首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
PTP1B regulates leptin signal transduction in vivo   总被引:15,自引:0,他引:15  
Mice lacking the protein-tyrosine phosphatase PTP1B are hypersensitive to insulin and resistant to obesity. However, the molecular basis for resistance to obesity has been unclear. Here we show that PTP1B regulates leptin signaling. In transfection studies, PTP1B dephosphorylates the leptin receptor-associated kinase, Jak2. PTP1B is expressed in hypothalamic regions harboring leptin-responsive neurons. Compared to wild-type littermates, PTP1B(-/-) mice have decreased leptin/body fat ratios, leptin hypersensitivity, and enhanced leptin-induced hypothalamic Stat3 tyrosyl phosphorylation. Gold thioglucose treatment, which ablates leptin-responsive hypothalamic neurons, partially overcomes resistance to obesity in PTP1B(-/-) mice. Our data indicate that PTP1B regulates leptin signaling in vivo, likely by targeting Jak2. PTP1B may be a novel target to treat leptin resistance in obesity.  相似文献   

2.
Neuronal PTP1B regulates body weight, adiposity and leptin action   总被引:10,自引:0,他引:10  
Obesity is a major health problem and a risk factor for type 2 diabetes. Leptin, an adipocyte-secreted hormone, acts on the hypothalamus to inhibit food intake and increase energy expenditure. Most obese individuals develop hyperleptinemia and leptin resistance, limiting the therapeutic efficacy of exogenously administered leptin. Mice lacking the tyrosine phosphatase PTP1B are protected from diet-induced obesity and are hypersensitive to leptin, but the site and mechanism for these effects remain controversial. We generated tissue-specific PTP1B knockout (Ptpn1(-/-)) mice. Neuronal Ptpn1(-/-) mice have reduced weight and adiposity, and increased activity and energy expenditure. In contrast, adipose PTP1B deficiency increases body weight, whereas PTP1B deletion in muscle or liver does not affect weight. Neuronal Ptpn1(-/-) mice are hypersensitive to leptin, despite paradoxically elevated leptin levels, and show improved glucose homeostasis. Thus, PTP1B regulates body mass and adiposity primarily through actions in the brain. Furthermore, neuronal PTP1B regulates adipocyte leptin production and probably is essential for the development of leptin resistance.  相似文献   

3.
Protein-tyrosine phosphatase 1B (PTP1B) and T cell protein-tyrosine phosphatase (TCPTP) are closely related intracellular phosphatases implicated in the control of glucose homeostasis. PTP1B and TCPTP can function coordinately to regulate protein tyrosine kinase signaling, and PTP1B has been implicated previously in the regulation of endoplasmic reticulum (ER) stress. In this study, we assessed the roles of PTP1B and TCPTP in regulating ER stress in the endocrine pancreas. PTP1B and TCPTP expression was determined in pancreases from chow and high fat fed mice and the impact of PTP1B and TCPTP over- or underexpression on palmitate- or tunicamycin-induced ER stress signaling assessed in MIN6 insulinoma β cells. PTP1B expression was increased, and TCPTP expression decreased in pancreases of mice fed a high fat diet, as well as in MIN6 cells treated with palmitate. PTP1B overexpression or TCPTP knockdown in MIN6 cells mitigated palmitate- or tunicamycin-induced PERK/eIF2α ER stress signaling, whereas PTP1B deficiency enhanced ER stress. Moreover, PTP1B deficiency increased ER stress-induced cell death, whereas TCPTP deficiency protected MIN6 cells from ER stress-induced death. ER stress coincided with the inhibition of Src family kinases (SFKs), which was exacerbated by PTP1B overexpression and largely prevented by TCPTP knockdown. Pharmacological inhibition of SFKs ameliorated the protective effect of TCPTP deficiency on ER stress-induced cell death. These results demonstrate that PTP1B and TCPTP play nonredundant roles in modulating ER stress in pancreatic β cells and suggest that changes in PTP1B and TCPTP expression may serve as an adaptive response for the mitigation of chronic ER stress.  相似文献   

4.
Common obesity is primarily characterized by resistance to the actions of the hormone leptin. Mice deficient in protein tyrosine phosphatase 1B (PTP1B) are resistant to diabetes and diet-induced obesity, prompting us to further define the relationship between PTP1B and leptin in modulating obesity. Leptin-deficient (Lep(ob/ob)) mice lacking PTP1B exhibit an attenuated weight gain, a decrease in adipose tissue, and an increase in resting metabolic rate. Furthermore, PTP1B-deficient mice show an enhanced response toward leptin-mediated weight loss and suppression of feeding. Hypothalami from these mice also display markedly increased leptin-induced Stat3 phosphorylation. Finally, substrate-trapping experiments demonstrate that leptin-activated Jak2, but not Stat3 or the leptin receptor, is a substrate of PTP1B. These results suggest that PTP1B negatively regulates leptin signaling, and provide one mechanism by which it may regulate obesity.  相似文献   

5.
Trodusquemine (MSI‐1436) causes rapid and reversible weight loss in genetic models of obesity. To better predict the potential effects of trodusquemine in the clinic, we investigated the effects of trodusquemine treatment in a murine model of diet‐induced obesity (DIO). Trodusquemine suppressed appetite, reduced body weight (BW) in a fat‐specific manner, and improved plasma insulin and leptin levels in mice. Screening assays revealed that trodusquemine selectively inhibited protein‐tyrosine phosphatase 1B (PTP1B), a key enzyme regulating insulin and leptin signaling. Trodusquemine significantly enhanced insulin‐stimulated tyrosine phosphorylation of insulin receptor (IR) β and STAT3, direct targets of PTP1B, in HepG2 cells in vitro and/or hypothalamic tissue in vivo. These data establish trodusquemine as an effective central and peripheral PTP1B inhibitor with the potential to elicit noncachectic fat‐specific weight loss and improve insulin and leptin levels.  相似文献   

6.
The protein tyrosine phosphatase PTP1B is a negative regulator of insulin signaling and a therapeutic target for type 2 diabetes. Our previous studies have shown that the closely related tyrosine phosphatase TCPTP might also contribute to the regulation of insulin receptor (IR) signaling in vivo (S. Galic, M. Klingler-Hoffmann, M. T. Fodero-Tavoletti, M. A. Puryer, T. C. Meng, N. K. Tonks, and T. Tiganis, Mol. Cell. Biol. 23:2096-2108, 2003). Here we show that PTP1B and TCPTP function in a coordinated and temporally distinct manner to achieve an overall regulation of IR phosphorylation and signaling. Whereas insulin-induced phosphatidylinositol 3-kinase/Akt signaling was prolonged in both TCPTP-/- and PTP1B-/- immortalized mouse embryo fibroblasts (MEFs), mitogen-activated protein kinase ERK1/2 signaling was elevated only in PTP1B-null MEFs. By using phosphorylation-specific antibodies, we demonstrate that both IR beta-subunit Y1162/Y1163 and Y972 phosphorylation are elevated in PTP1B-/- MEFs, whereas Y972 phosphorylation was elevated and Y1162/Y1163 phosphorylation was sustained in TCPTP-/- MEFs, indicating that PTP1B and TCPTP differentially contribute to the regulation of IR phosphorylation and signaling. Consistent with this, suppression of TCPTP protein levels by RNA interference in PTP1B-/- MEFs resulted in no change in ERK1/2 signaling but caused prolonged Akt activation and Y1162/Y1163 phosphorylation. These results demonstrate that PTP1B and TCPTP are not redundant in insulin signaling and that they act to control both common as well as distinct insulin signaling pathways in the same cell.  相似文献   

7.
In obesity, levels of tumor necrosis-factor α (TNFα) are well known to be elevated in adipose tissues or serum, and a high-fat diet (HFD) reportedly increases TNFα expression in the hypothalamus. The expression levels of hypothalamic protein tyrosine phosphatase 1B (PTP1B), a negative regulator of leptin and insulin signaling, are also elevated by HFD, and several lines of evidence support a relationship between TNFα and PTP1B. It remains unclear however how TNFα acts locally in the hypothalamus to regulate hypothalamic PTP1B expression and activity. In this study, we examined whether TNFα can regulate PTP1B expression and activity using rat hypothalamic organotypic cultures. Incubation of cultures with TNFα resulted in increases in mRNA expression, protein levels and activity of PTP1B in a dose- and time-dependent manner, respectively compared with controls. TNFα-induced PTP1B protein levels were not influenced by co-incubation with the sodium channel blocker tetrodotoxin, indicating that the action of TNFα is independent of action potentials. TNFα also increased phosphorylation of p65, a subunit of nuclear factor-κB (NFκB), in a dose- and time-dependent manner. While incubation with inhibitors of NFκB did not affect basal levels of either p65 phosphorylation or PTP1B expression, it markedly suppressed both TNFα-induced p65 phosphorylation and PTP1B expression to almost basal levels. These data suggest that TNFα acts on the hypothalamus to increase hypothalamic PTP1B expression and activity via the NFκB pathway, and that TNFα-mediated induction of NFκB in the hypothalamus may cause leptin and insulin resistance in the hypothalamus by increasing hypothalamic PTP1B activity.  相似文献   

8.
蛋白质酪氨酸磷酸酶1B(PTP1B)与2型糖尿病及肥胖的关系   总被引:3,自引:0,他引:3  
王辰  王沥  杨泽 《遗传》2004,26(6):941-946
蛋白质酪氨酸磷酸酶1B(PTP1B)是一种在体内广泛表达的胞内蛋白质酪氨酸磷酸酶,在调节胰岛素敏感性和能量代谢的过程中起着重要作用。通过抑制PTP1B可增加胰岛素和瘦蛋白(leptin)的活性, 为寻找2型糖尿病、肥胖的治疗提供了光明前景。  相似文献   

9.
10.
 The secretory vesicles of some cells of the islets of Langerhans of the pancreas contain high amounts of immunoreactive tyrosine phosphatase of the PTP1B/TCPTP subfamily. The cells are located in the peripheral parts of the islets and were identified as glucagon- and pancreatic polypeptide-forming cells. The tyrosine phosphatase is also enriched in some of the somatostatin-producing cells but is not elevated either in insulin-producing B-cells or in the exocrine pancreas. Virtually the same patterns were found in pancretic tissues of rats, guinea pigs, pigs, and mice. High levels of detergent-soluble tyrosine phosphatase were measured in the particular fraction of pancreatic islets with a substrate preferred by PTP1B/TCPTP-type protein tyrosine phosphatases. Accepted: 6 November 1998  相似文献   

11.
Leptin regulates energy balance through central circuits that control food intake and energy expenditure, including proopiomelanocortin (POMC) neurons. POMC neuron-specific deletion of protein tyrosine phosphatase 1B (PTP1B) (Ptpn1(loxP/loxP) POMC-Cre), a negative regulator of CNS leptin signaling, results in resistance to diet-induced obesity and improved peripheral leptin sensitivity in mice, thus establishing PTP1B as an important component of POMC neuron regulation of energy balance. POMC neurons are expressed in the pituitary, the arcuate nucleus of the hypothalamus (ARH), and the nucleus of the solitary tract (NTS) in the hindbrain, and it is unknown how each population might contribute to the phenotype of POMC-Ptp1b(-/-) mice. It is also unknown whether improved leptin sensitivity in POMC-Ptp1b(-/-) mice involves altered melanocortin receptor signaling. Therefore, we examined the effects of hindbrain administration (4th ventricle) of leptin (1.5, 3, and 6 μg) or the melanocortin 3/4R agonist melanotan II (0.1 and 0.2 nmol) in POMC-Ptp1b(-/-) (KO) and control PTP1B(fl/fl) (WT) mice on food intake, body weight, spontaneous physical activity (SPA), and core temperature (T(C)). The results show that KO mice were hypersensitive to hindbrain leptin- and MTII-induced food intake and body weight suppression and SPA compared with WT mice. Greater increases in leptin- but not MTII-induced T(C) were also observed in KO vs. WT animals. In addition, KO mice displayed elevated hindbrain and hypothalamic MC4R mRNA expression. These studies are the first to show that hindbrain administration of leptin or a melanocortin receptor agonist alters energy balance in mice likely via participation of hindbrain POMC neurons.  相似文献   

12.
Protein tyrosine phosphatase 1B (PTP1B) has already been well studied as a highly validated therapeutic target for diabetes and obesity. However, the lack of selectivity limited further studies and clinical applications of PTP1B inhibitors, especially over T-cell protein tyrosine phosphatase (TCPTP). In this review, we enumerate the published specific inhibitors of PTP1B, discuss the structure–activity relationships by analysis of their X-ray structures or docking results, and summarize the characteristic of selectivity related residues and groups. Furthermore, the design strategy of selective PTP1B inhibitors over TCPTP is also proposed. We hope our work could provide an effective way to gain specific PTP1B inhibitors.  相似文献   

13.
Abstract

Protein tyrosine phosphatase 1B (PTP1B), a key negative regulator in insulin signaling pathways, is regarded as a potential target for the treatment of type II diabetes and obesity. However, the mechanism underlying the selectivity of PTP1B inhibitors against T-cell protein tyrosine phosphatase (TCPTP) remains controversial, which is due to the high similarity between PTP1B and TCPTP sequence and the fact that no ligand–protein complex of TCPTP has been established yet. Here, the accelerated molecular dynamics (aMD) method was used to investigate the structural dynamics of PTP1B and TCPTP that are bound by two chemically similar inhibitors with distinct selectivity. The conformational transitions during the “open” to “close” states of four complexes were captured, and free energy profiles of important residue pairs were analyzed in detail. Additional MM-PBSA calculations confirmed that the binding free energies of final states were consistent with the experimental results, and the energetic contributions of important residues were further investigated by alanine scanning mutagenesis. By comparing the four complexes, the different conformational behavior of WPD-loop, R-loop, and the second pTyr binding site induced by inhibitors were featured and found to be crucial for the selectivity of inhibitors. This study provides new mechanistic insights of specific binding of inhibitors to PTP1B and TCPTP, which can be exploited to the further structural-based inhibitor design.

Communicated by Ramaswamy H. Sarma  相似文献   

14.
The non-receptor protein-tyrosine phosphatases (PTPs) 1B and T-cell phosphatase (TCPTP) have been implicated as negative regulators of multiple signaling pathways including receptor-tyrosine kinases. We have identified PTP1B and TCPTP as negative regulators of the hepatocyte growth factor receptor, the Met receptor-tyrosine kinase. In vivo, loss of PTP1B or TCPTP enhances hepatocyte growth factor-mediated phosphorylation of Met. Using substrate trapping mutants of PTP1B or TCPTP, we have demonstrated that both phosphatases interact with Met and that these interactions require phosphorylation of twin tyrosines (Tyr-1234/1235) in the activation loop of the Met kinase domain. Using confocal microscopy, we show that trapping mutants of both PTP1B and the endoplasmic reticulum-targeted TCPTP isoform, TC48, colocalize with Met and that activation of Met enables the nuclear-localized isoform of TCPTP, TC45, to exit the nucleus. Using small interfering RNA against PTP1B and TCPTP, we demonstrate that phosphorylation of Tyr-1234/1235 in the activation loop of the Met receptor is elevated in the absence of either PTP1B or TCPTP and further elevated upon loss of both phosphatases. This enhanced phosphorylation of Met corresponds to enhanced biological activity and cellular invasion. Our data demonstrate that PTP1B and TCPTP play distinct and non-redundant roles in the regulation of the Met receptor-tyrosine kinase.  相似文献   

15.
Protein tyrosine phosphatase 1B (PTP1B), a key negative regulator of leptin and insulin signaling, is positively correlated with adiposity and contributes to insulin resistance. Global PTP1B deletion improves diet-induced obesity and glucose homeostasis via enhanced leptin signaling in the brain and increased insulin signaling in liver and muscle. However, the role of PTP1B in adipocytes is unclear, with studies demonstrating beneficial, detrimental or no effect(s) of adipose-PTP1B-deficiency on body mass and insulin resistance. To definitively establish the role of adipocyte-PTP1B in body mass regulation and glucose homeostasis, adipocyte-specific-PTP1B knockout mice (adip-crePTP1B(-/-)) were generated using the adiponectin-promoter to drive Cre-recombinase expression. Chow-fed adip-crePTP1B(-/-) mice display enlarged adipocytes, despite having similar body weight/adiposity and glucose homeostasis compared to controls. High-fat diet (HFD)-fed adip-crePTP1B(-/-) mice display no differences in body weight/adiposity but exhibit larger adipocytes, increased circulating glucose and leptin levels, reduced leptin sensitivity and increased basal lipogenesis compared to controls. This is associated with decreased insulin receptor (IR) and Akt/PKB phosphorylation, increased lipogenic gene expression and increased hypoxia-induced factor-1-alpha (Hif-1α) expression. Adipocyte-specific PTP1B deletion does not beneficially manipulate signaling pathways regulating glucose homeostasis, lipid metabolism or adipokine secretion in adipocytes. Moreover, PTP1B does not appear to be the major negative regulator of the IR in adipocytes.  相似文献   

16.
Metabolic deregulation accompanying type II diabetes is characterized by insulin resistance in peripheral tissues (liver, muscle, and adipose), mediated by impairments in insulin receptor (IR) signaling. Two closely-related protein tyrosine phosphatases, PTP1B and TCPTP both showed abilities to negatively regulate insulin receptor signaling. In order to test whether these two phosphatases can act synergistically, hydrodynamic injection was applied to deliver small interfering RNA (siRNA) of PTP1B and/or TCPTP to mouse liver. By measuring insulin-sensitive reporter gene expression and plasma glucose of diabetic mice, we found siRNA of PTP1B or TCPTP alone can sensitize insulin signal transduction, but combined treatment of both siRNAs had no better effects than siRNA of PTP1B. These results suggested siRNA of PTP1B and TCPTP can strengthen insulin signaling, but their effects do not appear to be synergistic in mouse liver.  相似文献   

17.
Receptor tyrosine kinases (RTKs) are key regulators of cellular homeostasis. Based on in vitro and ex vivo studies, protein tyrosine phosphatase-1B (PTP1B) was implicated in the regulation of several RTKs, yet mice lacking PTP1B show defects mainly in insulin and leptin receptor signaling. To address this apparent paradox, we studied RTK signaling in primary and immortalized fibroblasts from PTP1B(-/-) mice. After growth factor treatment, cells lacking PTP1B exhibit increased and sustained phosphorylation of the epidermal growth factor receptor (EGFR) and the platelet-derived growth factor receptor (PDGFR). However, Erk activation is enhanced only slightly, and there is no increase in Akt activation in PTP1B-deficient cells. Our results show that PTP1B does play a role in regulating EGFR and PDGFR phosphorylation but that other signaling mechanisms can largely compensate for PTP1B deficiency. In-gel phosphatase experiments suggest that other PTPs may help to regulate the EGFR and PDGFR in PTP1B(-/-) fibroblasts. This and other compensatory mechanisms prevent widespread, uncontrolled activation of RTKs in the absence of PTP1B and probably explain the relatively mild effects of PTP1B deletion in mice.  相似文献   

18.
Abstract

Protein Tyrosine Phosphatase 1B (PTP1B) has been shown to be a negative regulator of insulin signaling by dephosphorylating key tyrosine residues within the regulatory domain of the β-subunit of the insulin receptor. Recent gene knockout studies in mice have shown the mice to have increased insulin sensitivity and improved glucose tolerance. Furthermore, these mice also exhibited a resistance to diet induced obesity. Inhibitors of PTP1B would have the potential of enhancing insulin action by prolonging the phosphorylated state of the insulin receptor. In addition, recent clinical studies have shown that the haplotype ACTTCAG0 of the PTPN1 gene, which encodes PTP1B, is a major risk contributor to type 2 diabetes mellitus (T2DM). Thus, there is compelling evidence that small molecule inhibitors of PTP1B may be effective in treating insulin resistance at an early stage, thereby leading to a prevention strategy for T2DM and obesity.

Based on the crystal structure of the complex of PTP1B with a known inhibitor, we have identified a tetrapeptide inhibitor with the sequence WKPD. Docking calculations indicate that this peptide is as potent as the existing inhibitors. Moreover, the peptide is also found to be selective for PTP1B with a greatly reduced potency against other biologically important protein tyrosine phosphatases such as PTP-LAR, Calcineurin, and the highly homologous T-Cell Protein Tyrosine Phosphatase (TCPTP). Thus the designed tetrapeptide is a suitable lead compound for the development of new drugs against type 2 diabetes and obesity.  相似文献   

19.
Protein Tyrosine Phosphatase 1B (PTP1B) has been shown to be a negative regulator of insulin signaling by dephosphorylating key tyrosine residues within the regulatory domain of the beta-subunit of the insulin receptor. Recent gene knockout studies in mice have shown the mice to have increased insulin sensitivity and improved glucose tolerance. Furthermore, these mice also exhibited a resistance to diet induced obesity. Inhibitors of PTP1B would have the potential of enhancing insulin action by prolonging the phosphorylated state of the insulin receptor. In addition, recent clinical studies have shown that the haplotype ACTTCAG0 of the PTPN1 gene, which encodes PTP1B, is a major risk contributor to type 2 diabetes mellitus (T2DM). Thus, there is compelling evidence that small molecule inhibitors of PTP1B may be effective in treating insulin resistance at an early stage, thereby leading to a prevention strategy for T2DM and obesity. Based on the crystal structure of the complex of PTP1B with a known inhibitor, we have identified a tetrapeptide inhibitor with the sequence WKPD. Docking calculations indicate that this peptide is as potent as the existing inhibitors. Moreover, the peptide is also found to be selective for PTP1B with a greatly reduced potency against other biologically important protein tyrosine phosphatases such as PTP-LAR, Calcineurin, and the highly homologous T-Cell Protein Tyrosine Phosphatase (TCPTP). Thus the designed tetrapeptide is a suitable lead compound for the development of new drugs against type 2 diabetes and obesity.  相似文献   

20.
Leptin has been shown to improve insulin sensitivity and glucose metabolism in obese diabetic ob/ob mice, yet the mechanisms remain poorly defined. We found that 2 d of leptin treatment improved fasting but not postprandial glucose homeostasis, suggesting enhanced hepatic insulin sensitivity. Consistent with this hypothesis, leptin improved in vivo insulin receptor (IR) activation in liver, but not in skeletal muscle or fat. To explore the cellular mechanism by which leptin up-regulates hepatic IR activation, we examined the expression of the protein tyrosine phosphatase PTP1B, recently implicated as an important negative regulator of insulin signaling. Unexpectedly, liver PTP1B protein abundance was increased by leptin to levels similar to lean controls, whereas levels in muscle and fat remained unchanged. The ability of leptin to augment liver IR activation and PTP1B expression was also observed in vitro in human hepatoma cells (HepG2). However, overexpression of PTP1B in HepG2 cells led to diminished insulin-induced IR phosphorylation, supporting the role of PTP1B as a negative regulator of IR activation in hepatocytes. Collectively, our results suggest that leptin acutely improves hepatic insulin sensitivity in vivo with concomitant increases in PTP1B expression possibly serving to counterregulate insulin action and to maintain insulin signaling in proper balance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号