首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, a functional bio-carrier modified by redox meditors was developed as a redox mediator for application in azo dye decolorization processes. Its accelerating effect and mechanism for azo dyes decolorization were also examined. The decolorization rates of 10 azo dyes were enhanced about 1.5–3 fold by the functional bio-carrier modified with disperse turquoise blue S-GL, and the ORP value during the acid red GR decolorization process was changed to a more negative value of 20–25 mV. Non-dissolved redox mediator on the functional bio-carrier played a similar role as NADH during the azo dyes decolorization process. At the same time, the functional bio-carrier exhibited good reusability and the combinational technology of the redox mediator and bio-carrier was a great improvement of the redox mediator application and represents a new bio-treatment concept.  相似文献   

2.
In this study, salt fractionated bitter gourd (Momordica charantia) peroxidase was used for the decolorization of water-insoluble disperse dyes; Disperse Red 17 and Disperse Brown 1. Effect of nine different redox mediators; bromophenol, 2,4-dichlorophenol, guaiacol, 1-hydroxybenzotriazole, m-cresol, quinol, syringaldehyde, violuric acid, and vanillin on decolorization of disperse dyes by bitter gourd peroxidase has been investigated. Among these redox mediators, 1-hydroxybenzotriazole was the most effective mediator for decolorization of both the dyes by peroxidase. Bitter gourd peroxidase (0.36 U/mL) could decolorize Disperse Red 17 maximally 90% in the presence of 0.1 mM 1-hydroxybenzotriazole while Disperse Brown 1 was decolorized 65% in the presence of 0.2 mM 1-hydroxybenzotriazole. Maximum decolorization of these dyes was obtained within 1 h of incubation at pH 3.0 and temperature 40°C. The application of such enzyme plus redox mediator systems may be extendable to other recalcitrant and water insoluble synthetic dyes using novel redox mediators and peroxidases from other new and cheaper sources.  相似文献   

3.
The potential of three oxidoreductases, a laccase preparation of Pleurotus sajor-caju PS-2001, horseradish peroxidase (HRP) and a microbial peroxidase (MP) was evaluated for the decolorization of disperse textile dyes (CI Disperse Red 343, CI Disperse Red 167 and CI Disperse Blue 148) used in polyester dyeing. Decolorization was studied in aqueous solutions varying in dye concentration, pH, temperature, enzyme concentration and the addition of mediators HBT and syringaldazine. The best conditions found for Disperse Red 343 with laccase, HRP and MP were: 15 mg L?1 dye concentration, 50°C, pH 3.0 for laccase and pH 5.0 for peroxidases. Without mediator, the highest decolorizaton results (38.5% and 58.6%) were achieved with the highest tested concentrations of laccase (10 U mL?1) and HRP (89.7 U mL?1), respectively, but no significant difference in decolorization was found for the tested MP concentrations (29.9–89.7 U mL‐1). HBT or syringaldazine increased decolorization with peroxidases significantly, but no effect was observed for the laccase. Decolorization of Disperse Red 167 (up to 15%) and Disperse Blue 148 (up to 25%) was much lower than of Disperse Red 343. With respect to enzyme concentration, the use of mediator and under the selected test conditions the laccase of P. sajor-caju PS-2001 turned out to be more efficient in disperse dye decolorization, than peroxidases HRP and MP.  相似文献   

4.
Dye decolorizing potential of the white rot fungus Ganoderma lucidum KMK2 was demonstrated for recalcitrant textile dyes. G. lucidum produced laccase as the dominant lignolytic enzyme during solid state fermentation (SSF) of wheat bran (WB), a natural lignocellulosic substrate. Crude enzyme shows excellent decolorization activity to anthraquinone dye Remazol Brilliant Blue R (RBBR) without redox mediator whereas diazo dye Remazol Black-5 (RB-5) requires a redox mediator. Polyacrylamide gel electrophoresis (PAGE) of crude enzyme confirms that the laccase enzyme was the major enzyme involved in decolorization of either dyes. Native and SDS-PAGE indicates that the presence of single laccase with molecular weight of 43 kDa. N-Hydroxybenzotriazole (HBT) at a concentration of 1 mM was found as the best redox mediator. RB-5 (50 mg l−l) was decolorized by 62% and 77.4% within 1 and 2 h, respectively by the crude laccase (25 U ml−1). RBBR (50 mg l−l) was decolorized by 90% within 20 h, however, it was more efficient in presence of HBT showing 92% decolorization within 2 h. Crude laccase showed high thermostability and maximum decolorization activity at 60 °C and pH 4.0. The decolorization was completely inhibited by the laccase inhibitor sodium azide (0.5 mM). Enzyme inactivation method is a good method which averts the undesirable color formation in the reaction mixture after decolorization. High thermostability and efficient decolorization suggest that this crude enzyme could be effectively used to decolorize the synthetic dyes from effluents.  相似文献   

5.
Two biological approaches for decolorization of azo sulfonated dyes have been compared: reductive decolorization with the ascomycete yeast Issatchenkia occidentalis and enzymatic oxidative decolorization with Trametes villosa laccase alone or in the presence of the mediator 1-hydroxybenzotriazole. The redox potential difference between the biological cofactor involved in the reductive activity of growing cells and the azo dye is a reliable indication for the decolorization ability of the biocatalyst. A linear relationship exists between the redox potential of the azo dyes and the decolorization efficiency of enzyme, enzyme/mediator, and yeast. The less positive the anodic peak of the dye, the more easily it is degraded oxidatively with laccase. The more positive the cathodic peak of the dye, the more rapidly the dye molecule is reduced with yeast.  相似文献   

6.
Decolorization of an anthraquinone-type dye using a laccase formulation   总被引:7,自引:0,他引:7  
Decolorization of the dye Remazol Brilliant Blue R (RBBR) was studied, as it is representative of an important class of recalcitrant anthraquinone-type dyes. For this purpose a commercial laccase formulation (CLF) containing laccase, a redox mediator and a non-ionic surfactant was used. Small molecular weight components were removed from the CLF by gel filtration, which made it possible to compare the effect of its laccase alone. Apart from slightly better thermostability of the CLF as compared with the laccase alone, the pH and temperature profiles were similar regardless of the presence of the small molecular weight components. The laccase alone did not decolorize RBBR. A small molecular weight redox mediator (HBT) was necessary for decolorization to occur. A comparison of the kinetics of RBBR decolorization using the CLF and its laccase alone is reported. Provided that a redox mediator is included, it is suggested that laccase may be suitable for the wastewater treatment of similar anthraquinone dyes.  相似文献   

7.
Trametes trogii BAFC 463 culture fluids (containing 110 U ml−1 laccase; 0.94 U ml−1 manganese peroxidase), as well as its purified laccase were capable of decolorizing azoic, indigoid, triphenylmethane, anthraquinonic and heterocyclic dyes, in the absence of redox mediators. Six dyes: RBBR, Indigo Carmine, Xylidine, Malachite Green, Gentian Violet and Bromophenol Blue were almost completely degraded (more than 85% decolorization after 1 d) by either laccase or T. trogii itself in culture, proving the role of the enzyme in dye decolorization. The purified laccase also decolorized 65% of Fast Blue RR and 30% of Azure B and Methylene Blue after 24 h. The use of redox mediators significantly increased the decolorization rates (90% decolorization of Azure B after 1 h). 1-hydroxybenzotriazole resulted the best redox mediator, but the natural mediator p-hydroxybenzoic acid also demonstrated its efficiency for dye decolorization. Due to their ability to decolorize recalcitrant dyes without addition of redox mediators, high laccase activities, high thermostability and efficient decolorization at 70 °C and pH 7.0, even in the presence of high concentrations of heavy metals (100 mM Cu+2, Pb+2 or Cd+2) or in a synthetic dyebath, T. trogii culture fluids could be effectively used to decolorize synthetic dyes from effluents.  相似文献   

8.
The efficiency of crude and partially purified Trichoderma harzianum WL1 laccase for the decolorization of synthetic dyes (Rhodamine 6G, Erioglaucine and Trypan blue) with complex aromatic structures were evaluated. Selection of dyes was based on their extensive usage in local dyeing and textile industries around the study area. Studies on the role of redox potential of laccases on dye decolorization are rarely discussed and hence, for the first time we have shown the redox mediated dye decolorizing efficiency of T. harzianum WL1 laccase with the commonly employed redox mediator 1-hydroxybenzotriazole (HBT). The process parameters such as initial dye concentration, enzyme load and HBT concentration were studied and found that they had a great influence on dye removal process. When the dyes were treated with increased concentration of enzyme, it showed a greater percentage of decolorization. Compared to the crude laccase, partially purified laccase accounts for maximum decolorization of all the dyes studied. In addition, the rate of dye decolorization was considerably enhanced in presence of 4 mM HBT. Maximum and minimum decolorization were recorded for Rhodamine 6G and Trypan blue, respectively. The results of this study further confirmed that, T. harzianum laccase was found to be suitable with HBT and this laccase-mediator system (LMS) could be applied for the decolorization of various classes of dyes.  相似文献   

9.
The effect of redox mediators in the dye decolorization by two laccase isoenzymes from Trametes versicolor cultures supplemented with barley bran has been investigated. All the redox mediators tested, 1-hydroxybenzotriazole (HBT), promazine (PZ), para-hydroxybenzoic acid (pHBA) and 1-nitroso-2-naphthol-3,6-disulfonic acid (NNDS), led to higher dye decolorization than those obtained without mediator addition. Among the different tested mediators, PZ was the most effective one at a low range of concentration (0.5–50 μM) and the natural mediator employed, pHBA did not improve significantly the degree of decolorization, and was slightly inhibitory.The two laccase isoenzymes, LacI and LacII, showed different decolorization capability depending on the mediator used. No significant differences were detected for NNDS, however LacII was more effective than LacI in the presence of PZ, while in the presence of HBT LacI was the fastest and the most effective isoenzyme.  相似文献   

10.
Matto M  Husain Q 《Biotechnology journal》2008,3(9-10):1224-1231
The aim of this study was to investigate the role of concanavalin A (Con A)-cellulose-bound tomato peroxidase for the decolorization of direct dyes. Cellulose was used as an inexpensive material for the preparation of bioaffinity support. Con A-cellulose-bound tomato peroxidase exhibited higher efficiency in terms of dye decolorization as compared to soluble enzyme under various experimental conditions. Both Direct Red 23 and Direct Blue 80 dyes were recalcitrant to the action of enzyme without a redox mediator. Six compounds were investigated for redox-mediating property. Immobilized peroxidase decolorized both dyes to different extent in the presence of all the used redox mediators. However, 1-hydroxybenzotriazole emerged as a potential redox mediator for tomato peroxidase catalyzed decolorization of direct dyes. These dyes were maximally decolorized at pH 6.0 and 40 degrees C by soluble and immobilized peroxidase. The absorption spectra of the untreated and treated dyes exhibited a marked difference in the absorption at various wavelengths. Immobilized tomato peroxidase showed a lower Michaelis constant than the free enzyme for both dyes. Soluble and immobilized tomato peroxidase exhibited significantly higher affinity for Direct Red 23 compared to Direct Blue 80.  相似文献   

11.
Li X  Jia R 《Bioresource technology》2008,99(15):6885-6892
Synthetic dyes are important chemical pollutants from various industries. This work developed an efficient and relatively simple continuous decolorization system rice hull-Schizophyllum sp. F17 under solid-state condition in a packed-bed bioreactor, for decolorizing Congo red. In the decolorization system, two decolorization mechanisms exist, one is decolorization by Schizophyllum sp. F17, the other is biosorption by rice hull. The decolorization efficiency was greatly affected by dye concentration and hydraulic retention time (HRT), which were quantificationally analyzed and optimized through response surface methodology (RSM). A 2(2) full factorial central composite design (CCD) was performed, and three second order polynomial models were generated to describe the effects of dye concentration and HRT on total decolorization (R2=0.902), decolorization by Schizophyllum sp. F17 (R2=0.866) and biosorption by rice hull (R2=0.890). Response surface contour plots were constructed to show the individual and cumulative effects of dye concentration and HRT, and the optimum values. A maximum total decolorization 89.71% and maximum decolorization by Schizophyllum sp. F17 60.44% was achieved at dye concentration 142.63mg/L, HRT 41h, and dye concentration 110.7mg/L, HRT 29.4h, respectively. Meanwhile, the role of manganese peroxidase (MnP) in the decolorizaion process was investigated. This study proved the feasibility of continuous mode for decolorizing synthetic dyes by white-rot fungi in solid-state fermentation bioreactors.  相似文献   

12.
Guo J  Zhou J  Wang D  Yang J  Li Z 《Biodegradation》2008,19(1):93-98
The accelerating effect of quinones has been studied in the bio-decolorization processes, but there are no literatures about the incorporation bio-treatment technology of the bromoamine acid (BA) wastewater and azo dyes wastewaters under high-salt conditions (NaCl, 15%, w/w). Here we described the BA wastewater as a redox mediator in the bio-decolorization of azo dye wastewaters. Decolorization of azo dyes was carried out experimentally using the salt-tolerant bacteria under the BA wastewater and high-salt conditions. The BA wastewater used as a redox mediator was able to increase the decolorization rate of wastewater containing azo dyes. The effects of various operating conditions such as dissolved oxygen, temperature, and pH on microbial decolorization were investigated experimentally. At the same time, BA was tested to assess the effects on the change of the Oxidation–Reduction Potential (ORP) values during the decolorization processes. The experiments explored a great improvement of the redox mediator application and the new bio-treatment concept.  相似文献   

13.
Melanins are complex natural pigments that darken the skin and are difficult to degrade. This study evaluated synthetic melanin decolorization by the crude laccase from fungus Lentinus polychrous in the absence and presence of selected redox mediators. The greatest melanin decolorization activity was 87?% at pH?6.5 within 3?h in the presence of 2,2-azinobis (3-ethylbenzothiazoline-6-sulfonate) diammonium salt (ABTS), whereas only about 22?% melanin decolorized at pH?5.0 in case of no mediator. The optimum temperatures for melanin decolorization in the absence and presence of ABTS were 55 and 35°C, respectively. Using a natural redox mediator, 1.0?mmol/L vanillin leads to 45?% melanin decolorization. Our results suggest the possibility of applying vanillin for L. polychrous laccase-catalyzed decolorization of melanin.  相似文献   

14.
This study demonstrated the effective application of intracellular azoreductase in mediated decolorization of azo dyes. Using the quinone reductase activity of overexpressed azoreductase AZR and quinone redox mediators, the decolorization performance of the recombinant strain Escherichia coli YB was significantly enhanced. In the presence of 0.2 mM lawsone, 75% acid red 27 (1 mM) was decolorized by E. coli YB in only 2 h, which was the highest bacterial decolorization rate ever reported. Compared to lawsone, menadione was a less effective redox mediator. Glucose was found to be the best carbon source for mediated decolorization by E. coli YB. The recombinant strain could complete four rounds of mediated decolorization repeatedly in 12 h. In addition, a 10-min pre-incubation of E. coli JM109 and activated sludge with 2-methylhydroquinone resulted in great improvement of mediated decolorization performance, which may be applied in practical treatment.  相似文献   

15.
The aim of this study was to compare the potential of Ficus sycomorus latex peroxidase (POL) and horseradish peroxidase (HRP) in the decolorization of a wide spectrum of eight synthetic dyes and two natural dyes, hibiscus flower color and pomegranate juice. We study for the first time the decolorization of natural dyes enzymatically. The highest decolorization percent was reported at 20 mg/l for all dyes treated with POL and HRP. Both the enzymes had lower decolorization % for azo-carmin (30–33%). During decolorization treatment, both natural dyes and titan yellow formed precipitates which settled down and were removed by centrifugation. The enhancement of the decolorization % of the most tested dyes by treatment with POL and HRP was reported in the presence of some redox mediators. The rate of decolorization was enhanced by increasing the time and the most significant changes were observed during the first 6 h of incubation. One hundred percent enhancement in decolorization was reported for azo-carmine in the presence of histidine and α-naphthol as redox mediators. A few of redox mediators caused no significant effect or decreases the decolorization % for a little number of tested dyes. The decolorization of dyes by POL and HRP in the presence of redox mediators appeared without the formation of precipitate. A similar decolorization % for all the tested dyes by POL and HRP was detected. The data suggested that the peroxidase/mediator system was an effective biocatalyst for the decolorization of synthetic and natural dyes, and POL could be used as a potential option for the application of dye decolorization.  相似文献   

16.
Phloroglucinol, thymol, and violuric acid (VIO) were selected as laccase mediators after screening 14 different compounds with indigo carmine (indigoid dye) as a substrate. With the presence of these three mediators, a nearly complete decolorization (90-100%) was attained in 1 h. Thus, these three compounds were used as mediators for the decolorization of other four dyes. The results indicated that VIO was effective mediator in decolorization of Remazol brilliant blue R (RBBR, anthraquinoid dye) and Coomassie brilliant blue G-250 (CBB, triphenylmethane dyes), and Acid red (diazo dye). In presence of VIO, the four dyes described above attained 70% decolorization. Thymol was able to mediate decolorization of RBBR and Azure A (heterocyclic dye). Phloroglucinol has no mediating capability in decolorization of the four dyes analyzed. Mediator concentration, pH, and copper ion have an effect on the decolorization of the RBBR. Our data suggested that the decolorization capabilities of laccase/mediator system were related to the types of mediator, the dye structure and decolorization condition.  相似文献   

17.
Azo dye reduction by mesophilic and thermophilic anaerobic consortia   总被引:1,自引:0,他引:1  
The reduction of the azo dye model compounds Reactive Red 2 (RR2) and Reactive Orange 14 (RO14) by mesophilic (30 degrees C) and thermophilic (55 degrees C) anaerobic consortia was studied in batch assays. The contribution of fermentative and methanogenic microorganisms in both temperatures was evaluated in the presence of the fermentative substrate glucose and the methanogenic substrates acetate, H2/CO2, methanol, and formate. Additionally, the effect of the redox mediator riboflavin on electron shuttling was assessed. We concluded that the application of thermophilic anaerobic treatment is an interesting option for the reductive decolorization of azo dyes compared to mesophilic conditions. The use of high temperature may decrease or even take the place of the need for continuous redox mediator dosage in bioreactors, contrarily to the evident effect of those compounds on dye reduction under mesophilic conditions. Both fermenters and methanogens may play an important role during reductive decolorization of dyes, in which mediators are important not only for allowing the different microbes to participate more effectively in this complex reductive biochemistry but also for assisting in the competition for electrons between dyes and other organic and inorganic electron acceptors.  相似文献   

18.
The effect of temperature, hydraulic retention time (HRT) and the redox mediator anthraquinone-2,6-disulfonate (AQDS), on electron transfer and subsequent color removal from textile wastewater was assessed in mesophilic and thermophilic anaerobic bioreactors. The results clearly show that compared with mesophilic anaerobic treatment, thermophilic treatment at 55 degrees C is an effective approach for increasing the electron transfer capacity in bioreactors, and thus improving the decolorization rates. Furthermore, similar color removals were found at 55 degrees C between the AQDS-free and AQDS-supplemented reactors, whereas a significant difference (up to 3.6-fold) on decolorization rates occurred at 30 degrees C. For instance, at an HRT of 2.5 h and in the absence of AQDS, the color removal was 5.3-fold higher at 55 degrees C compared with 30 degrees C. The impact of a mix of mediators with different redox potentials on the decolorization rate was investigated with both industrial textile wastewater and the azo dye Reactive Red 2 (RR2). Color removal of RR2 in the presence of anthraquinone-2-sulfonate (AQS) (standard redox potential E(0)' of -225 mV) was 3.8-fold and 2.3-fold higher at 30 degrees C and 55 degrees C, respectively, than the values found in the absence of AQS. Furthermore, when the mediators 1,4-benzoquinone (BQ) (E(0)' of +280 mV), and AQS were incubated together, there was no improvement on the decolorization rates compared with the bottles solely supplemented with AQS. Results imply that the use of mixed redox mediators with positive and negative E(0)' under anaerobic conditions is not an efficient approach to improve color removal in textile wastewaters.  相似文献   

19.
Li Q  Yue Q  Su Y  Gao B 《Bioresource technology》2011,102(9):5290-5296
The adsorption of a reactive dye (Reactive Yellow K-4G) and a disperse dye (Disperse yellow brown S-2RFL) onto polyepicholorohydrin-dimethylamine (EPIDMA) cationic polymer modified bentonite (EPIDMA-bentonite) in batch adsorber was studied, respectively. Two equilibrium models, the Langmuir and Freundlich models were selected to follow the adsorption process. It was shown that the equilibrium experimental data for reactive dye adsorption could be well described by the Freundlich model, but for disperse dye the Langmuir model could be better. Based on the well correlated adsorption isotherm, an adsorption process design model was developed for the design of a two-stage batch adsorber to predict the minimum amount of adsorbent to achieve a specified percentage of dye removal at a given volume of wastewater effluents. The adsorption process design analysis indicated that compared with the single-stage batch adsorption, the two-stage process could significantly save adsorbent to meet the higher demands of dye removal efficiency.  相似文献   

20.
Summary The present paper studies the production of laccase by Trametes hirsuta immobilized into alginate beads in an airlift bioreactor. In order to enhance laccase production fresh ammonium chloride was added, which led to the production, of high laccase activities (around 1000 U l−1). The bioreactor operated for 40 days without operational problems and the bioparticles maintained their shape throughout fermentation. Dye decolorization was performed at bioreactor scale operating in the batch mode. High decolorization percentages were obtained in a short time (96% for indigo carmine and 69% for phenol red in 24 h), indicating the suitability of this process for application to synthetic dye decolorization. On the other hand, in vitro decolorization of several industrial azo dyes by crude laccase produced in the above bioreactor was also performed. It was found that some of the dyes needed the addition of 1-hydroxybenzotriazole for their decolorization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号