首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ahn VE  Chu ML  Choi HJ  Tran D  Abo A  Weis WI 《Developmental cell》2011,21(5):862-873
LDL receptor-related proteins 5 and 6 (LRP5/6) are coreceptors for Wnt growth factors, and also bind Dkk proteins, secreted inhibitors of Wnt signaling. The LRP5/6 ectodomain contains four β-propeller/EGF-like domain repeats. The first two repeats, LRP6(1-2), bind to several Wnt variants, whereas LRP6(3-4) binds other Wnts. We present the crystal structure of the Dkk1 C-terminal domain bound to LRP6(3-4), and show that the Dkk1 N-terminal domain binds to LRP6(1-2), demonstrating that a single Dkk1 molecule can bind to both portions of the LRP6 ectodomain and thereby inhibit different Wnts. Small-angle X-ray scattering analysis of LRP6(1-4) bound to a noninhibitory antibody fragment or to full-length Dkk1 shows that in both cases the ectodomain adopts a curved conformation that places the first three repeats at a similar height relative to the membrane. Thus, Wnts bound to either portion of the LRP6 ectodomain likely bear a similar spatial relationship to Frizzled coreceptors.  相似文献   

2.
Structural insight into the mechanisms of Wnt signaling antagonism by Dkk   总被引:2,自引:0,他引:2  
Dickkopf (Dkk) proteins are antagonists of the canonical Wnt signaling pathway and are crucial for embryonic cell fate and bone formation. Wnt antagonism of Dkk requires the binding of the C-terminal cysteine-rich domain of Dkk to the Wnt coreceptor, LRP5/6. However, the structural basis of the interaction between Dkk and low density lipoprotein receptor-related protein (LRP) 5/6 is unknown. In this study, we examined the structure of the Dkk functional domain and elucidated its interactions with LRP5/6. Using NMR spectroscopy, we determined the solution structure of the C-terminal cysteine-rich domain of mouse Dkk2 (Dkk2C). Then, guided by mutagenesis studies, we docked Dkk2C to the YWTD beta-propeller domains of LRP5/6 and showed that the ligand binding site of the third LRP5/6 beta-propeller domain matches Dkk2C best, suggesting that this domain binds to Dkk2C with higher affinity. Such differential binding affinity is likely to play an essential role in Dkk function in the canonical Wnt pathway.  相似文献   

3.
Wnt/β-catenin signaling is initiated at the cell surface by association of secreted Wnt with its receptors Frizzled (Fz) and low density lipoprotein receptor-related protein 5/6 (LRP5/6). The study of these molecular interactions has been a significant technical challenge because the proteins have been inaccessible in sufficient purity and quantity. In this report we describe insect cell expression and purification of soluble mouse Fz8 cysteine-rich domain and human LRP6 extracellular domain and show that they inhibit Wnt/β-catenin signaling in cellular assays. We determine the binding affinities of Wnts and Dickkopf 1 (Dkk1) to the relevant co-receptors and reconstitute in vitro the Fz8 CRD·Wnt3a·LRP6 signaling complex. Using purified fragments of LRP6, we further show that Wnt3a binds to a region including only the third and fourth β-propeller domains of LRP6 (E3E4). Surprisingly, we find that Wnt9b binds to a different part of the LRP6 extracellular domain, E1E2, and we demonstrate that Wnt3a and Wnt9b can bind to LRP6 simultaneously. Dkk1 binds to both E1E2 and E3E4 fragments and competes with both Wnt3a and Wnt9b for binding to LRP6. The existence of multiple, independent Wnt binding sites on the LRP6 co-receptor suggests new possibilities for the architecture of Wnt signaling complexes and a model for broad-spectrum inhibition of Wnt/β-catenin signaling by Dkk1.  相似文献   

4.
Kremen2 modulates Dickkopf2 activity during Wnt/LRP6 signaling   总被引:20,自引:0,他引:20  
Mao B  Niehrs C 《Gene》2003,302(1-2):179-183
Dickkopf1 (Dkk1) is a secreted antagonist of the Wnt/beta-catenin signaling pathway that acts by direct binding to and inhibiting the Wnt co-receptor LRP6. The related Dkk2, however, can function either as LRP6 agonist or antagonist, depending on the cellular context, suggesting that its activity is modulated by unknown co-factors. We have recently identified the transmembrane proteins Kremen1 and -2 as additional Dkk receptors, which bind to both Dkk1 and Dkk2 with high affinity. Here we show that Kremen2 (Krm2) regulates Dkk2 activity during Wnt signaling. In human 293 fibroblasts transfected dkk2 activates LRP6 signaling. However, co-transfection of krm2 blocks the ability of Dkk2 to activate LRP6 and enhances inhibition of Wnt/Frizzled signaling. Krm2 also co-operates with Dkk4 to inhibit Wnt signaling, but not with Dkk3, which has no effect on Wnt signaling. Likewise, in Xenopus embryos, Dkk2 and Krm2 co-operate in Wnt inhibition leading to anteriorized embryos. Finally, we show that interaction with Krm2 is mediated by the second cysteine-rich domain of Dkks. These results suggest that Krm2 can function as a switch that turns Dkk2 from an activator into an inhibitor of Wnt/lRP6 signaling.  相似文献   

5.
Wnt signaling is involved in a wide range of developmental, physiological, and pathophysiological processes and is negatively regulated by Dickkopf1 (Dkk1). Dkk1 has been shown to bind to two transmembrane proteins, the low density lipoprotein receptor-related proteins (LRP) 5/6 and Kremen. Here, we show that Dkk1 residues Arg(197), Ser(198), and Lys(232) are specifically involved in its binding to Kremen rather than to LRP6. These residues are localized at a surface that is at the opposite side of the LRP6-binding surface based on a three-dimensional structure of Dkk1 deduced from that of Dkk2. We were surprised to find that the Dkk1 mutants carrying a mutation at Arg(197), Ser(198), or Lys(232), the key Kremen-binding residues, could antagonize Wnt signaling as well as the wild-type Dkk1. These mutations only affected their ability to antagonize Wnt signaling when both LRP6 and Kremen were coexpressed. These results suggest that Kremen may not be essential for Dkk1-mediated Wnt antagonism and that Kremen may only play a role when cells express a high level of LRP5/6.  相似文献   

6.
An XWnt8-Fz5 fusion protein synergizes with LRP6 to potently activate beta-catenin-dependent signaling. Here, we generated a fusion in which XWnt8 was fused to the N-terminus of LRP6 and show it synergizes with both Fz4 and Fz5 to potently transactivate beta-catenin-dependent Wnt signaling. Based on this, we hypothesized that the main function of Wnt is to nucleate the formation of a physical complex between LRP6 and a Frizzled. Dkk1, but not the related Dkk3, binds LRP6 and inhibits canonical Wnt signaling by blocking the interaction of Wnt and LRP6. Therefore, we reasoned that a covalent fusion of Dkk1 to Fz5 (Dkk1-Fz5) would mimic Wnt ligand by nucleating the formation of a complex containing Fz5 and LRP6, while Dkk3 (Dkk3-Fz5) would not. We found that Dkk1-Fz5, but not Dkk3-Fz5, potently synergized with LRP6 to activate signaling in a dishevelled-dependent manner.  相似文献   

7.
Dkk1 is a secreted antagonist of the LRP5‐mediated Wnt signaling pathway that plays a pivotal role in bone biology. Because there are no well‐documented LRP5‐based assays of Dkk1 binding, we developed a cell‐based assay of Dkk1/LRP5 binding using radioactive 125I‐Dkk1. In contrast to LRP6, transfection of LRP5 alone into 293A cells resulted in a low level of specific binding that was unsuitable for routine assay. However, co‐transfection of LRP5 with the chaperone protein MesD (which itself does not bind Dkk1) or Kremen‐2 (a known Dkk1 receptor), or both, resulted in a marked enhancement of specific binding that was sufficient for evaluation of Dkk1 antagonists. LRP5 fragments comprising the third and fourth β‐propellers plus the ligand binding domain, or the first β‐propeller, each inhibited Dkk1 binding, with mean IC50s of 10 and 196 nM, respectively. The extracellular domain of Kremen‐2 (“soluble Kremen”) was a weaker antagonist (mean IC50 806 nM). We also found that cells transfected with a high bone mass mutation LRP5(G171V) had a subtly reduced level of Dkk1 binding, compared to wild type LRP5‐transfected cells, and no enhancement of binding by MesD. We conclude that (1) LRP5‐transfected cells do not offer a suitable cell‐based Dkk1 binding assay, unless co‐transfected with either MesD, Kremen‐2, or both; (2) soluble fragments of LRP5 containing either the third and fourth β‐propellers plus the ligand binding domain, or the first β‐propeller, antagonize Dkk1 binding; and (3) a high bone mass mutant LRP5(G171V), has subtly reduced Dkk1 binding, and, in contrast to LRP5, no enhancement of binding with MesD. J. Cell. Biochem. 108: 1066–1075, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

8.

Background

The low density lipoprotein receptor-related protein-6 (LRP6) is an essential co-receptor for canonical Wnt signaling. Dickkopf 1 (Dkk1), a major secreted Wnt signaling antagonist, binds to LRP6 with high affinity and prevents the Frizzled-Wnt-LRP6 complex formation in response to Wnts. Previous studies have demonstrated that Dkk1 promotes LRP6 internalization and degradation when it forms a ternary complex with the cell surface receptor Kremen.

Methodology/Principal Findings

In the present study, we found that transfected Dkk1 induces LRP6 accumulation while inhibiting Wnt/LRP6 signaling. Treatment with Dkk1-conditioned medium or recombinant Dkk1 protein stabilized LRP6 with a prolonged half-life and induces LRP6 accumulation both at the cell surface and in endosomes. We also demonstrated that Kremen2 co-expression abrogated the effect of Dkk1 on LRP6 accumulation, indicating that the effect of Kremen2 is dominant over Dkk1 regulation of LRP6. Furthermore, we found that Wnt3A treatment induces LRP6 down-regulation, an effect paralleled with a Wnt/LRP6 signaling decay, and that Dkk1 treatment blocked Wnt3A-induced LRP6 down-regulation. Finally, we found that LRP6 turnover was blocked by an inhibitor of caveolae-mediated endocytosis.

Conclusions/Significance

Our results reveal a novel role for Dkk1 in preventing Wnt ligand-induced LRP6 down-regulation and contribute significantly to our understanding of Dkk1 function in Wnt/LRP6 signaling.  相似文献   

9.
Wnt and Dickkopf (Dkk) regulate the stabilization of beta-catenin antagonistically in the Wnt signaling pathway; however, the molecular mechanism is not clear. In this study, we found that Wnt3a acts in parallel to induce the caveolin-dependent internalization of low-density-lipoprotein receptor-related protein 6 (LRP6), as well as the phosphorylation of LRP6 and the recruitment of Axin to LRP6 on the cell surface membrane. The phosphorylation and internalization of LRP6 occurred independently of one another, and both were necessary for the accumulation of beta-catenin. In contrast, Dkk1, which inhibits Wnt3a-dependent stabilization of beta-catenin, induced the internalization of LRP6 with clathrin. Knockdown of clathrin suppressed the Dkk1-dependent inhibition of the Wnt3a response. Furthermore, Dkk1 reduced the distribution of LRP6 in the lipid raft fraction where caveolin is associated. These results indicate that Wnt3a and Dkk1 shunt LRP6 to distinct internalization pathways in order to activate and inhibit the beta-catenin signaling, respectively.  相似文献   

10.
Dickkopfs (Dkks) are secreted developmental regulators composed of two cysteine-rich domains. We report that the effects of Dkks depend on molecular context. Although Wnt8 signaling is inhibited by both Dkk1 and Dkk2 in Xenopus embryos, the same pathway is activated upon interaction of Dkk2 with the Wnt coreceptor LRP6. Analysis of individual Dkk domains and chimeric Dkks shows that the carboxy-terminal domains of both Dkks associate with LRP6 and are necessary and sufficient for Wnt8 inhibition, whereas the amino-terminal domain of Dkk1 plays an inhibitory role in Dkk-LRP interactions. Our study illustrates how an inhibitor of a pathway may be converted into an activator and is the first study to suggest a molecular mechanism for how a ligand other than Wnt can positively regulate beta-catenin signaling.  相似文献   

11.
Wnt glycoproteins are developmentally essential signaling molecules, and lesions afflicting Wnt pathways play important roles in human diseases. Some Wnts signal to the canonical pathway by stabilizing beta-catenin, while others lack this activity. Frizzled serpentine receptors mediate distinct signaling pathways by both classes of Wnts. Here, we tandemly linked noncanonical Wnt5a with the C-terminal half of Dickkopf-2 (Dkk2C), a distinct ligand of the Wnt coreceptor LRP5/6. Whereas Wnt5a, Dkk2C, or both together were incapable of stimulating endogenous canonical signaling, the Wnt5a/Dkk2C chimera efficiently activated this pathway in a manner inhibitable by specific antagonists of either frizzled or LRP receptors. Thus, activation of the canonical pathway requires ligand coupling of an endogenous frizzled/LRP coreceptor complex, rather than Wnt triggering each receptor independently. Moreover, fusion of Wnt5a with Dkk2C unmasked its ability to signal to Dishevelled through multiple frizzleds, indicating that the lack of functional interaction with LRP distinguishes noncanonical Wnt5a from canonical Wnts in mammalian cells. These findings provide a novel mechanism by which the same receptor can be switched between distinct signaling pathways depending on the differential recruitment of a coreceptor by members of the same ligand family.  相似文献   

12.
The secreted Dickkopf-1 (Dkk1) protein mediates numerous cell fate decisions and morphogenetic processes. Its carboxyl terminal cysteine-rich region (termed C1) binds LRP5/6 and inhibits canonical Wnt signaling. Paradoxically, the isolated C1 domain of Dkk1 as well as Wnt antagonists that act by sequestering Wnts, such as Frz-B, WIF-1 and Crescent, are poor mimics of the inductive and patterning activities of Dkk1 critical for heart and axial development. To understand the basis for the unique properties of Dkk1, we investigated the function of its amino terminal cysteine-rich region (N1). N1 does not bind LRP or Kremen nor inhibit Wnt signaling and has had no known function. We show that it can synergize with BMP antagonism to induce prechordal and axial mesoderm when expressed as an independent protein in Xenopus embryos. Moreover, we show that it can function in trans to complement the activity of C1 protein to mediate two embryologic functions of Dkk1: induction of chordal and prechordal mesoderm and specification of heart tissue from non-cardiogenic mesoderm. Remarkably, N1 also synergizes with WIF-1 and Crescent, indicating that N1 signals independently of C1 and its interactions with LRP. Since cleavage of Dkk1 is not detected, these results define N1 as a novel signaling domain within the intact protein that is responsible for the potent effects of Dkk1 on the induction and patterning of the body axis and heart. We conclude that this new activity is also likely to synergize with canonical Wnt inhibitory in the numerous developmental and disease processes that involve Dkk1.  相似文献   

13.
Recombinant Wnt-3a stimulated the rapid formation of elongated processes in Ewing sarcoma family tumor (ESFT) cells that were identified as neurites. The processes stained positively for polymerized actin and microtubules as well as synapsin I and growth-associated protein 43. Inhibition of the Wnt receptor, Frizzled3 (Fzd3), with antiserum or by short interfering RNA (siRNA) markedly reduced neurite extension. Knockdown of Dishevelled-2 (Dvl-2) and Dvl-3 also suppressed neurite outgrowth. Surprisingly, disruption of the Wnt/Fzd/lipoprotein receptor-related protein (LRP) complex and the associated beta-catenin signaling by treating cells either with the Wnt antagonist Dickkopf-1 (Dkk1) or LRP5/LRP6 siRNA enhanced neuritogenesis. Neurite outgrowth induced by Dkk1 or with LRP5/LRP6 siRNA was inhibited by secreted Fzd-related protein 1, a Wnt antagonist that binds directly to Wnt. Moreover, Dkk1 stimulation of neurite outgrowth was blocked by Fzd3 siRNA. These results suggested that Dkk1 shifted endogenous Wnt activity from the beta-catenin pathway to Fzd3-mediated, noncanonical signaling that is responsible for neurite formation. In particular, c-Jun amino-terminal kinase (JNK) was important for neurite outgrowth stimulated by both Wnt-3a and Dkk1. Our data demonstrate that Fzd3, Dvl, and JNK activity mediate Wnt-dependent neurite outgrowth and that ESFT cell lines will be useful experimental models for the study of Wnt-dependent neurite extension.  相似文献   

14.
Kremens are high-affinity receptors for Dickkopf 1 (Dkk1) and regulate the Wnt/β-catenin signaling pathway by down-regulating the low-density lipoprotein receptor-related protein 6 (LRP6). Dkk1 competes with Wnt for binding to LRP6; binding of Dkk1 inhibits canonical signaling through formation of a ternary complex with Kremen. The majority of down-regulated clathrin-mediated endocytic receptors contain short conserved regions that recognize tyrosine or dileucine sorting motifs. In this study, we found that Kremen1 is internalized from the cell surface in a clathrin-dependent manner. Kremen1 contains an atypical dileucine motif with the sequence DXXXLV. Mutation of LV to AA in this motif blocked Kremen1 internalization; as reported previously for other proteins, the aspartic acid residue in Kremen1 is not critical. Inhibition of expression of the adaptor protein 2 (AP-2) or inhibition of clathrin by pitstop 2 also blocked Kremen1 internalization. The novel amino acid sequence identified in Kremen1 is similar to the motif previously identified in hydra, yeast, and other organisms known to signal from the trans-Golgi network to the endosomal compartment.  相似文献   

15.
A gradient of Wnt/beta-catenin signalling formed by posteriorising Wnts and anteriorising Wnt antagonists regulates anteroposterior (AP) patterning of the central nervous system (CNS) during Xenopus gastrulation. In this process, the secreted Wnt antagonist Dkk1 functions in the Spemann organiser and its anterior derivatives by blocking Wnt receptors of the lipoprotein receptor-related protein (LRP) 5 and 6 class. In addition to LRP6, Dkk1 interacts with another recently identified receptor class, the transmembrane proteins Kremen1 (Krm1) and Kremen2 (Krm2) to synergistically inhibit LRP6. We have investigated the role of Krm1 and Krm2 during early Xenopus embryogenesis. Consistent with a role in zygotic Wnt inhibition, overexpressed Krm anteriorises embryos and rescues embryos posteriorised by Wnt8. Antisense morpholino oligonucleotide (Mo) knockdown of Krm1 and Krm2 leads to deficiency of anterior neural development. In this process, Krm proteins functionally interact with Dkk1: (1) in axis duplication assays krm2 synergises with dkk1 in inhibiting Wnt/LRP6 signalling; (2) krm2 rescues microcephalic embryos induced by injection of inhibitory anti-Dkk1 antibodies; and (3) injection of krm1/2 antisense Mo enhances microcephaly induced by inhibitory anti-Dkk1 antibodies. The results indicate that Krm proteins function in a Wnt inhibition pathway regulating early AP patterning of the CNS.  相似文献   

16.
Wnt signaling has been demonstrated to have extensive roles during embryogenesis. The Wnt family is highly conserved. In mice, there are 19 Wnt genes. Dickkopf (Dkk), through its interactions with Wnt co-receptors, low-density lipoprotein receptor-related protein (LRP), Frizzled and Kremen, can act as a negative regulator to block the Wnt-signaling pathway. There are four Dkk genes in the human genome, and three in that of the mouse. Dkk1 is involved in a variety of craniofacial developmental processes and behaves as a strong head inducer and limb regulator. Dkk1 mutant mice are embryonic-lethal. Here, we investigated the effects of Dkk1 on the differentiation of murine ESCs in both the ESC and embryoid body (EB) states. The results demonstrate that Dkk1 overexpression can initiate the differentiation program of ESCs toward neuroectoderm. We believe this finding can augment our understanding of mouse ESC differentiation.  相似文献   

17.
The cystine-knot containing protein Sclerostin is an important negative regulator of bone growth and therefore represents a promising therapeutic target. It exerts its biological task by inhibiting the Wnt (wingless and int1) signaling pathway, which participates in bone formation by promoting the differentiation of mesenchymal stem cells to osteoblasts. The core structure of Sclerostin consists of three loops with the first and third loop (Finger 1 and Finger 2) forming a structured β-sheet and the second loop being unstructured and highly flexible. Biochemical data showed that the flexible loop is important for binding of Sclerostin to Wnt co-receptors of the low-density lipoprotein related-protein family (LRP), by interacting with the Wnt co-receptors LRP5 or -6 it inhibits Wnt signaling. To further examine the structural requirements for Wnt inhibition, we performed an extensive mutational study within all three loops of the Sclerostin core domain involving single and multiple mutations as well as truncation of important regions. By this approach we could confirm the importance of the second loop and especially of amino acids Asn92 and Ile94 for binding to LRP6. Based on a Sclerostin variant found in a Turkish family suffering from Sclerosteosis we generated a Sclerostin mutant with cysteines 84 and 142 exchanged thereby removing the third disulfide bond of the cystine-knot. This mutant binds to LRP6 with reduced binding affinity and also exhibits a strongly reduced inhibitory activity against Wnt1 thereby showing that also elements outside the flexible loop are important for inhibition of Wnt by Sclerostin. Additionally, we examined the effect of the mutations on the inhibition of two different Wnt proteins, Wnt3a and Wnt1. We could detect clear differences in the inhibition of these proteins, suggesting that the mechanism by which Sclerostin antagonizes Wnt1 and Wnt3a is fundamentally different.  相似文献   

18.
Msx2 exerts bone anabolism via canonical Wnt signaling   总被引:2,自引:0,他引:2  
  相似文献   

19.
A single point mutation (G to T) in the low-density lipoprotein receptor related protein 5 (LRP5) gene results in a glycine to valine amino acid change (G171V) and is responsible for an autosomal dominant high bone mass trait (HBM) in two independent kindreds. LRP5 acts as a co-receptor to Wnts with Frizzled family members and transduces Wnt-canonical signals which can be antagonized by LRP5 ligand, Dickkopf 1 (Dkk1). In the presence of Wnt1, LRP5 or the HBM variant (LRP5-G171V) induces beta-catenin nuclear translocation and activates T cell factor (TCF)-luciferase reporter activity. HBM variant suppresses Dkk1 function and this results in reduced inhibition of TCF activity as compared to that with LRP5. Structural analysis of LRP5 revealed that the HBM mutation lies in the 4th blade of the first beta-propeller domain. To elucidate the functional significance and consequence of the LRP5-G171V mutation in vitro, we took a structure-based approach to design 15 specific LRP5 point mutations. These included (a) substitutions at the G171 in blade 4, (b) mutations in blades 2-6 of beta-propeller 1, and (c) mutations in beta-propellers 2, 3 and 4. Here we show that substitutions of glycine at 171 to K, F, I and Q also resulted in HBM-like activity in the presence of Wnt1 and Dkk1. This indicates the importance of the G171 site rather than the effect of specific amino acid modification to LRP5 receptor function. Interestingly, G171 equivalent residue mutations in other blades of beta-propeller 1 (A65V, S127V, L200V, A214V and M282V) resulted in LRP5-G171V-like block of Dkk1 function. However G171V type mutations in other beta-propellers of LRP5 did not result in resistance to Dkk1 function. These results indicate the importance of LRP5 beta-propeller 1 for Dkk1 function and Wnt signaling. These data and additional comparative structural analysis of the LRP5 family member LDLR suggest a potential functional role of the first beta-propeller domain through intramolecular interaction with other domains of LRP5 wherein Dkk1 can bind. Such studies may also lead to a better understanding of the mechanisms underlying the reduced function of Dkk1-like inhibitory ligands of LRP5 with HBM-like mutations and its relationship to increased bone density phenotypes.  相似文献   

20.
β-catenin-dependent Wnt signaling is initiated as Wnt binds to both the receptor FZD and coreceptor LRP5/6, which then assembles a multimeric complex at the cytoplasmic membrane face to recruit and inactivate the kinase GSK3. The large number and sequence diversity of Wnt isoforms suggest the possibility of domain-specific ligand-coreceptor interactions, and distinct binding sites on LRP6 for Wnt3a and Wnt9b have recently been identified in vitro. Whether mechanistically different interactions between Wnts and coreceptors might mediate signaling remains to be determined. It is also not clear whether coreceptor homodimerization induced extracellularly can activate Wnt signaling, as is the case for receptor tyrosine kinases. We generated monoclonal antibodies against LRP6 with the unexpected ability to inhibit signaling by some Wnt isoforms and potentiate signaling by other isoforms. In cell culture, two antibodies characterized further show reciprocal activities on most Wnts, with one antibody antagonizing and the other potentiating. We demonstrate that these antibodies bind to different regions of LRP6 protein, and inhibition of signaling results from blocking Wnt binding. Antibody-mediated dimerization of LRP6 can potentiate signaling only when a Wnt isoform is also able to bind the complex, presumably recruiting FZD. Endogenous autocrine Wnt signaling in different tumor cell lines can be either antagonized or enhanced by the LRP6 antibodies, indicating expression of different Wnt isoforms. As anticipated from the roles of Wnt signaling in cancer and bone development, antibody activities can also be observed in mice for inhibition of tumor growth and in organ culture for enhancement of bone mineral density. Collectively, our results indicate that separate binding sites for different subsets of Wnt isoforms determine the inhibition or potentiation of signaling conferred by LRP6 antibodies. This complexity of coreceptor-ligand interactions may allow for differential regulation of signaling by Wnt isoforms during development, and can be exploited with antibodies to differentially manipulate Wnt signaling in specific tissues or disease states.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号