首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Epidermal differentiation is a complex process in which keratinocytes go through morphological and biochemical changes in approximately 15 to 30 days. Abnormal keratinocyte differentiation is involved in the pathophysiology of several skin diseases. In this scenario, mesenchymal stem cells (MSCs) emerge as a promising approach to study skin biology in both normal and pathological conditions. Herein, we have studied the differentiation of MSC from umbilical cord into keratinocytes. MSC were cultured in Dulbecco's modified Eagle's medium (DMEM) (proliferation medium) and, after characterization, differentiation was induced by culturing cells in a defined keratinocyte serum-free medium (KSFM) supplemented with epidermal growth factor (EGF) and calcium chloride ions. Cells cultivated in DMEM were used as control. Cultures were evaluated from day 1 to 23, based on the cell morphology, the expression of p63, involucrin and cytokeratins (KRTs) KRT5, KRT10 and KRT14, by quantitative polymerase chain reaction, Western blot analysis or immunofluorescence, and by the detection of epidermal kallikreins activity. In cells grown in keratinocyte serum-free medium with EGF and 1.8 mM calcium, KRT5 and KRT14 expression was shown at the first day, followed by the expression of p63 at the seventh day. KRT10 expression was detected from day seventh while involucrin was observed after this period. Data showed higher kallikrein (KLK) activity in KSFM-cultured cells from day 11th in comparison to control. These data indicate that MSC differentiated into keratinocytes similarly to that occurs in the human epidermis. KLK activity detection appears to be a good methodology for the monitoring the differentiation of MSC into the keratinocyte lineage, providing useful tools for the better understanding of the skin biology.  相似文献   

2.
The epidermis comprises multiple layers of specialized epithelial cells called keratinocytes. As cells are lost from the outermost epidermal layers, they are replaced through terminal differentiation, in which keratinocytes of the basal layer cease proliferating, migrate upwards, and eventually reach the outermost cornified layers. Normal homeostasis of the epidermis requires that the balance between proliferation and differentiation be tightly regulated. The GTP binding protein RhoA plays a fundamental role in the regulation of the actin cytoskeleton and in the adhesion events that are critically important to normal tissue homeostasis. Two central mediators of the signals from RhoA are the ROCK serine/threonine kinases ROCK-I and ROCK-II. We have analyzed ROCK's role in the regulation of epidermal keratinocyte function by using a pharmacological inhibitor and expressing conditionally active or inactive forms of ROCK-II in primary human keratinocytes. We report that blocking ROCK function results in inhibition of keratinocyte terminal differentiation and an increase in cell proliferation. In contrast, activation of ROCK-II in keratinocytes results in cell cycle arrest and an increase in the expression of a number of genes associated with terminal differentiation. Thus, these results indicate that ROCK plays a critical role in regulating the balance between proliferation and differentiation in human keratinocytes.  相似文献   

3.
4.
5.
The mechanism by which transforming growth factor-β (TGFβ) regulates differentiation in human epidermal keratinocytes is still poorly understood. To assess the role of Smad signaling, we engineered human HaCaT keratinocytes either expressing small interfering RNA against Smads2, 3, and 4 or overexpressing Smad7 and verified impaired Smad signaling as decreased Smad phosphorylation, aberrant nuclear translocation, and altered target gene expression. Besides abrogation of TGFβ-dependent growth inhibition in conventional cultures, epidermal morphogenesis and differentiation in organotypic cultures were disturbed, resulting in altered tissue homeostasis with suprabasal proliferation and hyperplasia upon TGFβ treatment. Neutralizing antibodies against TGFβ, similar to blocking the actions of EGF-receptor or keratinocyte growth factor, caused significant growth reduction of Smad7-overexpressing cells, thereby demonstrating that epithelial hyperplasia was attributed to TGFβ-induced "dermis"-derived growth promoting factors. Furthermore impaired Smad signaling not only blocked the epidermal differentiation process or caused epidermal-to-mesenchymal transition but induced a switch to a complex alternative differentiation program, best characterized as mucous/intestinal-type epithelial differentiation. As the same alternative phenotype evolved from both modes of Smad-pathway interference, and reduction of Smad7-overexpression caused reversion to epidermal differentiation, our data suggest that functional TGFβ/Smad signaling, besides regulating epidermal tissue homeostasis, is not only essential for terminal epidermal differentiation but crucial in programming different epithelial differentiation routes.  相似文献   

6.
7.
Cytokeratin expression in differentiating cultured foreskin keratinocytes was studied using chain-specific anti-cytokeratin monoclonal antibodies directed against cytokeratins 4, 8, 10, 13, 18, and 19, respectively. Keratinocytes were cultured at low Ca2+ concentration (0.06 mM) to repress differentiation. At confluency, the cells were switched to high Ca2+ concentration (1.6 mM) to induce differentiation. Cells were harvested 0, 3, 8, 16, 24, 48, and 72 h after the switch. Keratinocytes cultured throughout at high Ca2+ concentration were also harvested. Immunoblots of cytokeratin preparations isolated from these cultures showed that cytokeratins 4, 13, and 19 were not present in nondifferentiating keratinocytes but could be detected from about 16 h after the Ca2+ switch. Immunohistochemical studies were performed on frozen sections of cell sheets incubated with anti-cytokeratin and anti-vimentin. Expression of cytokeratins 4, 13, and 19 was seen in superficial cells. Cytokeratin 10 was locally present in suprabasal and superficial cells. Vimentin was present in 40-70% of the basal cells and in only a few differentiating keratinocytes. Expression of cytokeratins 8 and 18 could not be detected. The same antibodies were also used to stain sections from fetal (15, 20, and 29 weeks), newborn (40 weeks), and mature (5 and 75 years) epidermis. In the 15-week-old epidermis, basal cells were positive for cytokeratins 8 and 19 and locally for cytokeratin 4; intermediate cells expressed cytokeratins 4, 10, 13, and 19; and the periderm contained cytokeratins 4, 8, 13, 18, and 19. In the 20-week-old epidermis, cytokeratin 4 had disappeared from the basal cell layer and cytokeratin 19 was present only locally; in the intermediate cell layer, cytokeratins 4 and 19 had disappeared; and in the periderm, the expression of the cytokeratins studied was the same as that in the 15-week-old epidermis. The basal cells of the 29-week-old fetal epidermis, the newborn epidermis, and the mature epidermis are negative with all antibodies tested, except for some scattered cells in the fetal and newborn skin, presumably Merkel cells, that were positive for cytokeratins 8, 18, and 19. Suprabasal cells in all specimens were positive only for cytokeratin 10. With respect to the cytokeratins studied, our results show that cultured differentiating keratinocytes resemble the suprabasal cells of early fetal epidermis. Basal cells of cultured keratinocytes resemble the basal cells of late fetal, newborn, and adult epidermis and therefore support previous observations.  相似文献   

8.
Cathepsin E (CatE) is predominantly expressed in the rapidly regenerating gastric mucosal cells and epidermal keratinocytes, in addition to the immune system cells. However, the role of CatE in these cells remains unclear. Here we report a crucial role of CatE in keratinocyte terminal differentiation. CatE deficiency in mice induces abnormal keratinocyte differentiation in the epidermis and hair follicle, characterized by the significant expansion of corium and the reduction of subcutaneous tissue and hair follicle. In a model of skin papillomas formed in three different genotypes of syngeneic mice, CatE deficiency results in significantly reduced expression and altered localization of the keratinocyte differentiation induced proteins, keratin 1 and loricrin. Involvement of CatE in the regulation of the expression of epidermal differentiation specific proteins was corroborated by in vitro studies with primary cultures of keratinocytes from the three different genotypes of mice. In wild-type keratinocytes after differentiation inducing stimuli, the CatE expression profile was compatible to those of the terminal differentiation marker genes tested. Overexpression of CatE in mice enhances the keratinocyte terminal differentiation process, whereas CatE deficiency results in delayed differentiation accompanying the reduced expression or the ectopic localization of the differentiation markers. Our findings suggest that in keratinocytes CatE is functionally linked to the expression of terminal differentiation markers, thereby regulating epidermis formation and homeostasis.  相似文献   

9.
Plantar epidermis of the bovine heel pad as well as human plantar and palmar epidermis contain large amounts of an acidic (type I) keratin polypeptide (No. 9) of Mr 64,000 which so far has not been found in epidermis of other sites of the body. We present evidence for the keratinous nature of this protein, including its ability to form cytokeratin complexes and intermediate-sized filaments in vitro. We have isolated RNA from plantar epidermis of both species and show, using translation in vitro, that these polypeptides are genuine products of distinct mRNAs. Using immunofluorescence microscopy with specific antibodies against this protein, we demonstrate its location in most cells of suprabasal layers of plantar epidermis as well as in sparse keratinocytes which occur, individually or in small clusters, in upper layers of epidermis of other body locations. We conclude that cytokeratin No. 9 is characteristic of a special program of keratinocyte differentiation which during morphogenesis is expressed in most epidermal keratinocytes of soles and palms but only in a few keratinocytes at other body sites. This example of cell type-specific expression of a member of a multigene family in relation to a body site-related program of tissue differentiation raises important biological questions concerning the regulation of keratinocyte differentiation and morphogenesis as well as the function of such topological heterogeneity within a given type of tissue.  相似文献   

10.
Epithelial-mesenchymal interactions promote the morphogenesis and homeostasis of human skin. However, the role of the basement membrane (BM) during this process is not well-understood. To directly study how BM proteins influence epidermal differentiation, survival and growth, we developed novel 3D human skin equivalents (HSEs). These tissues were generated by growing keratinocytes at an air-liquid interface on polycarbonate membranes coated with individual matrix proteins (Type I Collagen, Type IV Collagen or fibronectin) that were placed on contracted Type I Collagen gels populated with dermal fibroblasts. We found that only keratinocytes grown on membranes coated with the BM protein Type IV Collagen showed optimal tissue architecture that was similar to control tissues grown on de-epidermalized dermis (AlloDerm) that contained intact BM. In contrast, tissues grown on proteins not found in BM, such as fibronectin and Type I Collagen, demonstrated aberrant tissue architecture that was linked to a significant elevation in apoptosis and lower levels of proliferation of basal keratinocytes. While all tissues demonstrated a normalized, linear pattern of deposition of laminin 5, tissues grown on Type IV Collagen showed elevated expression of alpha6 integrin, Type IV Collagen and Type VII Collagen, suggesting induction of BM organization. Keratinocyte differentiation (Keratin 1 and filaggrin) was not dependent on the presence of BM proteins. Thus, Type IV Collagen acts as a critical microenvironmental factor in the BM that is needed to sustain keratinocyte growth and survival and to optimize epithelial architecture.  相似文献   

11.
The biological effects of epidermal growth factor receptor (EGFR) activation may differ between epidermal suprabasal and basal keratinocytes, since growth factors are mitogenic in adherent cells only in the presence of cell-extracellular matrix (ECM) interaction. To investigate biological effects of EGFR activation on keratinocytes without cell-ECM interaction, we cultured normal human keratinocytes on polyhydroxyethylmethacrylate-coated plates, which disrupt cell-ECM but not cell-cell interaction. The cells initially expressed keratin 10 (K10) and then profilaggrin, mimicking sequential differentiation of epidermal suprabasal keratinocytes. The addition of EGF or transforming growth factor-alpha promoted late terminal differentiation (profilaggrin expression, type 1 transglutaminase expression and activity, and cornified envelope formation) of the suspended keratinocytes, while suppressing K10 expression, an early differentiation marker. These effects were attenuated by EGFR tyrosine kinase inhibitor PD153035 or an anti-EGFR monoclonal antibody, whereas protein kinase C inhibitors H7 and bisindolylmaleimide I or mitogen-activated protein kinase/extracellular signal-regulated kinase kinase inhibitor PD98059 abolished profilaggrin up-regulation but not K10 suppression. Since the antidifferentiative role of EGFR on cell-ECM interaction-conserved keratinocytes has been well documented, our results indicate that the biological effects of EGFR on keratinocytes are influenced by cell-ECM interaction and suggest that EGFR activation promotes rather than inhibits the terminal differentiation of suprabasal epidermal keratinocytes.  相似文献   

12.
Matrix metalloproteinases play an important role in the pathogenesis of psoriasis. The aim of this paper was to explore the influence of MMP1 silencing with a specific shRNA on migration and proliferation of epidermal keratinocytes exposed to tumor necrosis factor, as well as changes in the expression of genes involved in their terminal differentiation. Changes in gene expression were analyzed by real-time PCR. The cell proliferation was assessed by comparative analysis of the growth curves. The cell migration was explored by scratch assay. To quantify cell migration, the representative areas of cell cultures were photographed in the equal periods of time and compared to each other. The obtained results demonstrated that an exposure of control cell line to tumor necrosis factor caused changes in the expression of several genes similar to ones that were previously observed in lesional psoriatic skin. Particularly, the expression of MMP9, IVL and KRT16 increased whereas the expression of LOR, KRT1 and-10—decreased. In contrast, MMP1-deficient cells treated with tumor necrosis factor exhibited higher levels of LOR, KRT1 and -10, as well as lower levels KRT16 and -17 compared to control cells treated with the same cytokines. Moreover, MMP1-deficient cells exhibited a lower level of CCNА2 and higher level of CCND1. In this respect, knocking MMP1 down resulted in a lower cell proliferation and migration rates of TNF-treated epidermal keratinocytes. In conclusion, this study demonstrated that MMP1 silencing with specific shRNA can be beneficial for psoriasis. We found that knocking MMP1 down has an antiproliferative effect on epidermal keratinocytes and partially normalizes the expression of cyclins CCNA2, and -D1, as well as the genes involved in the terminal differentiation of this kind of cells (LOR, KRT1, -10, -16 and -17).  相似文献   

13.
14.
The type I keratin, K10, is expressed in epidermal keratinocytes undergoing terminal differentiation to form the stratum corneum, a barrier essential for life. In order to facilitate the study of keratinization disorders in the dog, the sequence and mapping of KRT10 is reported. The coding region of KRT10 is 1707 bp and is comprised of eight exons. Although the length of KRT10 has been reported to be polymorphic in humans, this was not observed in the eight domestic dog breeds studied, although one wild canid displayed a size difference. The structure and sequence of this gene is highly conserved across mammalian species. Canine K10 had an 86% amino acid identity with the human gene. KRT10 was localized to the on-going canine radiation hybrid map to chromosome 9 in the type I keratin gene cluster.  相似文献   

15.
16.
To maintain epidermal homeostasis, the balance between keratinocyte proliferation and differentiation is tightly controlled. However, the molecular mechanisms underlying this balance remain unclear. In 3D organotypic coculture with mouse keratinocytes and fibroblasts, the thickness of stratified cell layers was prolonged, and growth arrest and terminal differentiation were delayed when PKCη-null keratinocytes were used. Re-expression of PKCη in PKCη-null keratinocytes restored stratified cell layer thickness, growth arrest and terminal differentiation. We show that in 3D cocultured PKCη-null keratinocytes, p27Kip1 mRNA was downregulated, whereas JNK/c-Jun signaling was enhanced. Furthermore, inhibition of JNK/c-Jun signaling in PKCη-null keratinocytes led to upregulation of p27Kip1 mRNA, and to thinner stratified cell layers. Collectively, our findings indicate that PKCη upregulates p27Kip1 mRNA through suppression of JNK/c-Jun signaling. This results in promoting a proliferation to differentiation switch in keratinocytes.  相似文献   

17.
Baker DW  Liu X  Weng H  Luo C  Tang L 《Biomacromolecules》2011,12(4):997-1005
Micropillar technology has shown great promise for medical implants or sensors in recent years. To study the influence of surface topography on cellular responses, polydimethylsiloxane (PDMS) micropillar arrays with pillar spacing (20-70 μm) and height (14-25 μm) have been fabricated. The influence of micropillar arrays on cellular behavior was tested both in vitro and in vivo. Interestingly, in vitro, we observe a distinct response for 3T3 fibroblasts and RAW 264.7 macrophages to the topographical cues tested. Attachment and proliferation of fibroblasts was substantially enhanced by increasing pillar height, whereas macrophage adherence is significantly diminished by reduced pillar spacing. When implanted in the subcutaneous cavity of BALB/c mice for 14 days, we find a prevailing trend with capsule cell density and capsule thickness increasing, as both pillar height and spacing rise. Collagen deposition and neoangiogenesis, two pivotal factors in granulation tissue maturation, are also observed to have a stronger response to the increase in both pillar height and spacing. In contradiction to our original hypothesis, we observed that fibroblasts rather than macrophages are a key contributor to the in vivo outcome of micropillar arrays. Investigation into fibroblast activation, however, revealed that recruited fibrocytes, rather than resident fibroblasts, correspond to the in vivo outcome. The results from this work support the critical and often overlooked role of fibrocytes in tissue response to biomaterial implants with varying topography.  相似文献   

18.
We have characterized an unusual cell phenotype in third passage cultures of a human keratinocyte strain derived from newborn foreskin epidermis. The cells had the same DNA fingerprint pattern as the second passage, morphologically normal, keratinocytes; they formed desmosomes and expressed the keratin profile characteristic of normal keratinocytes in culture. However, unlike normal keratinocytes, the cells did not grow as compact colonies and did not stratify or undergo terminal differentiation, even after TPA treatment or suspension culture. For these reasons we named them ndk for "nondifferentiating keratinocytes." The ndk cells also differed from normal keratinocytes in that they did not require a feeder layer and were not stimulated by cholera toxin to proliferate. The ndk cells had an absolute requirement for hydrocortisone and their growth rate was increased when epidermal growth factor was added to the medium. Although ndk failed to undergo terminal differentiation in culture, they were not transformed, since they were still sensitive to contact inhibition of growth, did not proliferate in soft agar, and had a limited lifespan in culture. The appearance of the ndk phenotype was correlated with a doubling of chromosome number and the presence of a lp marker chromosome. We suggest that these cells are a useful experimental adjunct to cultures of normal keratinocytes, in which proliferation and terminal differentiation are tightly coordinated, because in ndk cells there appears to be a block in terminal differentiation.  相似文献   

19.
Transgenic (TG) mice that have systemically expressed endo-beta-galactosidase C (EndoGalC) have rough and flaky skin. This skin phenotype is detectable around 5 days postnatal and becomes obscure by 2 weeks after birth. Their epidermis is thickened but the dermis and hair follicles are normal in structure. EndoGalC, which removes the terminal Galalpha1-3Gal disaccharide (alphaGal epitope), was expressed in the epidermis of TG mice. GS-IB4 lectin staining showed that the alphaGal epitope did not exist in the epidermis in TG but existed in wild-type (WT) mice. In TG mice, N-acetylglucosamines were exposed by EndoGalC, which is detected using GS-II lectin. To understand the cause of the epidermal thickening and skin phenotype, we examined the proliferation and differentiation of kerationocytes. BrdU-pulse-labeling revealed that proliferating keratinocytes increased approximately three-fold in TG epidermis compared to WT one. In TG epidermis, the expression domain of cytokeratin 14 increased from 1-2 layers to 4-5 layers and co-expressed with cytokeratin 6 and 10 in the upper layers. The layers expressing involucrin and loricrin also increased but those expressing filaggrin and transglutaminase looked normal. The localization of E-cadherin was similar in both TG and WT mice. Although TG mice showed delayed development of the barrier function around 8 days postnatal, they acquired the function by 12 days after birth. These results suggest that the absence of the alphaGal epitope or the exposed N-acetylglucosamine terminal could play a critical role in the proliferation of basal keratinocytes and differentiation of them into the spinous cells in newborn mice.  相似文献   

20.
In various cell types, including cancer cells, decorin is involved in regulation of cell attachment, migration and proliferation. In skin, decorin is seen in dermis, but not in keratinocytes. We show that decorin gene (DCN) is expressed in the cultured keratinocytes, and the protein is found in the cytoplasm of differentiating keratinocytes and in suprabasal layers of human epidermis. RT-PCR experiments showed that DCN expression is regulated by pro-inflammatory and proliferative cytokines. Our data suggest that decorin should play a significant role in keratinocyte terminal differentiation, cutaneous homeostasis and dermatological diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号