首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Gut functions such as digestion and absorption are essential to life and the emerging insights into the gut–brain axis – that is, the cross talk between the enteric and CNS – point towards critical links between (eating) behavior, psychology, whole body and gut physiology, and digestive and overall health. While proteomics is ideally positioned to shed more light on these interactions, be it applied to the periphery (e.g., blood) or the locus of action (i.e., the gut), it is to date largely underexploited, mainly because of challenging sampling and tissue complexity. In view of the contrast between potential and current delivery of proteomics in the context of intestinal health, this article briefs the reader on the state-of-the-art of molecular intestinal research, reviews current proteomic studies (explicitly focusing on the most recent ones that target inflammatory bowel disease patient samples) and argues for an expansion of this research field.  相似文献   

2.
The intestinal microbiota is a complicated ecosystem that influences many aspects of host physiology (i.e. diet, disease development, drug metabolism, and regulation of the immune system). It also exhibits spatial patterning and temporal dynamics. In this review, the effects of internal and external (environmental) factors on intestinal microbiota are discussed. We describe the roles of the gut microbiota in maintaining intestinal and immune system homeostasis and the relationship between gut microbiota and diseases. In particular, the contributions of polysaccharides, as the most abundant diet components in intestinal microbiota and host health are presented. Finally, perspectives for research avenues relating to gut microbiota are also discussed.  相似文献   

3.
尹业师  喻嵘  陈华海 《生物工程学报》2021,37(11):3717-3733
肠道微生物与人类健康的相关性研究仍然是当前生命科学研究领域的前沿热点之一。不依赖培养的16Sr RNA基因高通量测序是当前的主要研究手段。但随着测序成本的降低和数据分析方法的日渐成熟,宏基因组鸟枪法测序因具有信息量更大、更全等优势,将逐渐成为今后一段时间内研究肠道微生物组的重要手段。美国在人类微生物组计划的资助下,对30 805份样品进行了肠道微生物宏基因测序分析。通过NCBI Pub Med和SRA数据库检索,共发现72项研究收集了约10000份中国人的肠道样品用于宏基因组测序。但到目前为止,仅56项研究进行了公开发表,其中与代谢性疾病相关的文献16篇,与感染和免疫性疾病相关的文献16篇,与心脑血管疾病相关的文献12篇。由于采样地点以北京、广州、上海等大城市为主,测序平台和测序分析方法均存在较大差异,且大部分研究仍以相关性分析为主,相关研究成果在临床疾病诊疗中所发挥的作用仍非常有限。规范采样方法、标准化测序平台和数据分析流程,开展多中心平行研究将有助于数据整合和比较分析。同时,结合使用转录组、蛋白质组和培养组学等多组学方法开展功能验证和分子作用机制研究,将有利于更好地将肠道微生物研究...  相似文献   

4.
Digestive flexibility is a widespread phenomenon among animals, and the congruence between empirical data and optimal digestion models strongly supports the idea that it has evolved by natural selection. However, current understanding of the evolution of this amazing flexibility is far from being comprehensive. Evidence from vertebrate tetrapods suggests that there are two major mechanisms for intestinal down‐regulation during fasting periods: a decrease in the number of enterocytes in the mucosal epithelium in endothermic species, and a transitional epithelium in concert with a marked hypotrophy of enterocytes in ectothermic species. Here, we analyze the intestinal changes, at the morphological and histological levels, occurring after 9 and 16 days of fasting in a small characid fish species (Hyphessobrycon luetkenii). We found that short‐term fasting was correlated with a marked down‐regulation of gut size (i.e., caeca and intestine dry mass fall to a 42.3%, while intestinal length was reduced to a 73.9% of the feeding values) and that these changes were accompanied by a shift in intestinal epithelial organization from a simple columnar to pseudostratified one. This result, in conjunction with data on changes in enterocyte turnover rates during fasting in other fish species, suggests that gut regulation at both levels, cell renewal rate and epithelia configuration, is the basal condition to all tetrapods. More data, especially in some key taxonomic groups (e.g., fish that follow an endothermic strategy), will be needed in order to reach a clear understanding of digestive flexibility evolution. J. Morphol., 2011. © 2011 Wiley Periodicals, Inc.  相似文献   

5.
Newborn intestine is uniquely prone to vasoconstriction in response to a wide variety of perturbations. To test the hypothesis that endothelin (ET)-1 is an important factor in this process, we determined the effects of exogenous ET-1 administration and blockade of endogenous ET-1 in vivo and in vitro in 3- and 35-day-old swine. Intramesenteric artery administration of exogenous ET-1 to vascularly isolated in vivo gut loops (10(-9) M/kg bolus) caused vasoconstriction and reduced gut O(2) uptake similarly in these age groups. Selective blockade of ET(A) or ET(B) receptors with BQ-610 or BQ-788, respectively, in vascularly isolated in vivo gut loops had no effect on gut vascular resistance or O(2) uptake in either age group; within in vitro gut loops, BQ-610 significantly increased vasoconstriction when perfusion pressure was reduced below baseline, but only in 3-day-old animals; i.e., it impaired the autoregulatory response to perfusion pressure reduction. Exogenous ET-1 significantly decreased capillary perfusion within in vitro gut loops, as evidenced by a decrease in capillary filtration coefficient, but only in 3-day-old animals; furthermore, blockade of endogenous ET-1 activity with BQ-610 significantly enhanced capillary filtration coefficient in 3-day-old animals and increased O(2) extraction ratio. ET-1 did not depress intestinal metabolic rate, as evidenced by its effect on the O(2) uptake-blood flow relationship; it did compromise tissue oxygenation because of its effects on intestinal O(2) transport. ET-1 concentration in mesenteric venous effluent exceeded arterial concentration, but only in 3-day-old intestine, suggesting production of ET-1 by newborn intestine. We conclude that ET-1 exerts an age-dependent effect on intestinal hemodynamics in postnatal intestine, having a greater impact in 3- than in 35-day-old intestine.  相似文献   

6.
动物及其肠道菌群的协同进化研究   总被引:1,自引:0,他引:1  
动物自身合成一些关键营养物质的能力缺失,转而依赖体内的共生物来完成相应功能,如动物体内共生细菌能帮助宿主从食物中提取营养物质,并能合成一些关键代谢反应的化合物。结合国内外在动物及其肠道菌群的协同进化的研究进展,从三个方面进行了归纳:(1)动物及其肠道微生物组成与功能的协同进化研究;(2)动物行为与肠道微生物的关系;(3)共生肠道微生物在人类或动物自身消化食物、营养获取、健康和疾病方面发挥的重要作用。  相似文献   

7.
To understand the role of gut microbes in host health, it is imperative to probe their genetic potential, expression, and ecological status. The current high-throughput sequencing revolution, in addition to advances in mass spectrometry-based proteomics, have recently enabled deep access to these complex environments, and are revealing important insights into the roles of the gastrointestinal (GI) microbiota in host physiology and health. This review discusses examples of how the integration of cutting-edge 'meta-omics' technologies are providing new knowledge about the relationships between host health status in mammals and the microbes inhabiting the GI tract. In addition, we address some promises that these techniques hold for future therapeutic and diagnostic applications.  相似文献   

8.
Human intestinal microbiota plays a number of important roles in human health and is also implicated in several gastrointestinal disorders. Although the diversity of human gut microbiota in adults and in young children has been examined, few reports of microbiota composition are available for adolescents. In this work, we used Microbiota Array for high-throughput analysis of distal gut microbiota in adolescent children 11-18 years of age. Samples obtained from healthy adults were used for comparison. Adolescent and adult groups could be separated in the principal components analysis space based on the relative species abundance of their distal gut microbiota. All samples were dominated by class Clostridia. A core microbiome of 46 species that were detected in all examined samples was established; members of genera Ruminococcus, Faecalibacterium, and Roseburia were well represented among core species. Comparison of intestinal microbiota composition between adolescents and adults revealed a statistically significantly higher abundance of genera Bifidobacterium and Clostridium among adolescent samples. The number of detected species was similar between sample groups, indicating that it was the relative abundances of the genera and not the presence or absence of a specific genus that differentiated adolescent and adult samples. In summary, contrary to the current belief, this study suggests that the gut microbiome of adolescent children is different from that of adults.  相似文献   

9.
Lactobacillus acidophilus NCFM (NCFM) is a well-documented probiotic bacterium isolated from human gut. Detailed 2D gel-based NCFM proteomics addressed the so-called alkaline range, i.e., pH 6-11. Proteins were identified in 150 of the 202 spots picked from the Coomassie Brilliant Blue stained 2D gel using MALDI-TOF-MS. The 102 unique gene products among the 150 protein identifications were assigned to different functional categories, and evaluated by considering a calculated distribution of abundance as well as grand average of hydrophobicity values. None of the very few available lactic acid bacteria proteome reference maps included the range of pI >7.0. The present report of such data on the proteome of NCFM fundamentally complements current knowledge on protein profiles limited to the acid and neutral pH range.  相似文献   

10.
肠道是人体内微生物定殖最丰富的部位。近年来,随着肠道菌群与人体健康疾病关联研究的蓬勃发展,肠道噬菌体也逐渐引起关注。然而,相关信息技术和实验技术发展的滞后在一定程度上限制了肠道噬菌体的科学研究进程。因此,本文首先回顾了近几年来肠道噬菌体研究领域所开发或采用的计算和实验方法,包括噬菌体的测序数据分析和噬菌体的分离纯化等。随后,本文就肠道噬菌体的分类、肠道内噬菌体与细菌的互作及肠道噬菌体在人体疾病干预中的应用展开了讨论。最后,本文展望了肠道噬菌体研究在数据和实体资源、信息和实验技术、与肠道菌群的互作、干预和治疗人体疾病各方面的一系列挑战和机遇。  相似文献   

11.
Microbial ecosystem comprises a complex community in which bacteria interact with each other.The potential roles of the intestinal microbiome play in human health have gained considerable attention.The imbalance of gut microbial community has been looked to multiple chronic diseases.Cardiovascular diseases(CVDs)are leading causes of morbidity worldwide and are influ-enced by genetic and environmental factors.Recent advances have provided scientific evidence that CVD may also be attributed to gut microbiome.in this review,we highlight the complex interplay between microbes,their metabolites,and the potential influence on the generation and development of CVDs.The therapeutic potentiai of using intestinal microbiomes to treat CVD is also discussed.it is quite possible that gut microbes may be used for clinical treatments of CVD in the near future.  相似文献   

12.
The potential for commensal microorganisms indigenous to a host (the ‘microbiome’ or ‘microbiota’) to alter infection outcome by influencing host-pathogen interplay is largely unknown. We used a multi-omics “systems” approach, incorporating proteomics, metabolomics, glycomics, and metagenomics, to explore the molecular interplay between the murine host, the pathogen Salmonella enterica serovar Typhimurium (S. Typhimurium), and commensal gut microorganisms during intestinal infection with S. Typhimurium. We find proteomic evidence that S. Typhimurium thrives within the infected 129/SvJ mouse gut without antibiotic pre-treatment, inducing inflammation and disrupting the intestinal microbiome (e.g., suppressing Bacteroidetes and Firmicutes while promoting growth of Salmonella and Enterococcus). Alteration of the host microbiome population structure was highly correlated with gut environmental changes, including the accumulation of metabolites normally consumed by commensal microbiota. Finally, the less characterized phase of S. Typhimurium’s lifecycle was investigated, and both proteomic and glycomic evidence suggests S. Typhimurium may take advantage of increased fucose moieties to metabolize fucose while growing in the gut. The application of multiple omics measurements to Salmonella-induced intestinal inflammation provides insights into complex molecular strategies employed during pathogenesis between host, pathogen, and the microbiome.  相似文献   

13.
肠道共生菌是动物体内的重要组成部分,在宿主的生长发育和健康等方面发挥着重要作用,近年来已成为国内外的研究热点.果蝇作为研究肠道微生物菌群功能的优秀模型,在肠道共生菌与宿主关系研究方面已取得许多重要进展.在本文中,我们首先对果蝇肠道微生物的组成和特征作了总结,然后对果蝇肠道共生菌在其生长发育、营养与代谢、行为反应、寿命以...  相似文献   

14.
《Trends in microbiology》2023,31(8):832-844
Benefits of fasting and caloric restriction on host metabolic health are well established, but less is known about the effects on the gut microbiome and how this impacts renewal of the intestinal mucosa. What has been repeatedly shown during fasting, however, is that bacteria utilising host-derived substrates proliferate at the expense of those relying on dietary substrates. Considering the increased recognition of the gut microbiome’s role in maintaining host (metabolic) health, disentangling host–microbe interactions and establishing their physiological relevance in the context of fasting and caloric restriction is crucial. Such insights could aid in moving away from associations of gut bacterial signatures with metabolic diseases consistently reported in observational studies to potentially establishing causality. Therefore, this review aims to summarise what is currently known or still controversial about the interplay between fasting and caloric restriction, the gut microbiome and intestinal tissue physiology.  相似文献   

15.
It has been shown previously that certain bacteria rapidly (3 h) up-regulated in vivo microfold cell (M cell)-mediated transport of Ag across the follicle-associated epithelium of intestinal Peyer's patch. Our aim was to determine whether soluble mediators secreted following host-bacteria interaction were involved in this event. A combination of proteomics and immunohistochemical analyses was used to identify molecules produced in the gut in response to bacterial challenge in vivo; their effects were then tested on human intestinal epithelial cells in vitro. Macrophage migration inhibitory factor (MIF) was the only cytokine produced rapidly after in vivo bacterial challenge by CD11c(+) cells located beneath the M cell-rich area of the follicle-associated epithelium of the Peyer's patch. Subsequently, in vitro experiments conducted using human Caco-2 cells showed that, within hours, MIF induced the appearance of cells that showed temperature-dependent transport of microparticles and M cell-specific bacterium Vibrio cholerae, and acquired biochemical features of M cells. Furthermore, using an established in vitro human M cell model, we showed that anti-MIF Ab blocked Raji B cell-mediated conversion of Caco-2 cells into Ag-sampling cells. Finally, we report that MIF(-/-) mice, in contrast to wild-type mice, failed to show increased M cell-mediated transport following in vivo bacterial challenge. These data show that MIF plays a role in M cell-mediated transport, and cross-talk between bacteria, gut epithelium, and immune system is instrumental in regulating key functions of the gut, including M cell-mediated Ag sampling.  相似文献   

16.
Since a few decades, apiculture is facing important economic losses worldwide with general major consequences in many areas of agriculture. A strong attention has been paid towards the phenomenon named Colony Collapse Disorder in which colonies suddenly disappear with no clear explanations. Honeybee colonies can be affected by abiotic factors, such as environmental pollution or insecticide applications for agricultural purposes. Also biotic stresses cause colony losses, including bacterial (e.g. Paenibacillus larvae) and fungal (e.g. Ascosphaera apis) pathogens, microsporidia (e.g. Nosema apis), parasites (i.e. Varroa destructor) and several viruses. In the light of recent research, intestinal dysbiosis, considered as the relative disproportion of the species within the native microbiota, has shown to affect human and animal health. In arthropods, alteration of the gut microbial climax community has been shown to be linked to health and fitness disequilibrium, like in the medfly Ceratitis capitata for which low mate competitiveness is determined by a gut microbial community imbalance. According to these observations, it is possible to hypothesize that dysbiosis may have a role in disease occurrence also in honeybees. Here we aim to discuss the current knowledge on dysbiosis in the honeybee and its relation with honeybee health by reviewing the investigations of the microbial diversity associated to honeybees and the recent experiments performed to control bee diseases by microbial symbionts. We conclude that, despite the importance of a good functionality of the associated microbiota in preserving insect health has been proved, the mechanisms involved in honeybee gut dysbiosis are still unknown. Accurate in vitro, in vivo and in field investigations are required under healthy, diseased and stressed conditions for the host.  相似文献   

17.
人的肠道中栖息着大量微生物,这些微生物与宿主形成一个相互依赖且相互制约的微生态系统。肠道菌群结构与遗传、饮食、疾病、环境等因素存在千丝万缕的联系,其地位与作用相当于一个后天获得的"器官",对人体的消化、营养吸收、能量供应、脂肪代谢、免疫调节、抗病等诸多方面有不可替代的作用,因此,研究人的肠道菌群具有十分重要的意义和作用。本综述着重论述荧光原位杂交(FISH)、基于聚合酶链式反应的变性梯度凝胶电泳(Polymerase chain reaction denaturing gradient gel electrophoresis,PCR-DGGE)技术、实时荧光定量PCR(Real-time polymerase chain reaction)技术、基因芯片(Gene chip)技术及以焦磷酸测序平台为代表的第二代测序技术等多种分子生物学技术在肠道菌群研究方面的应用,并对未来肠道菌群方面的研究进行展望。  相似文献   

18.
Does exploration of the gut microbiota–brain axis expand our understanding of what it means to be human? Recognition and conceptualization of a gut microbiota–brain axis challenges our study of the nervous system. Here, integrating gut microbiota–brain research into the metaorganism model is proposed. The metaorganism—an expanded, dynamic unit comprising the host and commensal organisms—asserts a radical blurring between man and microbe. The metaorganism nervous system interacts with the exterior world through microbial‐colored lenses. Ongoing studies have reported that gut microbes contribute to brain function and pathologies, even shaping higher neurological functions. How will continued collaborative efforts (e.g., between neurobiology and microbiology), including partnerships with the arts (e.g., philosophy), contribute to the knowledge of microbe‐to‐mind interactions? While this is not a systemic review, this nascent field is briefly described, highlighting ongoing challenges and recommendations for emerging gut microbiota–brain research. Also see the video abstract here https://youtu.be/lP9gOW8StXg .  相似文献   

19.
真菌菌群是肠道菌群的重要组成部分,在肠道微生态稳态的维持和宿主的免疫调节中发挥重要作用。肠道真菌失调通常和肠道疾病甚至肠道外疾病有关。本文就肠道真菌的定殖与组成、真菌菌群对肠道微生态的调控、菌群失调促进疾病的发展机制、基于肠道真菌的治疗策略和肠道真菌的鉴定分析方法等方面的进展进行了综述和展望,旨在系统认识肠道真菌调节宿主健康和促进疾病发生的机制,为相关疾病的诊断和治疗提供重要参考。  相似文献   

20.
Liu HY  Xu WT  Yuan YF  Cao SS  He XY  Li SY  Huang KL  Luo YB 《IUBMB life》2012,64(7):617-627
Lp was a generally recognized as safe microorganism. Lactobacillus plantarum 590 was obtained by inserting nisI gene into Lp genome to help it tolerate higher concentration nisin. As the unintended effects of the genetically modified microorganism (GMM) are the most important barriers to the progress of GMM, we have performed a useful exploration to establish a new in vivo evaluation model for GMM from the point of view of intestinal health. In this study, Sprague-Dawley rats were orally administered with Lp 590 and Lp for 4 weeks. Fecal samples were collected to determine the number of beneficial bacteria Bifidobacterium and harmful bacteria Clostridium perfringens. Denaturing gradient gel electrophoresis was used to detect the bacterial profiles of every group. Fecal enzyme activities and short-chain fatty acids as main metabolites were also examined. Real time PCR (RT-PCR) and immunohistochemistry were used to analyze two proteins (ZO-1 and occludin) and secretory immunoglobulin A to detect intestinal permeability and mucosal immunity, gut permeability and gut mucosal immunity were analyzed to see whether GM Lp 590 can induce changes of the gut health when compared with non-GM Lp group, andeventually we concluded that there is no significant difference between GM Lp 590-fed group and non-GM Lp-fed group. The conclusion of gut health test was comparable withthat from traditional subchronic test. Evaluation of intestinal health will be a new approach of assessing the safety of GMM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号