首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The predominant molecular symptom of aging is the accumulation of altered gene products. Moreover, several conditions including protein, lipid or glucose oxidation disrupt redox homeostasis and lead to accumulation of unfolded or misfolded proteins in the aging brain. Alzheimer’s and Parkinson’s diseases or Friedreich ataxia are neurological diseases sharing, as a common denominator, production of abnormal proteins, mitochondrial dysfunction and oxidative stress, which contribute to the pathogenesis of these so called “protein conformational diseases”. The central nervous system has evolved the conserved mechanism of unfolded protein response to cope with the accumulation of misfolded proteins. As one of the main intracellular redox systems involved in neuroprotection, the vitagene system is emerging as a neurohormetic potential target for novel cytoprotective interventions. Vitagenes encode for cytoprotective heat shock proteins (Hsp) Hsp70 and heme oxygenase-1, as well as thioredoxin reductase and sirtuins. Nutritional studies show that ageing in animals can be significantly influenced by dietary restriction. Thus, the impact of dietary factors on health and longevity is an increasingly appreciated area of research. Reducing energy intake by controlled caloric restriction or intermittent fasting increases lifespan and protects various tissues against disease. Genetics has revealed that ageing may be controlled by changes in intracellular NAD/NADH ratio regulating sirtuin, a group of proteins linked to aging, metabolism and stress tolerance in several organisms. Recent findings suggest that several phytochemicals exhibit biphasic dose responses on cells with low doses activating signaling pathways that result in increased expression of vitagenes encoding survival proteins, as in the case of the Keap1/Nrf2/ARE pathway activated by curcumin and NAD/NADH-sirtuin-1 activated by resveratrol. Consistently, the neuroprotective roles of dietary antioxidants including curcumin, acetyl-l-carnitine and carnosine have been demonstrated through the activation of these redox-sensitive intracellular pathways. Although the notion that stress proteins are neuroprotective is broadly accepted, still much work needs to be done in order to associate neuroprotection with specific pattern of stress responses. In this review the importance of vitagenes in the cellular stress response and the potential use of dietary antioxidants in the prevention and treatment of neurodegenerative disorders is discussed. Special issue article in honor of Dr. Anna Maria Giuffrida-Stella.  相似文献   

2.
3.
Separation procedures for naturally occurring antioxidant phytochemicals   总被引:3,自引:0,他引:3  
Phytochemicals in fruits, vegetables, spices and traditional herbal medicinal plants have been found to play protective roles against many human chronic diseases including cancer and cardiovascular diseases (CVD). These diseases are associated with oxidative stresses caused by excess free radicals and other reactive oxygen species. Antioxidant phytochemicals exert their effect by neutralizing these highly reactive radicals. Among the tens of thousands of phytochemicals found in our diets or traditional medicines, polyphenols and carotenoids stand out as the two most important groups of natural antioxidants. However, although collectively these phytochemicals are good antioxidants, the roles and effect of individual compounds are often not well known. Hundreds of carotenoids and thousands of polyphenols have been identified so far from various plants. A single plant could contain highly complex profiles of these compounds, which sometimes are labile to heat, air and light, and they may exist at very low concentrations in the plants. This makes the separation and detection of these antioxidant phytochemicals a challenging task. The present review focuses on the antioxidant activity, chemical types, sampling and sample processing procedures, and separation using various chromatographic and electrophoretic techniques. Detection and quantification using ultraviolet-visible-diode array and mass spectrometry will be discussed.  相似文献   

4.
5.
Understanding mechanisms of aging and determinants of life span will help to reduce age-related morbidity and facilitate healthy aging. Average lifespan has increased over the last centuries, as a consequence of medical and environmental factors, but maximal life span remains unchanged. Extension of maximal life span is currently possible in animal models with measures such as genetic manipulations and caloric restriction (CR). CR appears to prolong life by reducing reactive oxygen species (ROS)-mediated oxidative damage. But ROS formation, which is positively implicated in cellular stress response mechanisms, is a highly regulated process controlled by a complex network of intracellular signaling pathways. By sensing the intracellular nutrient and energy status, the functional state of mitochondria, and the concentration of ROS produced in mitochondria, the longevity network regulates life span across species by co-ordinating information flow along its convergent, divergent and multiply branched signaling pathways, including vitagenes which are genes involved in preserving cellular homeostasis during stressful conditions. Vitagenes encode for heat shock proteins (Hsp) Hsp32, Hsp70, the thioredoxin and the sirtuin protein systems. Dietary antioxidants, such as carnosine, carnitines or polyphenols, have recently been demonstrated to be neuroprotective through the activation of hormetic pathways, including vitagenes. The hormetic dose-response, challenges long-standing beliefs about the nature of the dose-response in a lowdose zone, having the potential to affect significantly the design of pre-clinical studies and clinical trials as well as strategies for optimal patient dosing in the treatment of numerous diseases. Given the broad cytoprotective properties of the heat shock response there is now strong interest in discovering and developing pharmacological agents capable of inducing stress responses. In this review we discuss the most current and up to date understanding of the possible signaling mechanisms by which caloric restriction, as well hormetic caloric restriction-mimetics compounds by activating vitagenes can enhance defensive systems involved in bioenergetic and stress resistance homeostasis with consequent impact on longevity processes.  相似文献   

6.
Biomedical and consumer interest in the health-promoting properties of pure single entities of known or unknown chemical constituents and mixtures has never been greater. Since its “rediscovery” in the 1950s, lithium is an example of such a constituent that represents an array of scientific and public health challenges and medical potentials that may now be understood best when seen through the lens of the dose-response paradigm known as hormesis. The present paper represents the first review of the capacity of lithium to induce hormetic dose responses in a broad range of biological models, organ systems, and endpoints. Of significance is that the numerous hormetic findings occur with extensive concentration/dose response evaluations with the optimal dosing being similar across multiple organ systems. The particular focus of these hormetic dose-response findings was targeted to research with a broad spectrum of stem cell types and neuroprotective effects. These findings suggest that lithium may have critically valuable systemic effects with respect to those therapeutically treated with lithium as well as for exposures that may be achieved via dietary intervention.  相似文献   

7.
8.
Brassicaceae plants are one of the most popular vegetables consumed all over the world and considered to be a good source of bioactive phytochemicals. Additionally, Brassica species and varieties are increasingly becoming a research model in plant science, as a consequence of the importance of their primary and secondary metabolites. Plant interaction with environmental stress factors including animals and insects herbivory, pathogens, metal ions, light, among others, is known to lead to the activation of various defense mechanisms resulting in a qualitative and/or quantitative change in plant metabolite production. Pre-harvest and/or post-harvest conditions are also known to affect this, since plants produce signaling molecules (e.g. salicylic acid, jasmonic acid, etc.) that cause a direct or indirect activation of metabolic pathways. That ultimately affects the production of phytochemicals, such as carbohydrates (sucrose and glucose), amino acids, phenolics (phenylpropanoids and flavonoids) and glucosinolates. These phytochemicals have diverse applications due to their antimicrobial, antioxidant and anti-carcinogenic properties, but on the other hand these compounds or their breakdown products can act as anti-nutritional factors in diet. In this review we report a wide range of the stress-induced metabolic responses in the Brassica plants commonly used for human consumption.  相似文献   

9.
Traka MH  Mithen RF 《The Plant cell》2011,23(7):2483-2497
The rise in noncommunicable chronic diseases associated with changing diet and lifestyles throughout the world is a major challenge for society. It is possible that certain dietary components within plants have roles both in reducing the incidence and progression of these diseases. We critically review the types of evidence used to support the health promoting activities of certain phytochemicals and plant-based foods and summarize the major contributions but also the limitations of epidemiological and observational studies and research with the use of cell and animal models. We stress the need for human intervention studies to provide high-quality evidence for health benefits of dietary components derived from plants.  相似文献   

10.
Flavonoids are naturally occurring polyphenolic compounds that are present in a variety of fruits, vegetables, cereals, tea, and wine, and are the most abundant antioxidants in the human diet. Evidence suggests that these phytochemicals might have an impact on brain pathology and aging; however, neither their mechanisms of action nor their cell targets are completely known. In the mature mammalian brain, astroglia constitute nearly half of the total cells, providing structural, metabolic, and trophic support for neurons. During the past few years, increasing knowledge of these cells has indicated that astrocytes are pivotal characters in neurodegenerative diseases and brain injury. Most of the physiological benefits of flavonoids are generally thought to be due to their antioxidant and free-radical scavenging effects; however, emerging evidence has supported the hypothesis that their mechanism of action might go beyond these properties. In this review, we focus on astrocytes as targets for flavonoids and their implications in brain development, neuroprotection, and glial tumor formation. Finally, we will briefly discuss the emerging view of astrocytes as essential characters in neurodegenerative diseases, and how a better understanding of the action of flavonoids might open new avenues to develop therapeutic approaches to these pathologies.  相似文献   

11.
Modulation of endogenous cellular defense mechanisms represents an innovative approach to therapeutic intervention in diseases causing chronic tissue damage, such as in neurodegeneration. This paper introduces the emerging role of exogenous molecules in hormetic-based neuroprotection and the mitochondrial redox signaling concept of hormesis and its applications to the field of neuroprotection and longevity. Maintenance of optimal long-term health conditions is accomplished by a complex network of longevity assurance processes that are controlled by vitagenes, a group of genes involved in preserving cellular homeostasis during stressful conditions. Vitagenes encode for heat shock proteins (Hsp) Hsp32, Hsp70, the thioredoxin and the sirtuin protein systems. Dietary antioxidants, such as polyphenols and L-carnitine/acetyl-L-carnitine, have recently been demonstrated to be neuroprotective through the activation of hormetic pathways, including vitagenes. Hormesis provides the central underpinning of neuroprotective responses, providing a framework for explaining the common quantitative features of their dose response relationships, their mechanistic foundations, their relationship to the concept of biological plasticity as well as providing a key insight for improving the accuracy of the therapeutic dose of pharmaceutical agents within the highly heterogeneous human population. This paper describes in mechanistic detail how hormetic dose responses are mediated for endogenous cellular defense pathways including sirtuin, Nrfs and related pathways that integrate adaptive stress responses in the prevention of neurodegenerative diseases. This article is part of a Special Issue entitled: Antioxidants and Antioxidant Treatment in Disease.  相似文献   

12.
During the tumorigenesis, cancer cells are frequently exposed to metabolic stress which is derived from altered cancer cell metabolism as well as unfavorable tumor microenvironment, such as hypoxia and glucose deprivation. Cancer cells need to respond to these stress stimuli properly through inducing cellular stress responses, such as unfolded protein response and autophagy, for cell survival. Therefore, modulation of these stress responses has been investigated as an alternative anticancer strategy, although their therapeutic clinical roles remain to be determined. In this review, we will discuss the cellular stress responses in cancer cells, the alternative anticancer strategy targeting unfolded protein response and/or autophagy, and the role of phytochemicals, which include resveratrol, genistein, curcumin, epigallocatechin-3-gallate and quercetin, in modulating the cellular stress responses.  相似文献   

13.
Mild stress-induced hormesis represents a promising strategy for targeting the age-related accumulation of molecular damage and, therefore, for preventing diseases and achieving healthy aging. Fruits, vegetables, and spices contain a wide variety of hormetic phytochemicals, which may explain the beneficial health effects associated with the consumption of these dietary components. In the present study, the induction of cellular antioxidant defenses by the phenolic diterpenes carnosic acid (CA) and carnosol (CS) were studied in normal human skin fibroblasts, and insights into the aging process at the cellular level investigated. We observed that CA and CS induced several cytoprotective enzymes and antioxidant defenses in human fibroblasts, whose induction was dependent on the cellular redox state for CS and associated with Nrf2 signaling for both compounds. The stress response elicited by preincubation with CS conferred a cytoprotective action against a following oxidant challenge with tert-butyl hydroperoxide, confirming its hormetic effect. Preincubation of normal fibroblasts with CS also protected against hydrogen peroxide-induced premature senescence. Furthermore, cultivation of middle passage normal human skin fibroblasts in the presence of CS ameliorated the physiological state of cells during replicative senescence. Our results support the view that mild stress-induced antioxidant defenses by CS can confer stress tolerance in normal cells and may have important implications in the promotion of healthy aging.  相似文献   

14.
Plant polyphenol antioxidants and oxidative stress   总被引:1,自引:0,他引:1  
In recent years there has been a remarkable increment in scientific articles dealing with oxidative stress. Several reasons justify this trend: knowledge about reactive oxygen and nitrogen species metabolism; definition of markers for oxidative damage; evidence linking chronic diseases and oxidative stress; identification of flavonoids and other dietary polyphenol antioxidants present in plant foods as bioactive molecules; and data supporting the idea that health benefits associated with fruits, vegetables and red wine in the diet are probably linked to the polyphenol antioxidants they contain. In this review we examine some of the evidence linking chronic diseases and oxidative stress, the distribution and basic structure of plant polyphenol antioxidants, some biological effects of polyphenols, and data related to their bioavailability and the metabolic changes they undergo in the intestinal lumen and after absorption into the organism. Finally, we consider some of the challenges that research in this area currently faces, with particular emphasis on the contributions made at the International Symposium "Biology and Pathology of Free Radicals: Plant and Wine Polyphenol Antioxidants" held July 29-30, 1999, at the Catholic University, Santiago, Chile and collected in this special issue of Biological Research.  相似文献   

15.
Oxidative stress imposed by reactive oxygen species (ROS) plays a crucial role in the pathophysiology associated with neoplasia, atherosclerosis, and neurodegenerative diseases. The ROS-induced development of cancer involves malignant transformation due to altered gene expression through epigenetic mechanisms as well as DNA mutations. Considerable attention has been focused on identifying naturally occurring antioxidative phenolic phytochemicals that are able to decrease ROS levels, but the efficacies of antioxidant therapies have been equivocal at best. Several studies have shown that some antioxidants exhibit prooxidant activity under certain conditions and potential carcinogenicity under others, and that dietary supplementation with large amounts of a single antioxidant may be deleterious to human health. This article reviews the intracellular signaling pathways that respond to oxidative stress and how they are modulated by naturally occurring polyphenols. The possible toxicity and carcinogenicity of polyphenols is also discussed.  相似文献   

16.
The widely accepted oxidative stress theory of aging postulates that aging results from accumulation of oxidative damage. A prediction of this theory is that, among species, differential rates of aging may be apparent on the basis of intrinsic differences in oxidative damage accrual. Although widely accepted, there is a growing number of exceptions to this theory, most contingently related to genetic model organism investigations. Proteins are one of the prime targets for oxidative damage and cysteine residues are particularly sensitive to reversible and irreversible oxidation. The adaptation and survival of cells and organisms requires the ability to sense proteotoxic insults and to coordinate protective cellular stress response pathways and chaperone networks related to protein quality control and stability. The toxic effects that stem from the misassembly or aggregation of proteins or peptides, in any cell type, are collectively termed proteotoxicity. Despite the abundance and apparent capacity of chaperones and other components of homeostasis to restore folding equilibrium, the cell appears poorly adapted for chronic proteotoxic stress which increases in cancer, metabolic and neurodegenerative diseases. Pharmacological modulation of cellular stress response pathways has emerging implications for the treatment of human diseases, including neurodegenerative disorders, cardiovascular disease, and cancer. A critical key to successful medical intervention is getting the dose right. Achieving this goal can be extremely challenging due to human inter-individual variation as affected by age, gender, diet, exercise, genetic factors and health status. The nature of the dose response in and adjacent to the therapeutic zones, over the past decade has received considerable advances. The hormetic dose–response, challenging long-standing beliefs about the nature of the dose–response in a lowdose zone, has the potential to affect significantly the design of pre-clinical studies and clinical trials as well as strategies for optimal patient dosing in the treatment of numerous diseases. Given the broad cytoprotective properties of the heat shock response there is now strong interest in discovering and developing pharmacological agents capable of inducing stress responses, including carnitines. This paper describes in mechanistic detail how hormetic dose responses are mediated for endogenous cellular defense pathways, including the possible signaling mechanisms by which the carnitine system, by interplaying metabolism, mitochondrial energetics and activation of critical vitagenes, modulates signal transduction cascades that confer cytoprotection against chronic degenerative damage associated to aging and neurodegenerative disorders.  相似文献   

17.
Plants are a nearly unlimited source of phytochemicals. The plants produce various secondary metabolites, which are useful in its interaction with the environment, various stress factors and development of resistance against pathogen attack. A wide array of external stimuli are capable of triggering changes in the plant cell which leads to a cascade of reactions, ultimately resulting in the formation and accumulation of secondary metabolites which helps the plant to overcome the stress factors. The biotic and abiotic elicitors can result in an enhancement of the secondary metabolite production. The stimuli are perceived by receptors, which then result in the activation of the secondary messengers. These then transmit the signals into the cell through the signal transduction pathways leading to gene expression and biochemical changes. There is interplay of the signaling molecules also which regulates the entire pathway. This review is oriented towards the factors, which influence signal transduction pathway(s) with special reference to polyamines, calcium, jasmonates, salicylates, nitric oxide and ethylene. The interplay of these components to elicit a defense response is discussed. Molecular aspects of disease resistance and regulation of plant secondary metabolism has also been presented.  相似文献   

18.
Environmental stresses such as high light, low temperatures, pathogen infection and nutrient deficiency can lead to increased production of free radicals and other oxidative species in plants. A growing body of evidence suggests that plants respond to these biotic and abiotic stress factors by increasing their capacity to scavenge reactive oxygen species. Efforts to understand this acclimatory process have focused on the components of the 'classical' antioxidant system, i.e. superoxide dismutase, ascorbate peroxidase, catalase, monodehydroascorbate reductase, glutathione reductase and the low molecular weight antioxidants ascorbate and glutathione. However, relatively few studies have explored the role of secondary metabolic pathways in plant response to oxidative stress. A case in point is the phenylpropanoid pathway which is responsible for the synthesis of a diverse array of phenolic metabolites such as flavonoids, tannins, hydroxycinnamate esters and the structural polymer lignin. These compounds are often induced by stress and serve specific roles in plant protection, i.e. pathogen defence, ultraviolet screening, antiherbivory, or structural components of the cell wall. This review will highlight a novel antioxidant function for the taxonomically widespread phenylpropanoid metabolite chlorogenic acid (CGA; 5-O-caffeoylquinic acid) and assess its possible role in abiotic stress tolerance. The relationship between CGA biosynthesis and photosynthetic carbon metabolism will also be discussed. Based on the properties of this model phenolic metabolite, we propose that under stress conditions phenylpropanoid biosynthesis may represent an alternative pathway for photochemical energy dissipation that has the added benefit of enhancing the antioxidant capacity of the cell.  相似文献   

19.
In plants, a host's responses to an attempted infection include activation of various secondary metabolite pathways, some of which are specific for particular plant phylogenetic clades. Phytochemicals that represent respective end products in plant immunity have been stereotypically linked to antimicrobial properties. However, in many cases, owing to the lack of unequivocal evidence for direct antibiotic action in planta, alternative functions of secondary metabolites should be considered. Correspondingly, recent findings have identified novel, and rather unexpected, functions of phytochemicals in plant immunity that mediate regulatory pathways for conserved defence responses. It also seems likely that these conserved responses can be regulated by clade-specific phytochemicals.  相似文献   

20.
Flavonoids protect LDL from oxidation and attenuate atherosclerosis   总被引:8,自引:0,他引:8  
Consumption of some plant-derived flavonoids results in their absorption and appearance in plasma and tissues. The inverse relationship between dietary flavonoids consumption and cardiovascular diseases may be associated with the ability of flavonoids to attenuate LDL oxidation, macrophage foam cell formation and atherosclerosis. The effect of flavonoids on arterial cell-mediated oxidation of LDL is determined by their accumulation in the lipoprotein and in arterial cells, such as macrophages. Flavonoids can reduce LDL lipid peroxidation by scavenging reactive oxygen/nitrogen species, chelation of transition metal ions and sparing of LDL-associated antioxidants. They can also reduce macrophage oxidative stress by inhibition of cellular oxygenases [such as nicotinamide adenine dinucleotide phosphate, reduced form (NADPH) oxidase] or by activating cellular antioxidants (such as the glutathione system). Thus, plant flavonoids, as potent natural antioxidants that protect against lipid peroxidation in arterial cells and lipoproteins, significantly attenuate the development of atherosclerosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号