首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
CXC chemokine ligand (CXCL)16 and scavenger receptor for phosphatidylserine and oxidized low-density lipoprotein were independently identified as a chemokine and a scavenger receptor, respectively, but have since been shown to be identical. CXCL16 is synthesized as a transmembrane protein with its chemokine domain at the end of a mucin-rich stalk. When expressed at the cell surface, CXCL16 functions as a scavenger receptor, binding and internalizing oxidized low-density lipoprotein and bacteria. As a soluble form, CXCL16 is a chemoattractant for activated CD4+ and CD8+ T cells through binding its receptor, CXCR6. In this study, we examined the mechanisms that regulate the conversion between these two functionally distinct forms of CXCL16. We demonstrate that murine CXCL16 is synthesized as an intracellular precursor that is rapidly transported to the cell surface where it undergoes metalloproteinase-dependent cleavage, causing the release of a fragment that constitutes the majority of the CXCL16 extracellular domain. Using a novel retroviral system for the generation of short interfering RNAs, we show that knockdown of a disintegrin and metalloproteinase (ADAM) family protease ADAM10 decreases this constitutive shedding of CXCL16. Furthermore, we show that overexpression of ADAM10 increases CXCL16 shedding, whereas overexpression of a dominant-negative form of ADAM10 lowers shedding of CXCL16 in a similar manner to short interfering RNAs. Through the modulation of ADAM10 function, we demonstrate that ADAM10-mediated constitutive shedding is a key regulator of CXCL16 cell surface expression. The identification of ADAM10 as a major protease responsible for the conversion of CXCL16 from a membrane-bound scavenger receptor to a soluble chemoattractant will provide new information for understanding the physiological function of this molecule.  相似文献   

2.
A disintegrin and metalloproteinase (ADAM) 10 is a type I transmembrane glycoprotein responsible for the ectodomain shedding of a range of proteins including the amyloid precursor protein implicated in Alzheimer's disease. In this study we demonstrate that ADAM10 itself is subject to shedding by one or more ADAMs. Expression of epitope-tagged wild-type ADAM10 in SH-SY5Y cells enabled the detection of a soluble ectodomain in conditioned medium. Shedding of the ADAM10 ectodomain was inhibited by a known ADAM inhibitor with a reciprocal accumulation of the full-length mature protein in both cell lysates and extracellular membrane vesicles. Shedding was also stimulated by phorbol ester treatment of cells. A glycosylphosphatidylinositol-anchored form of ADAM10 lacking the cytosolic, transmembrane and α-helical juxtamembrane regions of the wild-type protein was shed in a similar manner. Furthermore, a truncated soluble ADAM10 construct, although correctly post-translationally processed and catalytically active against a synthetic peptide substrate, was incapable of shedding cell-associated amyloid precursor protein. Finally, we show that ADAM9 is, at least in part, responsible for the ectodomain shedding of ADAM10. In conclusion, this is a new mechanism by which levels of ADAM10 are regulated and may have implications in a range of human diseases including Alzheimer's disease.  相似文献   

3.
The disintegrin and metalloproteinase Adam10 has been implicated in the regulation of key signaling pathways that determine skin morphogenesis and homeostasis. To address the in vivo relevance of Adam10 in the epidermis, we have selectively disrupted Adam10 during skin morphogenesis and in adult skin. K14-Cre driven epidermal Adam10 deletion leads to perinatal lethality, barrier impairment and absence of sebaceous glands. A reduction of spinous layers, not associated with differences in either proliferation or apoptosis, indicates that loss of Adam10 triggers a premature differentiation of spinous keratinocytes. The few surviving K14-Adam10-deleted mice and mice in which Adam10 was deleted postnatally showed loss of hair, malformed vibrissae, epidermal hyperproliferation, cyst formation, thymic atrophy and upregulation of the cytokine thymic stromal lymphopoetin (TSLP), thus indicating non cell-autonomous multi-organ disease resulting from a compromised barrier. Together, these phenotypes closely resemble skin specific Notch pathway loss-of-function phenotypes. Notch processing is indeed strongly reduced resulting in decreased levels of Notch intracellular domain fragment and functional Notch signaling. The data identify Adam10 as the major Site-2 processing enzyme for Notch in the epidermis in vivo, and thus as a central regulator of skin development and maintenance.  相似文献   

4.
CX3CL1 (fractalkine) and CXCL16 are unique members of the chemokine family because they occur not only as soluble, but also as membrane-bound molecules. Expressed as type I transmembrane proteins, the ectodomain of both chemokines can be proteolytically cleaved from the cell surface, a process known as shedding. Our previous studies showed that the disintegrin and metalloproteinase 10 (ADAM10) mediates the largest proportion of constitutive CX3CL1 and CXCL16 shedding, but is not involved in the phorbolester-induced release of the soluble chemokines (inducible shedding). In this study, we introduce the calcium-ionophore ionomycin as a novel, very rapid, and efficient inducer of CX3CL1 and CXCL16 shedding. By transfection in COS-7 cells and ADAM10-deficient murine embryonic fibroblasts combined with the use of selective metalloproteinase inhibitors, we demonstrate that the inducible generation of soluble forms of these chemokines is dependent on ADAM10 activity. Analysis of the C-terminal cleavage fragments remaining in the cell membrane reveals multiple cleavage sites used by ADAM10, one of which is preferentially used upon stimulation with ionomycin. In adhesion studies with CX3CL1-expressing ECV-304 cells and cytokine-stimulated endothelial cells, we demonstrate that induced CX3CL1 shedding leads to the release of bound monocytic cell lines and PBMC from their cellular substrate. These data provide evidence for an inducible release mechanism via ADAM10 potentially important for leukocyte diapedesis.  相似文献   

5.
Invasive tumour cells, such as gliomas, frequently express EGF (epidermal growth factor) receptor at a high level and they exhibit enhanced cell migration in response to EGF. We reported previously that tumour cell migration is associated with ectodomain cleavage of CD44, the major adhesion molecule that is implicated in tumour invasion and metastasis, and that the cleavage is enhanced by ligation of CD44. In the present study, we show that EGF promotes CD44 cleavage and CD44-dependent cell migration. Introduction of a dominant-negative mutant of the small GTPase Rac1 or depletion of Rac1 by RNAi (RNA interference) abrogated CD44 cleavage induced by EGF. Treatment with PD98059, an inhibitor for MEK (mitogen-activated protein kinase/extracellular-signal-regulated kinase kinase), also suppressed the CD44 cleavage. Furthermore, RNAi studies showed that EGF induced ADAM10 (a disintegrin and metalloproteinase 10)-dependent CD44 cleavage and cell migration. These results indicate that EGF induces ADAM10-mediated CD44 cleavage through Rac1 and mitogen-activated protein kinase activation, and thereby promotes tumour cell migration and invasion.  相似文献   

6.
Collagen degradation is required for the creation of new integrin binding sites necessary for cell survival. However, a complete separation between the matrix and the cell leads to apoptosis, dilatation, and failure. Previous studies have demonstrated increased metalloproteinase activity in the failing myocardium. To test the hypothesis that disintegrin metalloproteinase (DMP) is induced in human heart end-stage failure, left ventricle tissue from ischemic cardiomyopathic (ICM, n = 10) and dilated cardiomyopathic (DCM, n = 10) human hearts were obtained at the time of orthotopic cardiac transplant. Normal (n = 5) tissue specimens were obtained from unused hearts. The levels of reduced oxygen species (ROS) were 12 +/- 2, 25 +/- 3, and 16 +/- 2 nmol (means +/- SE, P < 0.005) in normal, ICM, and DCM, respectively, by spectrofluorometry. The percent levels of endothelial cells were 100 +/- 15, 35 +/- 19, and 55 +/- 11 in normal, ICM, and DCM, respectively, by CD31 labeling. The levels of nitrotyrosine by Western analysis were significantly increased, and endothelial nitric oxide (NO) by the Griess method was decreased in ICM and DCM compared with normal tissue. The synthesis and degradation of beta(1)-integrin and connexin 43 were significantly increased in ICM and DCM compared with normal hearts by Western analysis. Levels of DMP were increased, and levels of cardiac inhibitor of metalloproteinase (CIMP) were decreased. Aggrecanase activity of DMP was significantly increased in ICM and DCM hearts compared with normal. These results suggest that the occurrence of cardiomyopathy is significantly confounded by the increase in ROS, nitrotyrosine, and DMP activity. This increase is associated with decreased NO, endothelial cell density, and CIMP. In vitro, treatment of CIMP abrogated the DMP activity. The treatment with CIMP may prevent degradation of integrin and connexin and ameliorate heart failure.  相似文献   

7.
A disintegrin and metalloprotease 10 (ADAM10) is a zinc protease that mediates ectodomain shedding of numerous receptors including Notch and members of the amyloid precursor protein family (APP, APLP1, and APLP2). Ectodomain shedding frequently activates a process called regulated intramembrane proteolysis (RIP) that links cellular events with gene regulation. To characterize ADAM10 in kidney and in opossum kidney proximal tubule (OKP) cells, we performed indirect immunofluorescence microscopy and immunoblotting of renal membrane fractions using specific antibodies. These studies show that ADAM10 and APLP2 are coexpressed in the proximal tubule and in OKP cells. To study the role of ADAM10 activity in the proximal tubule, we stably overexpressed wild-type ADAM10 or an inactive mutant ADAM10 in OKP cells. We found a direct correlation between the amount of active ADAM10 expressed and 1) the amount of APLP2 ectodomain shed into the culture supernatant and 2) the amount of Na(+)/H(+) exchanger 3 (NHE3) and megalin mRNA and protein expressed compared with control proteins. To establish a link between ADAM10-mediated shedding of APLP2 and the effect on NHE3 and megalin mRNA expression we performed RNA interference experiments using APLP2-specific short hairpin RNA (shRNA) in OKP cells. Cells expressing the APLP2 shRNA showed >80% knock down of APLP2 protein and mRNA as well as 60-70% reduction in NHE3 protein and mRNA. Levels of megalin and Na-K-ATPase protein and mRNA were not changed. These studies show 1) ADAM10 and APLP2 are expressed in proximal tubule cells and, 2) ADAM10 activity has a pronounced effect on expression of specific brush-border proteins. We postulate that ADAM10 and APLP2 may represent elements of a here-to-fore unknown signaling pathway in proximal tubule that link events at the brush border with control of gene expression.  相似文献   

8.
Members of the T cell Ig and mucin (TIM) family have recently been implicated in the control of T cell-mediated immune responses. In this study, we found TIM-1 expression on anti-IgM- or anti-CD40-stimulated splenic B cells, which was further up-regulated by the combination of anti-IgM and anti-CD40 Abs. On the other hand, TIM-1 ligand was constitutively expressed on B cells and inducible on anti-CD3+ anti-CD28-stimulated CD4+ T cells. In vitro stimulation of activated B cells by anti-TIM-1 mAb enhanced proliferation and expression of a plasma cell marker syndecan-1 (CD138). We further examined the effect of TIM-1 signaling on antibody production in vitro and in vivo. Higher levels of IgG2b and IgG3 secretion were detected in the culture supernatants of the anti-TIM-1-stimulated B cells as compared with the control IgG-stimulated B cells. When immunized with T-independent antigen TNP-Ficoll, TNP-specific IgG1, IgG2b, and IgG3 Abs were slightly increased in the anti-TIM-1-treated mice. When immunized with T-dependent antigen OVA, serum levels of OVA-specific IgG2b, IgG3, and IgE Abs were significantly increased in the anti-TIM-1-treated mice as compared with the control IgG-treated mice. These results suggest that TIM-1 signaling in B cells augments antibody production by enhancing B cell proliferation and differentiation.  相似文献   

9.
10.
The metalloproteinase ADAM15 is a multi‐domain disintegrin protease that is upregulated in a variety of human cancers. ADAM15 mRNA and protein levels are increased in prostate cancer and its expression is significantly increased during metastatic progression. It is likely that ADAM15 supports disease progression differentially through the action of its various functional domains. ADAM15 may downregulate adhesion of tumor cells to the extracellular matrix, reduce cell–cell adhesion, and promote metastasis through the activity of its disintegrin and metalloproteinase domains. Additionally, ADAM15 can influence cell signaling by shedding membrane‐bound growth factors and other proteins that interact with receptor tyrosine kinases, leading to receptor activation. There is also evidence supporting a role for ADAM15 in angiogenesis and angioinvasion of tumor cells, which are critical for unrestrained tumor growth and metastatic spread. Given its diverse functions, ADAM15 may represent a pivotal regulatory component of tumor progression, an important target for therapeutic intervention, or emerge as a biomarker of disease progression. J. Cell. Biochem. 106: 967–974, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

11.
The adamalysins are involved in proteolysis, adhesion, fusion, and intracellular signaling. Human ADAM19/adamalysin-19 (A disintegrin and metalloproteinase 19) was identified from primary dendritic cell cDNA libraries. It has a signal sequence, a pro-domain with a "cysteine-switch" residue, a metalloproteinase domain with a zinc-binding site, a disintegrin, a cysteine-rich domain, an epidermal-growth-factor-like domain, a transmembrane domain, and a cytoplasmic domain with putative SH3 ligand binding sites. Its mRNA was expressed in the placenta, heart, bladder, lymph nodes, and leukocytes, colorectal adenocarcinoma SW 480, and other organs/cells. The hADAM19 recombinant protein was expressed in human cells. It formed a complex with and cleaved alpha-2 macroglobulin (alpha2-M). Its proteolytic activity was blocked by 1,10-phenanthroline, EDTA, EGTA, and a synthetic matrix metalloproteinase (MMP) inhibitor and not by the tissue inhibitors of metalloproteinases TIMP-1 and TIMP-2. It did not cleave the MMP substrates tested, e.g., type I collagen and gelatin, casein, and four peptide substrates. Thus, hADAM19 is an active metalloproteinase and may have a specific substrate profile.  相似文献   

12.
CDK10/CycM is a protein kinase deficient in STAR (toe Syndactyly, Telecanthus and Anogenital and Renal malformations) syndrome, which results from mutations in the X-linked FAM58A gene encoding Cyclin M. The biological functions of CDK10/CycM and etiology of STAR syndrome are poorly understood. Here, we report that deficiency of CDK10/Cyclin M promotes assembly and elongation of primary cilia. We establish that this reflects a key role for CDK10/Cyclin M in regulation of actin network organization, which is known to govern ciliogenesis. In an unbiased screen, we identified the RhoA-associated kinase PKN2 as a CDK10/CycM phosphorylation substrate. We establish that PKN2 is a bone fide regulator of ciliogenesis, acting in a similar manner to CDK10/CycM. We discovered that CDK10/Cyclin M binds and phosphorylates PKN2 on threonines 121 and 124, within PKN2′s core RhoA-binding domain. Furthermore, we demonstrate that deficiencies in CDK10/CycM or PKN2, or expression of a non-phosphorylatable version of PKN2, destabilize both the RhoA protein and the actin network architecture. Importantly, we established that ectopic expression of RhoA is sufficient to override the induction of ciliogenesis resulting from CDK10/CycM knockdown, indicating that RhoA regulation is critical for CDK10/CycM's negative effect on ciliogenesis. Finally, we show that kidney sections from a STAR patient display dilated renal tubules and abnormal, elongated cilia. Altogether, these results reveal CDK10/CycM as a key regulator of actin dynamics and a suppressor of ciliogenesis through phosphorylation of PKN2 and promotion of RhoA signaling. Moreover, they suggest that STAR syndrome is a ciliopathy.  相似文献   

13.
Reelin is a glycoprotein essential for brain development and functions. Reelin is subject to specific proteolysis at two distinct (N-t and C-t) sites, and these cleavages significantly diminish Reelin activity. The decrease of Reelin activity is detrimental for brain function, but the protease that catalyzes specific cleavage of Reelin remains elusive. Here we found that a disintegrin and metalloproteinase with thrombospondin motifs 4 (ADAMTS-4) cleaves Reelin in an isoform-specific manner. Among ADAMTS-4 isoforms, p50 cleaves the N-t site only, while p75 cleaves both sites. This is the first report identifying a protease that can specifically cleave Reelin.  相似文献   

14.
Acute aortic dissection (AAD) is a life-threatening cardiovascular disease caused by progressive medial degeneration of the aortic wall. A disintegrin and metalloproteinase with thrombospondin motifs 1 (ADAMTS1) is a recently identified extracellular metalloproteinase participating in the development of vascular disease, such as atherosclerosis. In the present study, we found that ADAMTS1 was significantly elevated in blood samples from AAD patients compared with patients with acute myocardial infarction and healthy volunteers. Based on these findings, we established an AAD model by infusing angiotensin II in older mice. AAD was successfully developed in aorta tissues, with an incidence of 42% after 14 days in the angiotensin II group. Macrophage and neutrophil infiltration was observed in the media of the aorta, and ADAMTS1 overexpression was found in the aorta by Western blot and immunohistochemistry. Double immunofluorescence staining showed the expression of ADAMTS1 in macrophages and neutrophils. Consistent with the upregulation of ADAMTS1 in aortic dissection tissues, versican (a proteoglycan substrate of ADAMTS1) was degraded significantly more in these tissues than in control aortic tissues. These data suggest that the increased expression of ADAMTS1 protein in macrophages and neutrophils that infiltrated aortic tissues may promote the progression of AAD by degrading versican.  相似文献   

15.
Targeted ablation of the surfactant protein D (SP-D) gene caused progressive pulmonary emphysema associated with pulmonary infiltration by foamy alveolar macrophages (AMs), increased hydrogen peroxide production, and matrix metalloproteinase (MMP)-2, -9, and -12 expression. In the present study, the mechanisms by which SP-D influences macrophage MMP activity were assessed in AMs from SP-D(-/-) mice. Tissue lipid peroxides and reactive carbonyls were increased in lungs of SP-D(-/-) mice, indicating oxidative stress. Immunohistochemical staining of AMs from SP-D(-/-) mice demonstrated that NF-kappaB was highly expressed and translocated to the nucleus. Increased NF-kappaB binding was detected by EMSA in nuclear extracts of AMs isolated from SP-D(-/-) mice. Antioxidants N-acetylcysteine and pyrrolidine dithiocarbamate inhibited MMP production by AMs from SP-D(-/-) mice. To assess whether increased oxidant production influenced NF-kappaB activation and production of MMP-2 and -9, AMs from SP-D(-/-) mice were treated with the NADPH oxidase inhibitors diphenylene iodonium chloride and apocynin. Inhibition of NADPH oxidase suppressed NF-kappaB binding by nuclear extracts and decreased production of MMP-2 and 9 in AMs from SP-D(-/-) mice. SN-50, a synthetic NF-kappaB-inhibitory peptide, decreased MMP production by AMs from SP-D(-/-) mice. Oxidant production and reactive oxygen species were increased in lungs of SP-D(-/-) mice, in turn activating NF-kappaB and MMP expression. SP-D plays an unexpected inhibitory role in the regulation of NF-kappaB in AMs.  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号