首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Miller MB  Skorupski K  Lenz DH  Taylor RK  Bassler BL 《Cell》2002,110(3):303-314
The marine bacterium Vibrio harveyi possesses two quorum sensing systems (System 1 and System 2) that regulate bioluminescence. Although the Vibrio cholerae genome sequence reveals that a V. harveyi-like System 2 exists, it does not predict the existence of a V. harveyi-like System 1 or any obvious quorum sensing-controlled target genes. In this report we identify and characterize the genes encoding an additional V. cholerae autoinducer synthase and its cognate sensor. Analysis of double mutants indicates that a third as yet unidentified sensory circuit exists in V. cholerae. This quorum sensing apparatus is unusually complex, as it is composed of at least three parallel signaling channels. We show that in V. cholerae these communication systems converge to control virulence.  相似文献   

2.
Quorum sensing-dependent biofilms enhance colonization in Vibrio cholerae   总被引:15,自引:0,他引:15  
Vibrio cholerae is the causative agent of the diarrheal disease cholera. By an incompletely understood developmental process, V. cholerae forms complex surface-associated communities called biofilms. Here we show that quorum sensing-deficient mutants of V. cholerae produce thicker biofilms than those formed by wild-type bacteria. Microarray analysis of biofilm-associated bacteria shows that expression of the Vibrio polysaccharide synthesis (vps) operons is enhanced in hapR mutants. CqsA, one of two known autoinducer synthases in V. cholerae, acts through HapR to repress vps gene expression. Vibrio biofilms are more acid resistant than planktonic cells. However, quorum sensing-deficient biofilms have lower colonization capacities than those of wild-type biofilms, suggesting that quorum sensing may promote cellular exit from the biofilm once the organisms have traversed the gastric acid barrier of the stomach. These results shed light on the relationships among biofilm development, quorum sensing, infectivity, and pathogenesis in V. cholerae.  相似文献   

3.
4.
5.
Quorum sensing is a process of bacterial cell-cell communication that enables populations of cells to carry out behaviours in unison. Quorum sensing involves detection of the density-dependent accumulation of extracellular signal molecules called autoinducers that elicit population-wide changes in gene expression. In Vibrio species, CqsS is a membrane-bound histidine kinase that acts as the receptor for the CAI-1 autoinducer which is produced by the CqsA synthase. In Vibrio cholerae, CAI-1 is (S)-3-hydroxytridecan-4-one. The C170 residue of V. cholerae CqsS specifies a preference for a ligand with a 10-carbon tail length. However, a phenylalanine is present at this position in Vibrio harveyi CqsS and other homologues, suggesting that a shorter CAI-1-like molecule functions as the signal. To investigate this, we purified the V. harveyi CqsS ligand, and determined that it is (Z)-3-aminoundec-2-en-4-one (Ea-C8-CAI-1) carrying an 8-carbon tail. The V. harveyi CqsA/CqsS system is exquisitely selective for production and detection of this ligand, while the V. cholerae CqsA/CqsS counterparts show relaxed specificity in both production and detection. We isolated CqsS mutants in each species that display reversed specificity for ligands. Our analysis provides insight into how fidelity is maintained in signal transduction systems.  相似文献   

6.
Quorum sensing, bacterial cell-to-cell communication, has been linked to the virulence of pathogenic bacteria. Indeed, in vitro experiments have shown that many bacterial pathogens regulate the expression of virulence genes by this cell-to-cell communication process. Moreover, signal molecules have been detected in samples retrieved from infected hosts and quorum sensing disruption has been reported to result in reduced virulence in different host–pathogen systems. However, data on in vivo quorum sensing activity of pathogens during infection of a host are currently lacking. We previously reported that quorum sensing regulates the virulence of Vibrio harveyi in a standardised model system with gnotobiotic brine shrimp (Artemia franciscana) larvae. Here, we monitored quorum sensing activity in Vibrio harveyi during infection of the shrimp, using bioluminescence as a read-out. We found that wild-type Vibrio harveyi shows a strong increase in quorum sensing activity early during infection. In this respect, the bacteria behave remarkably similar in different larvae, despite the fact that only half of them survive the infection. Interestingly, when expressed per bacterial cell, Vibrio harveyi showed around 200-fold higher maximal quorum sensing-regulated bioluminescence when associated with larvae than in the culture water. Finally, the in vivo quorum sensing activity of mutants defective in the production of one of the three signal molecules is consistent with their virulence, with no detectable in vivo quorum sensing activity in AI-2- and CAI-1-deficient mutants. These results indicate that AI-2 and CAI-1 are the dominant signals during infection of brine shrimp.  相似文献   

7.
The human pathogen Vibrio cholerae uses several small molecules to coordinate gene expression in a process termed quorum sensing (QS), and its main autoinducer is CAI-1. We have examined the activity of this signaling molecule in three other species of bacteria. Interestingly, while showing an inhibitory effect on QS in the opportunistic pathogen P. aeruginosa at low micromolar concentrations, it caused also growth inhibition at higher concentrations. In contrast, the two other bacteria were unaffected, and we suggest a possible mechanism for these effects, based on membrane perturbation studies.  相似文献   

8.
Vibrio cholerae lives in aquatic environments and causes cholera. Here, we show that quorum sensing enhances V. cholerae viability under certain stress conditions by upregulating the expression of RpoS, and this regulation acts through HapR, suggesting that a quorum-sensing-enhanced stress response plays a role in V. cholerae environmental survival.  相似文献   

9.
Vibrio harveyi is amongst the most important bacterial pathogens in aquaculture. Novel methods to control this pathogen are needed since many strains have acquired resistance to antibiotics. We previously showed that quorum sensing-disrupting furanones are able to protect brine shrimp larvae against vibriosis. However, a major problem of these compounds is that they are toxic toward higher organisms and therefore, they are not safe to be used in aquaculture. The synthesis of brominated thiophenones, sulphur analogues of the quorum sensing-disrupting furanones, has recently been reported. In the present study, we report that these compounds block quorum sensing in V. harveyi at concentrations in the low micromolar range. Bioluminescence experiments with V. harveyi quorum sensing mutants and a fluorescence anisotropy assay indicated that the compounds disrupt quorum sensing in this bacterium by decreasing the ability of the quorum sensing master regulator LuxR to bind to its target promoter DNA. In vivo challenge tests with gnotobiotic brine shrimp larvae showed that thiophenone compound TF310, (Z)-4-((5-(bromomethylene)-2-oxo-2,5-dihydrothiophen-3-yl)methoxy)-4-oxobutanoic acid, completely protected the larvae from V. harveyi BB120 when dosed to the culture water at 2.5 μM or more, whereas severe toxicity was only observed at 250 μM. This makes TF310 showing the highest therapeutic index of all quorum sensing-disrupting compounds tested thus far in our brine shrimp model system.  相似文献   

10.
The Gram-negative pathogen Pseudomonas aeruginosa produces an intercellular alkyl quinolone signaling molecule, the Pseudomonas quinolone signal. The pqs quorum sensing communication system that is characteristic for P. aeruginosa regulates the production of virulence factors. Therefore, we consider the pqs system a novel target to limit P. aeruginosa pathogenicity. Here, we present small molecules targeting a key player of the pqs system, PqsR. A rational design strategy in combination with surface plasmon resonance biosensor analysis led to the identification of PqsR binders. Determination of thermodynamic binding signatures and functional characterization in E. coli guided the hit optimization, resulting in the potent hydroxamic acid derived PqsR antagonist 11 (IC(50) = 12.5 μM). Remarkably it displayed a comparable potency in P. aeruginosa (IC(50) = 23.6 μM) and reduced the production of the virulence factor pyocyanin. Beyond this, site-directed mutagenesis together with thermodynamic analysis provided insights into the energetic characteristics of protein-ligand interactions. Thus the identified PqsR antagonists are promising scaffolds for further drug design efforts against this important pathogen.  相似文献   

11.
In a process called quorum sensing, bacteria communicate using extracellular signal molecules termed autoinducers. Two parallel quorum-sensing systems have been identified in the marine bacterium Vibrio harveyi. System 1 consists of the LuxM-dependent autoinducer HAI-1 and the HAI-1 sensor, LuxN. System 2 consists of the LuxS-dependent autoinducer AI-2 and the AI-2 detector, LuxPQ. The related bacterium, Vibrio cholerae, a human pathogen, possesses System 2 (LuxS, AI-2, and LuxPQ) but does not have obvious homologues of V. harveyi System 1. Rather, System 1 of V. cholerae is made up of the CqsA-dependent autoinducer CAI-1 and a sensor called CqsS. Using a V. cholerae CAI-1 reporter strain we show that many other marine bacteria, including V. harveyi, produce CAI-1 activity. Genetic analysis of V. harveyi reveals cqsA and cqsS, and phenotypic analysis of V. harveyi cqsA and cqsS mutants shows that these functions comprise a third V. harveyi quorum-sensing system that acts in parallel to Systems 1 and 2. Together these communication systems act as a three-way coincidence detector in the regulation of a variety of genes, including those responsible for bioluminescence, type III secretion, and metalloprotease production.  相似文献   

12.
Bacteria coordinate population-dependent behaviors such as virulence by intra- and inter-species communication (quorum sensing). Autoinducer-2 (AI-2) regulates inter-species quorum sensing. AI-2 derives from the spontaneous cyclisation of linear (S)-4,5-dihydroxypentanedione (DPD) into two isomeric forms in dynamic equilibrium. Different species of bacteria have different classes of AI-2 receptors (LsrB and LuxP) which bind to different cyclic forms. In the present work, DPD analogs with a new stereocenter at C-5 (4,5-dihydroxyhexanediones (DHDs)) have been synthesized and their biological activity tested in two bacteria. (4S,5R)-DHD is a synergistic agonist in Escherichia coli (which contains the LsrB receptor), while it is an agonist in Vibrio harveyi (LuxP), displaying the strongest agonistic activity reported so far (EC(50)=0.65μM) in this organism. Thus, modification at C-5 opens the way to novel methods to manipulate quorum sensing as a method for controlling bacteria.  相似文献   

13.
Many bacteria control gene expression in response to cell population density, and this phenomenon is called quorum sensing. In Gram-negative bacteria, quorum sensing typically involves the production, release and detection of acylated homoserine lactone signalling molecules called autoinducers. Vibrio harveyi, a Gram-negative bioluminescent marine bacterium, regulates light production in response to two distinct autoinducers (AI-1 and AI-2). AI-1 is a homoserine lactone. The structure of AI-2 is not known. We have suggested previously that V. harveyi uses AI-1 for intraspecies communication and AI-2 for interspecies communication. Consistent with this idea, we have shown that many species of Gram-negative and Gram-positive bacteria produce AI-2 and, in every case, production of AI-2 is dependent on the function encoded by the luxS gene. We show here that LuxS is the AI-2 synthase and that AI-2 is produced from S-adenosylmethionine in three enzymatic steps. The substrate for LuxS is S-ribosylhomocysteine, which is cleaved to form two products, one of which is homocysteine, and the other is AI-2. In this report, we also provide evidence that the biosynthetic pathway and biochemical intermediates in AI-2 biosynthesis are identical in Escherichia coli, Salmonella typhimurium, V. harveyi, Vibrio cholerae and Enterococcus faecalis. This result suggests that, unlike quorum sensing via the family of related homoserine lactone autoinducers, AI-2 is a unique, 'universal' signal that could be used by a variety of bacteria for communication among and between species.  相似文献   

14.
Aims:  To study the relationship between luminescence, autoinducer production and virulence of pathogenic vibrios. Methods and Results:  Luminescence, quorum sensing signal production and virulence towards brine shrimp nauplii of 13 Vibrio campbellii and Vibrio harveyi strains were studied. Although only two of the tested strains were brightly luminescent, all of them were shown to produce the three different types of quorum sensing signals known to be produced by Vibrio harveyi. Cell-free culture fluids of all strains significantly induced bioluminescence in the cholerae autoinducer 1, autoinducer 2 and harveyi autoinducer 1 reporter strains JAF375, JMH597 and JMH612, respectively. There was no relation between luminescence and signal production and virulence towards brine shrimp. Conclusions:  There is a large difference between different strains of Vibrio campbellii and Vibrio harveyi with respect to bioluminescence. However, this is not reflected in signal production and virulence towards gnotobiotic brine shrimp. Moreover, there seems to be no relation between quorum sensing signal production and virulence towards brine shrimp. Significance and Impact of the Study:  The results presented here indicate that strains that are most brightly luminescent are not necessarily the most virulent ones and that the lower virulence of some of the strains is not due to a lack of autoinducer production.  相似文献   

15.
16.
【背景】细菌密度感应(Quorum sensing,QS)是指细菌利用分泌的信号分子进行相互交流的现象,而密度感应淬灭(Quorumquenching,QQ)是指通过干扰信号分子的产生、释放、积累或应答从而阻抑密度感应通路。【目的】探究青岛近海沉积物生物被膜中密度感应和密度感应淬灭细菌的多样性。【方法】采用海水培养基2216E从青岛近海沉积物生物被膜中分离获取可培养细菌,采用平板交互划线和高通量筛选的方法分别筛选具有密度感应和密度感应淬灭的菌株。【结果】共分离获得83株共54种具有密度感应和密度感应淬灭的细菌,分属于四大细菌门类:变形菌门、拟杆菌门、厚壁菌门和放线菌门。其中,38株(45.8%)可以产生酰基高丝氨酸内酯(Acyl-homoserine lactone,AHL)类信号分子,它们分属于变形菌门(37株,15种)和拟杆菌门(1株,1种),优势属为弧菌属和鲁杰氏菌属;能够降解AHL类信号分子的有57株(68.7%),在变形菌门(41株,23种)、拟杆菌门(14株,10种)、厚壁菌门(5株,5种)以及放线菌门(1株,1种)中均有分布。【结论】在青岛近海沉积物生物被膜可培养细菌中,具有密度感应和密度感应淬灭现象的菌株具有很高的丰度和多样性,为后续生态学意义的研究与海洋微生物的开发提供了参考。  相似文献   

17.
Bacteria can coordinate community-wide behaviors through quorum sensing, that is, the secretion and sensing of autoinducer (AI) molecules. Bacterial quorum sensing is implicated in the regulation of pathologically relevant events such as biofilm formation, bacterial virulence, and drug resistance. Inhibitors of bacterial quorum sensing could therefore be useful therapeutics. Herein we report for the first time the discovery of several pyrogallol compounds as single digit micromolar inhibitors of bacterial quorum sensing in Vibrio harveyi.  相似文献   

18.
Although it is a human pathogen, Vibrio cholerae is a regular member of aquatic habitats, such as coastal regions and estuaries. Within these environments, V. cholerae often takes advantage of the abundance of zooplankton and their chitinous molts as a nutritious surface on which the bacteria can form biofilms. Chitin also induces the developmental program of natural competence for transformation in several species of the genus Vibrio. In this study, we show that V. cholerae does not distinguish between species-specific and non-species-specific DNA at the level of DNA uptake. This is in contrast to what has been shown for other Gram-negative bacteria, such as Neisseria gonorrhoeae and Haemophilus influenzae. However, species specificity with respect to natural transformation still occurs in V. cholerae. This is based on a positive correlation between quorum sensing and natural transformation. Using mutant-strain analysis, cross-feeding experiments, and synthetic cholera autoinducer-1 (CAI-1), we provide strong evidence that the species-specific signaling molecule CAI-1 plays a major role in natural competence for transformation. We suggest that CAI-1 can be considered a competence pheromone.  相似文献   

19.
20.
戴昕  周佳恒  朱亮  徐向阳   《生态学杂志》2014,25(4):1206-1212
群体感应是微生物利用信号分子感知环境条件并进行特定基因表达调控.近年来,随着群体感应在微生物信息交流中的作用日益凸显,其在生物聚集体(生物膜和颗粒)形成过程中的作用受到广泛关注.本文综述了自体诱导信号分子AI的分类和相应的群体感应调控方式,以及群体感应信号分子对生物聚集体形成和结构稳定的调控,并对群体感应研究新领域进行了展望.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号