Background

Hematopoietic stem cell (HSC) gene therapy has cured immunodeficiencies including X-linked severe combined immunodeficiency (SCID-X1) and adenine deaminase deficiency (ADA). For these immunodeficiencies corrected cells have a selective advantage in vivo, and low numbers of gene-modified cells are sufficient to provide therapeutic benefit. Strategies to efficiently transduce and/or expand long-term repopulating cells in vivo are needed for treatment of diseases that require higher levels of corrected cells, such as hemoglobinopathies. Here we expanded corrected stem cells in vivo in a canine model of a severe erythroid disease, pyruvate kinase deficiency.

Methodology/Principal Findings

We used a foamy virus (FV) vector expressing the P140K mutant of methylguanine methyltransferase (MGMTP140K) for in vivo expansion of corrected hematopoietic repopulating cells. FV vectors are attractive gene transfer vectors for hematopoietic stem cell gene therapy since they efficiently transduce repopulating cells and may be safer than more commonly used gammaretroviral vectors. Following transplantation with HSCs transduced ex vivo using a tri-cistronic FV vector that expressed EGFP, R-type pyruvate kinase, and MGMTP140K, we were able to increase marking from approximately 3.5% to 33% in myeloid long-term repopulating cells resulting in a functional cure.

Conclusions/Significance

Here we describe in one affected dog a functional cure for a severe erythroid disease using stem cell selection in vivo. In addition to providing a potential cure for patients with pyruvate kinase deficiency, in vivo selection using foamy vectors with MGMTP140K has broad potential for several hematopoietic diseases including hemoglobinopathies.  相似文献   

11.
Hematopoietic stem cells (HSCs) can self-renew extensively after transplantation. The conditions supporting their in vitro expansion are still being defined. Retroviral overexpression of the human homeobox B4 (HOXB4) gene in mouse bone marrow cells enables over 40-fold expansion of HSCs in vitro. To circumvent the requirement for retroviral infection, we used recombinant human TAT-HOXB4 protein carrying the protein transduction domain of the HIV transactivating protein (TAT) as a potential growth factor for stem cells. HSCs exposed to TAT-HOXB4 for 4 d expanded by about four- to sixfold and were 8-20 times more numerous than HSCs in control cultures, indicating that HSC expansion induced by TAT-HOXB4 was comparable to that induced by the human HOXB4 retrovirus during a similar period of observation. Our results also show that TAT-HOXB4-expanded HSC populations retain their normal in vivo potential for differentiation and long-term repopulation. It is thus feasible to exploit recombinant HOXB4 protein for rapid and significant ex vivo expansion of normal HSCs.  相似文献   

12.
Hematopoietic stem cells (HSCs) are known to reside in a bone marrow (BM) niche, which is associated with relatively higher calcium content. HSCs sense and respond to calcium changes. However, how calcium-sensing components modulate HSC function and expansion is largely unknown. We investigated temporal modulation of calcium sensing and Ca2+ homeostasis during ex vivo HSC culture and in vivo. Murine BM-HSCs, human BM, and umbilical cord blood (UCB) mononuclear cells (MNCs) were treated with store-operated calcium entry (SOCE) inhibitors SKF 96365 hydrochloride (abbreviated as SKF) and 2-aminoethoxydiphenyl borate (2-APB). Besides, K+ channel inhibitor TEA chloride (abbreviated as TEA) was used to compare the relationship between calcium-activated potassium channel activities. Seven days of SKF treatment induced mouse and human ex vivo BM-HSC expansion as well as UCB-derived primitive HSC expansion. SKF treatment induced the surface expression of CaSR, CXCR4, and adhesion molecules on human hematopoietic stem and progenitor cells. HSCs expanded with SKF successfully differentiated into blood lineages in recipient animals and demonstrated a higher repopulation capability. Furthermore, modulation of SOCE in the BM-induced HSC content and differentially altered niche-related gene expression profile in vivo. Intriguingly, treatments with SOCE inhibitors SKF and 2-APB boosted the mouse BM mesenchymal stem cell (MSC) and human adipose-derived MSCs proliferation, whereas they did not affect the endothelial cell proliferation. These findings suggest that temporal modulation of calcium sensing is crucial in expansion and maintenance of murine HSCs, human HSCs, and mouse BM-MSCs function.  相似文献   

13.
Allogeneic hematopoietic stem cell (HSC) transplantations from umbilical cord blood or autologous HSCs for gene therapy purposes are hampered by limited number of stem cells. To test the ability to expand HSCs in vitro prior to transplantation, two growth factor cocktails containing stem cell factor, thrombopoietin, fms-related tyrosine kinase-3 ligand (STF) or stem cell factor, thrombopoietin, insulin-like growth factor-2, fibroblast growth factor-1 (STIF) either with or without the addition of angiopoietin-like protein-3 (Angptl3) were used. Culturing HSCs in STF and STIF media for 7 days expanded long-term repopulating stem cells content in vivo by ∼6-fold and ∼10-fold compared to freshly isolated stem cells. Addition of Angptl3 resulted in increased expansion of these populations by ∼17-fold and ∼32-fold, respectively, and was further supported by enforced expression of Angptl3 in HSCs through lentiviral transduction that also promoted HSC expansion. As expansion of highly purified lineage-negative, Sca-1+, c-Kit+ HSCs was less efficient than less pure lineage-negative HSCs, Angptl3 may have a direct effect on HCS but also an indirect effect on accessory cells that support HSC expansion. No evidence for leukemia or toxicity was found during long-term follow up of mice transplanted with ex vivo expanded HSCs or manipulated HSC populations that expressed Angptl3. We conclude that the cytokine combinations used in this study to expand HSCs ex vivo enhances the engraftment in vivo. This has important implications for allogeneic umbilical cord-blood derived HSC transplantations and autologous HSC applications including gene therapy.  相似文献   

14.
15.
Attempts to improve hematopoietic reconstitution and engraftment potential of ex vivo-expanded hematopoietic stem and progenitor cells (HSPCs) have been largely unsuccessful due to the inability to generate sufficient stem cell numbers and to excessive differentiation of the starting cell population. Although hematopoietic stem cells (HSCs) will rapidly expand after in vivo transplantation, experience from in vitro studies indicates that control of HSPC self-renewal and differentiation in culture remains difficult. Protocols that are based on hematopoietic cytokines have failed to support reliable amplification of immature stem cells in culture, suggesting that additional factors are required. In recent years, several novel factors, including developmental factors and chemical compounds, have been reported to affect HSC self-renewal and improve ex vivo stem cell expansion protocols. Here, we highlight early expansion attempts and review recent development in the extrinsic control of HSPC fate in vitro.  相似文献   

16.
Duchenne muscular dystrophy (DMD) is a devastating X-linked muscle disease characterized by progressive muscle weakness caused by the lack of dystrophin expression at the sarcolemma of muscle fibers. Although various approaches to delivering dystrophin in dystrophic muscle have been investigated extensively (e.g., cell and gene therapy), there is still no treatment that alleviates the muscle weakness in this common inherited muscle disease. The transplantation of myoblasts can enable transient delivery of dystrophin and improve the strength of injected dystrophic muscle, but this approach has various limitations, including immune rejection, poor cellular survival rates, and the limited spread of the injected cells. The isolation of muscle cells that can overcome these limitations would enhance the success of myoblast transplantation significantly. The efficiency of cell transplantation might be improved through the use of stem cells, which display unique features, including (1) self-renewal with production of progeny, (2) appearance early in development and persistence throughout life, and (3) long-term proliferation and multipotency. For these reasons, the development of muscle stem cells for use in transplantation or gene transfer (ex vivo approach) as treatment for patients with muscle disorders has become more attractive in the past few years. In this paper, we review the current knowledge regarding the isolation and characterization of stem cells isolated from skeletal muscle by highlighting their biological features and their relationship to satellite cells as well as other populations of stem cells derived from other tissues. We also describe the remarkable ability of stem cells to regenerate skeletal muscle and their potential use to alleviate the muscle weakness associated with DMD.  相似文献   

17.
18.
Haematopoietic stem cells (HSCs) give rise to all blood and immune cells and are used in clinical transplantation protocols to treat a wide variety of diseases. The ability to increase the number of HSCs either in vivo or in vitro would provide new treatment options, but the amplification of HSCs has been difficult to achieve. Recent insights into the mechanisms of HSC self-renewal now make the amplification of HSCs a plausible clinical goal. This article reviews the molecular mechanisms that control HSC numbers and discusses how these can be modulated to increase the number of HSCs. Clinical applications of HSC expansion are then discussed for their potential to address the current limitations of HSC transplantation.  相似文献   

19.
Gene Transfer Approaches to the Lysosomal Storage Disorders   总被引:4,自引:0,他引:4  
The work summarized in this paper used animal and cell culture models systems to develop gene therapy approaches for the lysosomal storage disorders. The results have provided the scientific basis for a clinical trial of gene transfer to hematopoietic stem cells (HSC) in Gaucher disease which is now in progress. The clinical experiment is providing evidence of HSC transduction, competitive engraftment of genetically corrected HSC, expression of the GC transgene, and the suggestion of a clinical response. In this paper we will review the progress made in Gaucher disease and include how gene transfer might be studied in other lysosomal storage disorders.  相似文献   

20.
In this issue of Cell Stem Cell, Csaszar et al. (2012) develop a culture method that overcomes current limitations in ex vivo hematopoietic stem/progenitor cell expansion by continuously diluting inhibitory signaling factors and maintaining stem cell density. This approach enhances the generation of precursors with potential therapeutic utility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号