首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We show that the vacuolar protein sorting gene VPS44 is identical to NHX1, a gene that encodes a sodium/proton exchanger. The Saccharomyces cerevisiae protein Nhx1p shows high homology to mammalian sodium/proton exchangers of the NHE family. Nhx1p is thought to transport sodium ions into the prevacuole compartment in exchange for protons. Pulse-chase experiments show that approximately 35% of the newly synthesized soluble vacuolar protein carboxypeptidase Y is missorted in nhx1 delta cells, and is secreted from the cell. nhx1 delta cells accumulate late Golgi, prevacuole, and lysosome markers in an aberrant structure next to the vacuole, and late Golgi proteins are proteolytically cleaved more rapidly than in wild-type cells. Our results show that efficient transport out of the prevacuolar compartment requires Nhx1p, and that nhx1 delta cells exhibit phenotypes characteristic of the "class E" group of vps mutants. In addition, we show that Nhx1p is required for protein trafficking even in the absence of the vacuolar ATPase. Our analysis of Nhx1p provides the first evidence that a sodium/proton exchange protein is important for correct protein sorting, and that intraorganellar ion balance may be important for endosomal function in yeast.  相似文献   

2.
In 1992, Raymond et al. published a compilation of the 41 yeast vacuolar protein sorting (vps) mutant groups and described a large class of mutants (class E vps mutants) that accumulated an exaggerated prevacuolar endosome-like compartment. Further analysis revealed that this "class E compartment" contained soluble vacuolar hydrolases, vacuolar membrane proteins, and Golgi membrane proteins unable to recycle back to the Golgi complex, yet these class E vps mutants had what seemed to be normal vacuoles. The 13 class E VPS genes were later shown to encode the proteins that make up the complexes required for formation of intralumenal vesicles in late endosomal compartments called multivesicular bodies, and for the sorting of ubiquitinated cargo proteins into these internal vesicles for eventual delivery to the vacuole or lysosome.  相似文献   

3.
Multivesicular bodies (MVBs) are late endosomal compartments containing luminal vesicles (MVB vesicles) that are formed by inward budding of the endosomal membrane. In budding yeast, MVBs are an important cellular mechanism for the transport of membrane proteins to the vacuolar lumen. This process requires a class E subset of vacuolar protein sorting (VPS) genes. VPS44 (allelic to NHX1) encodes an endosome-localized Na(+)/H(+) exchanger. The function of the VPS44 exchanger in the context of vacuolar protein transport is largely unknown. Using a cell-free MVB formation assay system, we demonstrated that Nhx1p is required for the efficient formation of MVB vesicles in the late endosome. The recruitment of Vps27p, a class E Vps protein, to the endosomal membrane was dependent on Nhx1p activity and was enhanced by an acidic pH at the endosomal surface. Taken together, we propose that Nhx1p contributes to MVB formation by the recruitment of Vps27p to the endosomal membrane, possibly through Nhx1p antiporter activity.  相似文献   

4.
Endocytosis regulates many processes, including signaling pathways, nutrient uptake, and protein turnover. During clathrin‐mediated endocytosis (CME), adaptors bind to cytoplasmic regions of transmembrane cargo proteins, and many endocytic adaptors are also directly involved in the recruitment of clathrin. This clathrin‐associated sorting protein family includes the yeast epsins, Ent1/2, and AP180/PICALM homologs, Yap1801/2. Mutant strains lacking these four adaptors, but expressing an epsin N‐terminal homology (ENTH) domain necessary for viability (4Δ+ENTH), exhibit endocytic defects, such as cargo accumulation at the plasma membrane (PM). This CME‐deficient strain provides a sensitized background ideal for revealing cellular components that interact with clathrin adaptors. We performed a mutagenic screen to identify alleles that are lethal in 4Δ+ENTH cells using a colony‐sectoring reporter assay. After isolating candidate synthetic lethal genes by complementation, we confirmed that mutations in VPS4 led to inviability of a 4Δ+ENTH strain. Vps4 mediates the final step of endosomal sorting complex required for transport (ESCRT)‐dependent trafficking, and we found that multiple ESCRTs are also essential in 4Δ+ENTH cells, including Snf7, Snf8 and Vps36. Deletion of VPS4 from an end3Δ strain, another CME mutant, similarly resulted in inviability, and upregulation of a clathrin‐independent endocytosis pathway rescued 4Δ+ENTH vps4Δ cells. Loss of Vps4 from an otherwise wild‐type background caused multiple cargoes to accumulate at the PM because of an increase in Rcy1‐dependent recycling of internalized protein to the cell surface. Additionally, vps4Δ rcy1Δ mutants exhibited deleterious growth phenotypes. Together, our findings reveal previously unappreciated effects of disrupted ESCRT‐dependent trafficking on endocytic recycling and the PM.  相似文献   

5.
Ubiquitinated membrane proteins are sorted into intralumenal endosomal vesicles on their way for degradation in lysosomes. Here we summarize the discovery of the Cos proteins, which work to organize and segregate ubiquitinated cargo prior to its incorporation into intralumenal vesicles of the multivesicular body (MVB). Importantly, cargoes such as GPI-anchored proteins (GPI-APs) that cannot undergo ubiquitination, rely entirely on Cos proteins for sorting into intralumenal vesicles using the same pathway that depends on ESCRTs and ubiquitin ligases that typical polytopic membrane proteins do. Here we show Cos proteins provide functions as not only adaptor proteins for ubiquitin ligases, but also as cargo carriers that can physically usher a variety of other proteins into the MVB pathway. We then discuss the significance of this new sorting model and the broader implications for this cargo adaptor mechanism, whereby yeast Cos proteins, and their likely animal analogs, provide a ubiquitin sorting signal in trans to enable sorting of a membrane protein network into intralumenal vesicles.  相似文献   

6.
The biogenesis of multivesicular endosomes and the sorting of activated signaling receptors into multivesicular endosomes depend on soluble protein complexes (ESCRT complexes), which transiently interact with the receptor cargo and the endosomal membrane. Previously, it was shown that the transmembrane protein secretory carrier membrane protein (SCAMP) 3, which is present on endosomes, interacts with ESCRT components. Here, we report that SCAMP3 plays a role in the biogenesis of multivesicular endosomes. We find that SCAMP3 plays a role in EGF receptor sorting into multivesicular endosomes and in the formation of intralumenal vesicles within these endosomes in vitro and thus also controls EGF receptor targeting to lysosomes. We also find that SCAMP3 regulates the EGF-dependent biogenesis of multivesicular endosomes. We conclude that the transmembrane protein SCAMP3 has a positive role in sorting into and budding of intralumenal vesicles and thereby controls the process of multivesicular endosome biogenesis.  相似文献   

7.
Ist1 regulates Vps4 localization and assembly   总被引:1,自引:1,他引:0  
The ESCRT protein complexes are recruited from the cytoplasm and assemble on the endosomal membrane into a protein network that functions in sorting of ubiquitinated transmembrane proteins into the multivesicular body (MVB) pathway. This transport pathway packages cargo proteins into vesicles that bud from the MVB limiting membrane into the lumen of the compartment and delivers these vesicles to the lysosome/vacuole for degradation. The dissociation of ESCRT machinery by the AAA-type ATPase Vps4 is a necessary late step in the formation of MVB vesicles. This ATP-consuming step is regulated by several Vps4-interacting proteins, including the newly identified regulator Ist1. Our data suggest that Ist1 has a dual role in the regulation of Vps4 activity: it localizes to the ESCRT machinery via Did2 where it positively regulates recruitment of Vps4 and it negatively regulates Vps4 by forming an Ist1-Vps4 heterodimer, in which Vps4 cannot bind to the ESCRT machinery. The activity of the MVB pathway might be in part determined by outcome of these two competing activities.  相似文献   

8.
Multivesicular endosomes (MVBs) are major sorting platforms for membrane proteins and participate in plasma membrane protein turnover, vacuolar/lysosomal hydrolase delivery, and surface receptor signal attenuation. MVBs undergo unconventional inward budding, which results in the formation of intraluminal vesicles (ILVs). MVB cargo sorting and ILV formation are achieved by the concerted function of endosomal sorting complex required for transport (ESCRT)-0 to ESCRT-III. The ESCRT-0 subunit Vps27 is a key player in this pathway since it recruits the other complexes to endosomes. Here we show that the Pkh1/Phk2 kinases, two yeast orthologues of the 3-phosphoinositide–dependent kinase, phosphorylate directly Vps27 in vivo and in vitro. We identify the phosphorylation site as the serine 613 and demonstrate that this phosphorylation is required for proper Vps27 function. Indeed, in pkh-ts temperature-sensitive mutant cells and in cells expressing vps27S613A, MVB sorting of the carboxypeptidase Cps1 and of the α-factor receptor Ste2 is affected and the Vps28–green fluorescent protein ESCRT-I subunit is mainly cytoplasmic. We propose that Vps27 phosphorylation by Pkh1/2 kinases regulates the coordinated cascade of ESCRT complex recruitment at the endosomal membrane.  相似文献   

9.
Along the degradation pathway, endosomes exhibit a characteristic multivesicular organization, resulting from the budding of vesicles into the endosomal lumen. After endocytosis and transport to early endosomes, activated signaling receptors are incorporated into these intralumenal vesicles through the action of the ESCRT machinery, a process that contributes to terminate signaling. Then, the vesicles and their protein cargo are further transported towards lysosomes for degradation. Evidence also shows that intralumenal vesicles can undergo “back-fusion” with the late endosome limiting membrane, a route exploited by some pathogens and presumably followed by proteins and lipids that need to be recycled from within the endosomal lumen. This process depends on the late endosomal lipid lysobisphosphatidic acid and its putative effector Alix/AIP1, and is presumably coupled to the invagination of the endosomal limiting membrane at the molecular level via ESCRT proteins. In this review, we discuss the intra-endosomal transport routes in mammalian cells, and in particular the different mechanisms involved in membrane invagination, vesicle formation and fusion in a space inaccessible to proteins known to control intracellular membrane traffic.  相似文献   

10.
The sorting of transmembrane cargo proteins into the lumenal vesicles of multivesicular bodies (MVBs) depends on the recruitment of endosomal sorting complexes required for transport (ESCRTs) to the cytosolic face of endosomal membranes. The subsequent dissociation of ESCRT complexes from endosomes requires Vps4, a member of the AAA family of adenosine triphosphatases. We show that Did2 directs Vps4 activity to the dissociation of ESCRT-III but has no role in the dissociation of ESCRT-I or -II. Surprisingly, vesicle budding into the endosome lumen occurs in the absence of Did2 function even though Did2 is required for the efficient sorting of MVB cargo proteins into lumenal vesicles. This uncoupling of MVB cargo sorting and lumenal vesicle formation suggests that the Vps4-mediated dissociation of ESCRT-III is an essential step in the sorting of cargo proteins into MVB vesicles but is not a prerequisite for the budding of vesicles into the endosome lumen.  相似文献   

11.
The ESCRT (endosomal sorting complex required for transport) machinery is known to sort ubiquitinated transmembrane proteins into vesicles that bud into the lumen of multivesicular bodies (MVBs). Although the ESCRTs themselves are ubiquitinated they are excluded from the intraluminal vesicles and recycle back to the cytoplasm for further rounds of sorting. To obtain insights into the rules that distinguish ESCRT machinery from cargo we analyzed the trafficking of artificial ESCRT‐like protein fusions. These studies showed that lowering ESCRT‐binding affinity converts a protein from behaving like ESCRT machinery into cargo of the MVB pathway, highlighting the close relationship between machinery and the cargoes they sort. Furthermore, our findings give insights into the targeting of soluble proteins into the MVB pathway and show that binding to any of the ESCRTs can mediate ubiquitin‐independent MVB sorting.  相似文献   

12.
Although COPI function on the early secretory pathway in eukaryotes is well established, earlier studies also proposed a nonconventional role for this coat complex in endocytosis in mammalian cells. Here we present results that suggest an involvement for specific COPI subunits in the late steps of endosomal protein sorting in Saccharomyces cerevisiae. First, we found that carboxypeptidase Y (CPY) was partially missorted to the cell surface in certain mutants of the COPIB subcomplex (COPIb; Sec27, Sec28, and possibly Sec33), which indicates an impairment in endosomal transport. Second, integral membrane proteins destined for the vacuolar lumen (i.e., carboxypeptidase S [CPS1]; Fur4, Ste2, and Ste3) accumulated at an aberrant late endosomal compartment in these mutants. The observed phenotypes for COPIb mutants resemble those of class E vacuolar protein sorting (vps) mutants that are impaired in multivesicular body (MVB) protein sorting and biogenesis. Third, we observed physical interactions and colocalization between COPIb subunits and an MVB-associated protein, Vps27. Together, our findings suggest that certain COPI subunits could have a direct role in vacuolar protein sorting to the MVB compartment.  相似文献   

13.
Multivesicular bodies: co-ordinated progression to maturity   总被引:2,自引:0,他引:2  
Multivesicular endosomes/bodies (MVBs) sort endocytosed proteins to different destinations. Many lysosomally directed membrane proteins are sorted onto intralumenal vesicles, whilst recycling proteins remain on the perimeter membrane from where they are removed via tubular extensions. MVBs move to the cell centre during this maturation process and, when all recycling proteins have been removed, fuse with lysosomes. Recent advances have identified endosomal-sorting complex required for transport (ESCRT)-dependent and ESCRT-independent pathways in intralumenal vesicle formation and mechanisms for sorting recycling cargo into tubules. Cytoskeletal motors, through interactions with these machineries and by regulating MVB movement, help to co-ordinate events leading to a mature, fusion-competent MVB.  相似文献   

14.
Du X  Kazim AS  Brown AJ  Yang H 《Cell reports》2012,1(1):29-35
The endosomal sorting complex required for transport (ESCRT) plays a crucial role in the degradation of ubiquitinated endosomal membrane proteins. Here, we report that Hrs, a key protein of the ESCRT-0 complex, is required for the transport of low-density lipoprotein-derived cholesterol from endosomes to the endoplasmic reticulum. This function of Hrs in cholesterol transport is distinct from its previously defined role in lysosomal sorting and downregulation of membrane receptors via the ESCRT pathway. In line with this, knocking down other ESCRT proteins does not cause prominent endosomal cholesterol accumulation. Importantly, the localization and biochemical properties of key cholesterol-sorting proteins, NPC1 and NPC2, appear to be unchanged upon Hrs knockdown. Our data identify Hrs as a regulator of endosomal cholesterol trafficking and provide additional insights into the budding of intralumenal vesicles.  相似文献   

15.
A concentric circle model of multivesicular body cargo sorting   总被引:4,自引:0,他引:4  
Targeting of ubiquitylated transmembrane proteins into luminal vesicles of endosomal multivesicular bodies (MVBs) depends on their recognition by endosomal sorting complexes required for transport (ESCRTs), which are also required for MVB vesicle formation. The model originally proposed for how ESCRTs function succinctly summarizes much of the protein-protein interaction and genetic data but oversimplifies the coordination of cargo recognition and cannot explain why ESCRTs are required for the budding of MVB vesicles. Recent structural and functional studies of ESCRT complexes suggest an alternative model that might direct the next series of breakthroughs in understanding protein sorting through the MVB pathway.  相似文献   

16.
Ubiquitin (Ub) sorting receptors facilitate the targeting of ubiquitinated membrane proteins into multivesicular bodies (MVBs). Ub-binding domains (UBDs) have been described in several endosomal sorting complexes required for transport (ESCRT). Using available structural information, we have investigated the role of the multiple UBDs within ESCRTs during MVB cargo selection. We found a novel UBD within ESCRT-I and show that it contributes to MVB sorting in concert with the known UBDs within the ESCRT complexes. These experiments reveal an unexpected level of coordination among the ESCRT UBDs, suggesting that they collectively recognize a diverse set of cargo rather than act sequentially at discrete steps.  相似文献   

17.
The efficient formation of a variety of transport vesicles is influenced by the presence of cargo, suggesting that cargo itself might have a defining role in vesicle biogenesis. However, definitive in vivo experiments supporting this concept are lacking, as it is difficult to eliminate endogenous cargo. The Endosomal Sorting Complexes Required for Transport (ESCRT) apparatus sorts ubiquitinated membrane proteins into endosomal intralumenal vesicles (ILVs) that accumulate within multivesicular bodies. Here we show that cargo ubiquitination is required for effective recruitment of the ESCRT machinery onto endosomal membranes and for the subsequent formation of ILVs.  相似文献   

18.
The turnover of integral membrane proteins requires a specialized transport pathway mediated by components of the endosomal sorting complex required for transport (ESCRT) machinery. In most cases, entry into this pathway requires that cargoes undergo ubiquitin-modification, thereby facilitating their sequestration on endosomal membranes by specific, ubiquitin-binding ESCRT subunits. However, requirements underlying initial cargo recognition of mono-ubiquitinated cargos remain poorly defined. In this study, we determine the capability of each ESCRT complex that harbors a ubiquitin-binding domain to bind a reconstituted integral membrane cargo (VAMP2), which has been covalently linked to mono-ubiquitin. We demonstrate that ESCRT-0, but not ESCRT-I or ESCRT-II, is able to associate stably with the mono-ubiquitinated cargo within a lipid bilayer. Moreover, we show that the ubiquitin-binding domains in both Hrs and STAM must be intact to enable cargo binding. These results indicate that the two subunits of ESCRT-0 function together to bind and sequester cargoes for downstream sorting into intralumenal vesicles.  相似文献   

19.
The endosomal sorting complex required for transport (ESCRT)-I protein complex functions in recognition and sorting of ubiquitinated transmembrane proteins into multivesicular body (MVB) vesicles. It has been shown that ESCRT-I contains the vacuolar protein sorting (Vps) proteins Vps23, Vps28, and Vps37. We identified an additional subunit of yeast ESCRT-I called Mvb12, which seems to associate with ESCRT-I by binding to Vps37. Transient recruitment of ESCRT-I to MVBs results in the rapid degradation of Mvb12. In contrast to mutations in other ESCRT-I subunits, which result in strong defects in MVB cargo sorting, deletion of MVB12 resulted in only a partial sorting phenotype. This trafficking defect was fully suppressed by overexpression of the ESCRT-II complex. Mutations in MVB12 did not affect recruitment of ESCRT-I to MVBs, but they did result in delivery of ESCRT-I to the vacuolar lumen via the MVB pathway. Together, these observations suggest that Mvb12 may function in regulating the interactions of ESCRT-I with cargo and other proteins of the ESCRT machinery to efficiently coordinate cargo sorting and release of ESCRT-I from the MVB.  相似文献   

20.
Sorting of ubiquitinated endosomal membrane proteins into the MVB pathway is executed by the class E Vps protein complexes ESCRT-I, -II, and -III, and the AAA-type ATPase Vps4. This study characterizes ESCRT-II, a soluble approximately 155 kDa protein complex formed by the class E Vps proteins Vps22, Vps25, and Vps36. This protein complex transiently associates with the endosomal membrane and thereby initiates the formation of ESCRT-III, a membrane-associated protein complex that functions immediately downstream of ESCRT-II during sorting of MVB cargo. ESCRT-II in turn functions downstream of ESCRT-I, a protein complex that binds to ubiquitinated endosomal cargo. We propose that the ESCRT complexes perform a coordinated cascade of events to select and sort MVB cargoes for delivery to the lumen of the vacuole/lysosome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号