首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Levels of genetic differentiation between populations can be highly variable across the genome, with divergent selection contributing to such heterogeneous genomic divergence. For example, loci under divergent selection and those tightly physically linked to them may exhibit stronger differentiation than neutral regions with weak or no linkage to such loci. Divergent selection can also increase genome‐wide neutral differentiation by reducing gene flow (e.g. by causing ecological speciation), thus promoting divergence via the stochastic effects of genetic drift. These consequences of divergent selection are being reported in recently accumulating studies that identify: (i) ‘outlier loci’ with higher levels of divergence than expected under neutrality, and (ii) a positive association between the degree of adaptive phenotypic divergence and levels of molecular genetic differentiation across population pairs [‘isolation by adaptation’ (IBA)]. The latter pattern arises because as adaptive divergence increases, gene flow is reduced (thereby promoting drift) and genetic hitchhiking increased. Here, we review and integrate these previously disconnected concepts and literatures. We find that studies generally report 5–10% of loci to be outliers. These selected regions were often dispersed across the genome, commonly exhibited replicated divergence across different population pairs, and could sometimes be associated with specific ecological variables. IBA was not infrequently observed, even at neutral loci putatively unlinked to those under divergent selection. Overall, we conclude that divergent selection makes diverse contributions to heterogeneous genomic divergence. Nonetheless, the number, size, and distribution of genomic regions affected by selection varied substantially among studies, leading us to discuss the potential role of divergent selection in the growth of regions of differentiation (i.e. genomic islands of divergence), a topic in need of future investigation.  相似文献   

2.
Genetic differentiation can be highly variable across the genome. For example, loci under divergent selection and those tightly linked to them may exhibit elevated differentiation compared to neutral regions. These represent "outlier loci" whose differentiation exceeds neutral expectations. Adaptive divergence can also increase genome-wide differentiation by promoting general barriers to neutral gene flow, thereby facilitating genomic divergence via genetic drift. This latter process can yield a positive correlation between adaptive phenotypic divergence and neutral genetic differentiation (described here as "isolation-by-adaptation"). Here, we examine both these processes by combining an AFLP genome scan of two host plant ecotypes of Timema cristinae walking-sticks with existing data on adaptive phenotypic divergence and ecological speciation in these insects. We found that about 8% of loci are outliers in multiple population comparisons. Replicated comparisons between population-pairs using the same versus different host species revealed that 1-2% of loci are subject to host-related selection specifically. Locus-specific analyses revealed that up to 10% of putatively neutral (nonoutlier) AFLP loci exhibit significant isolation-by-adaptation. Our results suggest that selection may affect differentiation directly, via linkage, or by facilitating genetic drift. They thus illustrate the varied and sometimes nonintuitive contributions of selection to heterogeneous genomic differentiation.  相似文献   

3.
This study uses a comparative genome scan to evaluate the contributions of host plant related divergent selection to genetic differentiation and ecological speciation in maple- and willow-associated populations of Neochlamisus bebbianae leaf beetles. For each of 15 pairwise population comparisons, we identified "outlier loci" whose strong differentiation putatively reflects divergent selection. Of 447 AFLP loci, 15% were outliers across multiple population comparisons, and low linkage disequilibrium indicated that these outliers derived from multiple regions of the genome. Outliers were further classified as "host-specific" if repeatedly observed in "different-host" population comparisons but never in "same-host" comparisons. Outliers exhibiting the opposite pattern were analogously classified as "host-independent." Host-specific outliers represented 5% of all loci and were more frequent than host-independent outliers, thus revealing a large role for host-adaptation in population genomic differentiation. Evidence that host-related selection can promote divergence despite gene flow was provided by population trees. These were structured by host-association when datasets included host-specific outliers, but not when based on neutral loci, which united sympatric populations. Lastly, three host-specific outliers were highly differentiated in all nine different-host comparisons. Because host-adaptation promotes reproductive isolation in these beetles, these loci provide promising candidate gene regions for future molecular studies of ecological speciation.  相似文献   

4.
A major goal in evolutionary biology is to uncover the genetic basis of adaptation. Divergent selection exerted on ecological traits may result in adaptive population differentiation and reproductive isolation and affect differentially the level of genetic divergence along the genome. Genome‐wide scan of large sets of individuals from multiple populations is a powerful approach to identify loci or genomic regions under ecologically divergent selection. Here, we focused on the pea aphid, a species complex of divergent host races, to explore the organization of the genomic divergence associated with host plant adaptation and ecological speciation. We analysed 390 microsatellite markers located at variable distances from predicted genes in replicate samples of sympatric populations of the pea aphid collected on alfalfa, red clover and pea, which correspond to three common host‐adapted races reported in this species complex. Using a method that accounts for the hierarchical structure of our data set, we found a set of 11 outlier loci that show higher genetic differentiation between host races than expected under the null hypothesis of neutral evolution. Two of the outliers are close to olfactory receptor genes and three other nearby genes encoding salivary proteins. The remaining outliers are located in regions with genes of unknown functions, or which functions are unlikely to be involved in interactions with the host plant. This study reveals genetic signatures of divergent selection across the genome and provides an inventory of candidate genes responsible for plant specialization in the pea aphid, thereby setting the stage for future functional studies.  相似文献   

5.
Genes under divergent selection flow less readily between populations than other loci. This observation has led to verbal “divergence hitchhiking” models of speciation in which decreased interpopulation gene flow surrounding loci under divergent selection can generate large regions of differentiation within the genome (genomic islands). The efficacy of this model in promoting speciation depends on the size of the region affected by divergence hitchhiking. Empirical evidence is mixed, with examples of both large and small genomic islands. To address these empirical discrepancies and to formalize the theory, we present mathematical models of divergence hitchhiking, which examine neutral differentiation around selected sites. For a single locus under selection, regions of differentiation do not extend far along a chromosome away from a selected site unless both effective population sizes and migration rates are low. When multiple loci are considered, regions of differentiation can be larger. However, with many loci under selection, genome‐wide divergence occurs and genomic islands are erased. The results show that divergence hitchhiking can generate large regions of differentiation, but that the conditions under which this occurs are limited. Thus, speciation may often require multifarious selection acting on many, isolated and physically unlinked genes. How hitchhiking promotes further adaptive divergence warrants consideration.  相似文献   

6.
The existence and mode of selection operating on heritable adaptive traits can be inferred by comparing population differentiation in neutral genetic variation between populations (often using F(ST) values) with the corresponding estimates for adaptive traits. Such comparisons indicate if selection acts in a diversifying way between populations, in which case differentiation in selected traits is expected to exceed differentiation in neutral markers [F(ST )(selected) > F(ST )(neutral)], or if negative frequency-dependent selection maintains genetic polymorphisms and pulls populations towards a common stable equilibrium [F(ST) (selected) < F(ST) (neutral)]. Here, we compared F(ST) values for putatively neutral data (obtained using amplified fragment length polymorphism) with estimates of differentiation in morph frequencies in the colour-polymorphic damselfly Ischnura elegans. We found that in the first year (2000), population differentiation in morph frequencies was significantly greater than differentiation in neutral loci, while in 2002 (only 2 years and 2 generations later), population differentiation in morph frequencies had decreased to a level significantly lower than differentiation in neutral loci. Genetic drift as an explanation for population differentiation in morph frequencies could thus be rejected in both years. These results indicate that the type and/or strength of selection on morph frequencies in this system can change substantially between years. We suggest that an approach to a common equilibrium morph frequency across all populations, driven by negative frequency-dependent selection, is the cause of these temporal changes. We conclude that inferences about selection obtained by comparing F(ST) values from neutral and adaptive genetic variation are most useful when spatial and temporal data are available from several populations and time points and when such information is combined with other ecological sources of data.  相似文献   

7.
Adaptive divergence in coloration is expected to produce reproductive isolation in species that use colourful signals in mate choice and species recognition. Indeed, many adaptive radiations are characterized by differentiation in colourful signals, suggesting that divergent selection acting on coloration may be an important component of speciation. Populations in the Anolis marmoratus species complex from the Caribbean island of Guadeloupe display striking divergence in the colour and pattern of adult males that occurs over small geographic distances, suggesting strong divergent selection. Here we test the hypothesis that divergence in coloration results in reduced gene flow among populations. We quantify variation in adult male coloration across a habitat gradient between mesic and xeric habitats, use a multilocus coalescent approach to infer historical demographic parameters of divergence, and examine gene flow and population structure using microsatellite variation. We find that colour variation evolved without geographic isolation and in the face of gene flow, consistent with strong divergent selection and that both ecological and sexual selection are implicated. However, we find no significant differentiation at microsatellite loci across populations, suggesting little reproductive isolation and high levels of contemporary gene exchange. Strong divergent selection on loci affecting coloration probably maintains clinal phenotypic variation despite high gene flow at neutral loci, supporting the notion of a porous genome in which adaptive portions of the genome remain fixed whereas neutral portions are homogenized by gene flow and recombination. We discuss the impact of these findings for studies of colour evolution and ecological speciation.  相似文献   

8.
Populations of broadcast spawning marine organisms often have large sizes and are exposed to reduced genetic drift. Under such scenarios, strong selection associated with spatial environmental heterogeneity is expected to drive localized adaptive divergence, even in the face of connectivity. We tested this hypothesis using a seascape genomics approach in the commercially important greenlip abalone (Haliotis laevigata). We assessed how its population structure has been influenced by environmental heterogeneity along a zonal coastal boundary in southern Australia linked by strong oceanographic connectivity. Our data sets include 9,109 filtered SNPs for 371 abalones from 13 localities and environmental mapping across ~800 km. Genotype–environment association analyses and outlier tests defined 8,786 putatively neutral and 323 candidate adaptive loci. From a neutral perspective, the species is better represented by a metapopulation with very low differentiation (global FST = 0.0081) and weak isolation by distance following a stepping‐stone model. For the candidate adaptive loci, however, model‐based and model‐free approaches indicated five divergent population clusters. After controlling for spatial distance, the distribution of putatively adaptive variation was strongly correlated to selection linked to minimum sea surface temperature and oxygen concentration. Around 80 candidates were annotated to genes with functions related to high temperature and/or low oxygen tolerance, including genes that influence the resilience of abalone species found in other biogeographic regions. Our study includes a documented example about the uptake of genomic information in fisheries management and supports the hypothesis of adaptive divergence due to coastal environmental heterogeneity in a connected metapopulation of a broadcast spawner.  相似文献   

9.
The evolutionary mechanisms generating the tremendous biodiversity of islands have long fascinated evolutionary biologists. Genetic drift and divergent selection are predicted to be strong on islands and both could drive population divergence and speciation. Alternatively, strong genetic drift may preclude adaptation. We conducted a genomic analysis to test the roles of genetic drift and divergent selection in causing genetic differentiation among populations of the island fox (Urocyon littoralis). This species consists of six subspecies, each of which occupies a different California Channel Island. Analysis of 5293 SNP loci generated using Restriction‐site Associated DNA (RAD) sequencing found support for genetic drift as the dominant evolutionary mechanism driving population divergence among island fox populations. In particular, populations had exceptionally low genetic variation, small Ne (range = 2.1–89.7; median = 19.4), and significant genetic signatures of bottlenecks. Moreover, islands with the lowest genetic variation (and, by inference, the strongest historical genetic drift) were most genetically differentiated from mainland grey foxes, and vice versa, indicating genetic drift drives genome‐wide divergence. Nonetheless, outlier tests identified 3.6–6.6% of loci as high FST outliers, suggesting that despite strong genetic drift, divergent selection contributes to population divergence. Patterns of similarity among populations based on high FST outliers mirrored patterns based on morphology, providing additional evidence that outliers reflect adaptive divergence. Extremely low genetic variation and small Ne in some island fox populations, particularly on San Nicolas Island, suggest that they may be vulnerable to fixation of deleterious alleles, decreased fitness and reduced adaptive potential.  相似文献   

10.
Population differentiation can be driven in large part by natural selection, but selectively neutral evolution can play a prominent role in shaping patters of population divergence. The decomposition of the evolutionary history of populations into the relative effects of natural selection and selectively neutral evolution enables an understanding of the causes of population divergence and adaptation. In this study, we examined heterogeneous genomic divergence between alpine and lowland ecotypes of the allopolyploid plant, Anemone multifida. Using peak height and dominant AFLP data, we quantified population differentiation at non-outlier (neutral) and outlier loci to determine the potential contribution of natural selection and selectively neutral evolution to population divergence. We found 13 candidate loci, corresponding to 2.7% of loci, with signatures of divergent natural selection between alpine and lowland populations and between alpine populations (Fst  = 0.074–0.445 at outlier loci), but neutral population differentiation was also evident between alpine populations (FST  = 0.041–0.095 at neutral loci). By examining population structure at both neutral and outlier loci, we determined that the combined effects of selection and neutral evolution are associated with the divergence of alpine populations, which may be linked to extreme abiotic conditions and isolation between alpine sites. The presence of outlier levels of genetic variation in structured populations underscores the importance of separately analyzing neutral and outlier loci to infer the relative role of divergent natural selection and neutral evolution in population divergence.  相似文献   

11.
Diapause is an adaptive dormancy strategy by which arthropods endure extended periods of adverse climatic conditions. Seasonal variation in larval diapause initiation and duration in Ostrinia furnacalis may influence adult mating generation number (voltinism) across different local environments. The degree to which voltine ecotype, geographic distance, or other ecological factors influence O. furnacalis population genetic structure remains uncertain. Genetic differentiation was estimated between voltine ecotypes collected from 8 locations. Mitochondrial haplotypes were significantly different between historically allopatric univoltine and bivoltine locations, but confounded by a strong correlation with geographic distance. In contrast, single nucleotide polymorphism (SNP) genotypes show low but significant levels of variation and a lack of influence of geographic distance between allopatric voltine locations. Regardless, 11 of 257 SNP loci were predicted to be under selection, suggesting population genetic homogenization except at loci proximal to factors putatively under selection. These findings provide evidence of haplotype divergent voltine ecotypes that may be maintained in allopatric and sympatric areas despite relatively high rates of nuclear gene flow, yet influence of voltinism on maintenance of observed haplotype divergence remains unresolved.  相似文献   

12.
Recent studies in empirical population genetics have highlighted the importance of taking into account both neutral and adaptive genetic variation in characterizing microevolutionary dynamics. Here, we explore the genetic population structure and the footprints of selection in four populations of the warm-temperate coastal fish, the gilthead sea bream (Sparus aurata), whose recent northward expansion has been linked to climate change. Samples were collected at four Atlantic locations, including Spain, Portugal, France and the South of Ireland, and genetically assayed using a suite of species-specific markers, including 15 putatively neutral microsatellites and 23 expressed sequence tag-linked markers, as well as a portion of the mitochondrial DNA (mtDNA) control region. Two of the putatively neutral markers, Bld-10 and Ad-10, bore signatures of strong directional selection, particularly in the newly established Irish population, although the potential 'surfing effect' of rare alleles at the edge of the expansion front was also considered. Analyses after the removal of these loci suggest low but significant population structure likely affected by some degree of gene flow counteracting random genetic drift. No signal of historic divergence was detected at mtDNA. BLAST searches conducted with all 38 markers used failed to identify specific genomic regions associated to adaptive functions. However, the availability of genomic resources for this commercially valuable species is rapidly increasing, bringing us closer to the understanding of the interplay between selective and neutral evolutionary forces, shaping population divergence of an expanding species in a heterogeneous milieu.  相似文献   

13.
Populations of widespread marine organisms are typically characterized by a low degree of genetic differentiation in neutral genetic markers, but much less is known about differentiation in genes whose functional roles are associated with specific selection regimes. To uncover possible adaptive population divergence and heterogeneous genomic differentiation in marine three‐spined sticklebacks (Gasterosteus aculeatus), we used a candidate gene‐based genome‐scan approach to analyse variability in 138 microsatellite loci located within/close to (<6 kb) functionally important genes in samples collected from ten geographic locations. The degree of genetic differentiation in markers classified as neutral or under balancing selection—as determined with several outlier detection methods—was low (FST = 0.033 or 0.011, respectively), whereas average FST for directionally selected markers was significantly higher (FST = 0.097). Clustering analyses provided support for genomic and geographic heterogeneity in selection: six genetic clusters were identified based on allele frequency differences in the directionally selected loci, whereas four were identified with the neutral loci. Allelic variation in several loci exhibited significant associations with environmental variables, supporting the conjecture that temperature and salinity, but not optic conditions, are important drivers of adaptive divergence among populations. In general, these results suggest that in spite of the high degree of physical connectivity and gene flow as inferred from neutral marker genes, marine stickleback populations are strongly genetically structured in loci associated with functionally relevant genes.  相似文献   

14.
Speciation is the process by which reproductively isolated lineages arise, and is one of the fundamental means by which the diversity of life increases. Whereas numerous studies have documented an association between ecological divergence and reproductive isolation, relatively little is known about the role of natural selection in genome divergence during the process of speciation. Here, we use genome-wide DNA sequences and Bayesian models to test the hypothesis that loci under divergent selection between two butterfly species (Lycaeides idas and L. melissa) also affect fitness in an admixed population. Locus-specific measures of genetic differentiation between L. idas and L. melissa and genomic introgression in hybrids varied across the genome. The most differentiated genetic regions were characterized by elevated L. idas ancestry in the admixed population, which occurs in L. idas-like habitat, consistent with the hypothesis that local adaptation contributes to speciation. Moreover, locus-specific measures of genetic differentiation (a metric of divergent selection) were positively associated with extreme genomic introgression (a metric of hybrid fitness). Interestingly, concordance of differentiation and introgression was only partial. We discuss multiple, complementary explanations for this partial concordance.  相似文献   

15.
Strong barriers to genetic exchange can exist at divergently selected loci, whereas alleles at neutral loci flow more readily between populations, thus impeding divergence and speciation in the face of gene flow. However, ‘divergence hitchhiking’ theory posits that divergent selection can generate large regions of differentiation around selected loci. ‘Genome hitchhiking’ theory suggests that selection can also cause reductions in average genome‐wide rates of gene flow, resulting in widespread genomic divergence (rather than divergence only around specific selected loci). Spatial heterogeneity is ubiquitous in nature, yet previous models of genetic barriers to gene flow have explored limited combinations of spatial and selective scenarios. Using simulations of secondary contact of populations, we explore barriers to gene flow in various selective and spatial contexts in continuous, two‐dimensional, spatially explicit environments. In general, the effects of hitchhiking are strongest in environments with regular spatial patterning of starkly divergent habitat types. When divergent selection is very strong, the absence of intermediate habitat types increases the effects of hitchhiking. However, when selection is moderate or weak, regular (vs. random) spatial arrangement of habitat types becomes more important than the presence of intermediate habitats per se. We also document counterintuitive processes arising from the stochastic interplay between selection, gene flow and drift. Our results indicate that generalization of results from two‐deme models requires caution and increase understanding of the genomic and geographic basis of population divergence.  相似文献   

16.
Climate is one of the most important drivers for adaptive evolution in forest trees. Climatic selection contributes greatly to local adaptation and intraspecific differentiation, but this kind of selection could also have promoted interspecific divergence through ecological speciation. To test this hypothesis, we examined intra‐ and interspecific genetic variation at 25 climate‐related candidate genes and 12 reference loci in two closely related pine species, Pinus massoniana Lamb. and Pinus hwangshanensis Hisa, using population genetic and landscape genetic approaches. These two species occur in Southeast China but have contrasting ecological preferences in terms of several environmental variables, notably altitude, although hybrids form where their distributions overlap. One or more robust tests detected signals of recent and/or ancient selection at two‐thirds (17) of the 25 candidate genes, at varying evolutionary timescales, but only three of the 12 reference loci. The signals of recent selection were species specific, but signals of ancient selection were mostly shared by the two species likely because of the shared evolutionary history. FST outlier analysis identified six SNPs in five climate‐related candidate genes under divergent selection between the two species. In addition, a total of 24 candidate SNPs representing nine candidate genes showed significant correlation with altitudinal divergence in the two species based on the covariance matrix of population history derived from reference SNPs. Genetic differentiation between these two species was higher at the candidate genes than at the reference loci. Moreover, analysis using the isolation‐with‐migration model indicated that gene flow between the species has been more restricted for climate‐related candidate genes than the reference loci, in both directions. Taken together, our results suggest that species‐specific and divergent climatic selection at the candidate genes might have counteracted interspecific gene flow and played a key role in the ecological divergence of these two closely related pine species.  相似文献   

17.
The evolutionary processes involved in population divergence and local adaptation are poorly understood. Theory predicts that divergence of adjacent populations is possible but depends on several factors including gene flow, divergent selection, population size and the number of genes involved in divergence and their distribution on the genome. We analyse variation in neutral markers, markers linked to putative quantitative trait loci and morphological traits in a recent (<10000 years) zone of primary divergence between stickleback morphs in Lake Thingvallavatn, Iceland. Environmental factors, especially predation, are clearly implicated in reducing gene flow between morphs. There is continuous morphological and genetic variation between habitats with a zone centre similar to secondary contact zones. Individual microsatellite loci are implicated as being linked to adaptive variation by direct tests as well as by differences in cline shape. Patterns of linkage disequilibria indicate that the morphs have diverged at several loci. This divergence shows parallels and differences with the well-studied limnetic-benthic stickleback morphs, both in phenotypic divergence and at the genomic level.  相似文献   

18.
Understanding landscape processes driving patterns of population genetic differentiation and diversity has been a long‐standing focus of ecology and evolutionary biology. Gene flow may be reduced by historical, ecological or geographic factors, resulting in patterns of isolation by distance (IBD) or isolation by environment (IBE). Although IBE has been found in many natural systems, most studies investigating patterns of IBD and IBE in nature have used anonymous neutral genetic markers, precluding inference of selection mechanisms or identification of genes potentially under selection. Using landscape genomics, the simultaneous study of genomic and ecological landscapes, we investigated the processes driving population genetic patterns of White‐breasted Nuthatches (Sitta carolinensis) in sky islands (montane forest habitat islands) of the Madrean Archipelago. Using more than 4000 single nucleotide polymorphisms and multiple tests to investigate the relationship between genetic differentiation and geographic or ecological distance, we identified IBE, and a lack of IBD, among sky island populations of S. carolinensis. Using three tests to identify selection, we found 79 loci putatively under selection; of these, seven matched CDS regions in the Zebra Finch. The loci under selection were highly associated with climate extremes (maximum temperature of warmest month and minimum precipitation of driest month). These results provide evidence for IBE – disentangled from IBD – in sky island vertebrates and identify potential adaptive genetic variation.  相似文献   

19.
20.
Ecological speciation is the process by which reproductively isolated populations emerge as a consequence of divergent natural or ecologically-mediated sexual selection. Most genomic studies of ecological speciation have investigated allopatric populations, making it difficult to infer reproductive isolation. The few studies on sympatric ecotypes have focused on advanced stages of the speciation process after thousands of generations of divergence. As a consequence, we still do not know what genomic signatures of the early onset of ecological speciation look like. Here, we examined genomic differentiation among migratory lake and resident stream ecotypes of threespine stickleback reproducing in sympatry in one stream, and in parapatry in another stream. Importantly, these ecotypes started diverging less than 150 years ago. We obtained 34,756 SNPs with restriction-site associated DNA sequencing and identified genomic islands of differentiation using a Hidden Markov Model approach. Consistent with incipient ecological speciation, we found significant genomic differentiation between ecotypes both in sympatry and parapatry. Of 19 islands of differentiation resisting gene flow in sympatry, all were also differentiated in parapatry and were thus likely driven by divergent selection among habitats. These islands clustered in quantitative trait loci controlling divergent traits among the ecotypes, many of them concentrated in one region with low to intermediate recombination. Our findings suggest that adaptive genomic differentiation at many genetic loci can arise and persist in sympatry at the very early stage of ecotype divergence, and that the genomic architecture of adaptation may facilitate this.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号