首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To identify the novel substrate of c-kit which is important for hematopoietic stem cell self-renewal or differentiation, CD34-low/negative, Sca-1-positive, c-kit-positive, and lineage marker-negative (CD34(low/-)Sca-1(+)c-kit(+)Lin(-)) cells were sorted by a fluorescence-activated cell sorter from mouse bone marrow cells and a yeast two-hybrid cDNA library was constructed. By screening with c-kit as bait, we cloned a novel cDNA, designed STAP-1, encoding an adaptor protein with a Pleckstrin homology domain, the Src homology 2 (SH2) domain, and a number of tyrosine phosphorylation sites. RT-PCR analysis revealed that STAP-1 expression is restricted in the bone marrow cell fraction expressing c-kit. The highest expression was observed in the CD34(low/-)Sca-1(+)c-kit(+)Lin(-) stem cell-enriched fraction. The murine myeloid cell line, M1, expressed a high level of STAP-1. However, the expression was strongly repressed in response to leukemia inhibitory factor (LIF) which induced monocytic differentiation of M1 cells, suggesting that STAP-1 is associated with the undifferentiated cell type. A two-hybrid assay indicated that STAP-1 bound not only to c-kit but also to c-fms but not to JAK2 or Pyk2. In 293 cells, STAP-1 was tyrosine-phosphorylated by activated c-kit. An in vitro binding assay suggested that the STAP-1 SH2 domain interacted with several tyrosine-phosphorylated proteins including c-kit and STAT5. These suggest that STAP-1 functions as an adaptor molecule downstream of c-kit in hematopoietic stem cells.  相似文献   

2.
A lymphoid-committed progenitor population was isolated from mouse bone marrow based on the cell surface phenotype Thy-1.1(neg)Sca-1(pos)c-Kit(low)Lin(neg). These cells were CD43(pos)CD24(pos) on isolation and proliferated in response to the cytokine combination of steel factor, IL-7, and Flt3 ligand. Lymphoid-committed progenitors could be segregated into more primitive and more differentiated subsets based on expression of AA4.1. The more differentiated subset generated only B lymphoid cells in 92% of total colonies assayed, lacked T lineage potential, and expressed Pax5. These studies have therefore defined and isolated a B lymphoid-committed progenitor population at a developmental stage corresponding to the initial expression of CD45R.  相似文献   

3.
Utilizing multiparameter flow cytometry, we have defined a subset of bone marrow cells containing lymphoid-restricted differentiation potential after i.v. transplantation. Bone marrow cells characterized by expression of the Sca-1 and c-kit Ags and lacking Ags of differentiating lineages were segregated into subsets based on allele-specific Thy-1.1 Ag expression. Although hematopoietic stem cells were recovered in the Thy-1.1low subset as previously described, the Thy-1.1neg subset consisted of progenitor cells that preferentially reconstituted the B lymphocyte lineage after i.v. transplantation. Recipients of Thy-1.1neg cells did not survive beyond 30 days, presumably due to the failure of erythroid and platelet lineages to recover after transplants. Thy-1.1neg cells predominantly reconstituted the bone marrow and peripheral blood of lethally irradiated recipients with B lineage cells within 2 weeks, although a low frequency of myeloid lineage cells was also detected. In contrast, myeloid progenitors outnumbered lymphoid progenitors when the Thy-1.1neg population was assayed in culture. When Thy-1. 1low stem cells were rigorously excluded from the Thy-1.1neg subset, reconstitution of T lymphocytes was rarely observed in peripheral blood after i.v. transplantation. Competitive repopulation studies showed that the B lymphoid reconstitution derived from Thy-1.1neg cells was not sustained over a 20-wk period. Therefore, the Thy-1. 1neg population defined in these studies includes transplantable, non-self-renewing B lymphocyte progenitor cells.  相似文献   

4.
Suppression of immune response by mesenchymal stem/stromal cells (MSCs) is well documented. However, their regulatory effects on immune cells, especially regulatory dendritic cells, are not fully understood. We have identified a novel Sca-1(+)Lin(-)CD117(-) MSC population isolated from mouse embryonic fibroblasts (MEF) that suppressed lymphocyte proliferation in vitro. Moreover, the Sca-1(+)Lin(-)CD117(-) MEF-MSCs induced hematopoietic stem/progenitor cells to differentiate into novel regulatory dendritic cells (DCs) (Sca-1(+)Lin(-)CD117(-) MEF-MSC-induced DCs) when cocultured in the absence of exogenous cytokines. Small interfering RNA silencing showed that Sca-1(+)Lin(-)CD117(-) MEF-MSCs induced the generation of Sca-1(+)Lin(-)CD117(-) MEF-MSC-induced DCs via IL-10-activated SOCS3, whose expression was regulated by the JAK-STAT pathway. We observed a high degree of H3K4me3 modification mediated by MLL1 and a relatively low degree of H3K27me3 modification regulated by SUZ12 on the promoter of SOCS3 during SOCS3 activation. Importantly, infusion of Sca-1(+)CD117(-)Lin(-) MEF-MSCs suppressed the inflammatory response by increasing DCs with a regulatory phenotype. Thus, our results shed new light on the role of MSCs in modulating regulatory DC production and support the clinical application of MSCs to reduce the inflammatory response in numerous disease states.  相似文献   

5.
A mouse mammary epithelial cell line with morphogenetic properties in vivo, Comma-Dbeta, was used to isolate and to characterize mammary progenitor cells. We found that a homogeneous cell population expressing high surface levels of stem cell antigen 1 (Sca-1) was able to give rise in vivo to ductal and alveolar structures comprising luminal secretory and basal myoepithelial cells. Unlike the Sca-1(high), the Sca-1(neg/low) cell population displayed a reduced morphogenetic potential. The Sca-1(high) cells presented moderate CD24, high CD44 and alpha6 integrin surface levels, expressed basal cell markers p63, keratins 5 and 14, but no luminal and myoepithelial lineage markers. In culture, the Sca-1(high) cells generated identical daughter cells that retained their in vivo developmental potential, indicating that these cells were maintained by self-renewal. Plated at clonogenic density in Matrigel, Sca-1(high) cells formed spheroids that included luminal and myoepithelial cells. Thus, the isolated Sca-1(high) basal cells possess several features of stem/progenitor cells, including specific markers, self-renewal capacity, and the ability to generate the two major mammary lineages, luminal and myoepithelial. These data provide evidence for the existence of basal-type mouse mammary progenitors able to participate in the morphogenetic processes characteristic of mammary gland development.  相似文献   

6.

Methods and Results

The cardiac stem/progenitor cells from adult mice were seeded at low density in serum-free medium. The colonies thus obtained were expanded separately and assessed for expression of stem cell antigen-1 (Sca-1). Two colonies each with high Sca-1 (CSH1; 95.9%; CSH2; 90.6%) and low Sca-1 (CSL1; 37.1%; CSL2; 17.4%) expressing cells were selected for further studies. Sca-1+ cells (98.4%) isolated using Magnetic Cell Sorting System (MACS) from the hearts were used as a control. Although the selected populations were similar in surface marker expression (low in c-kit, CD45, CD34, CD31 and high in CD29), these cells exhibited diverse differentiation potential. Unlike CSH1, CSH2 expressed Nanog, TERT, Bcrp1, Nestin, Musashi1 and Isl-1, and also showed differentiation into osteogenic, chondrogenic, smooth muscle, endothelial and cardiac lineages. MACS sorted cells exhibited similar tendency albeit with relatively weaker differentiation potential. Transplantation of CSH2 cells into infarcted heart showed attenuated infarction size, significantly preserved left ventricular function and anterior wall thickness, and increased capillary density. We also observed direct differentiation of transplanted cells into endothelium and cardiomyocytes.

Conclusions

The cardiac stem/progenitor cells isolated by a combined clonal selection and surface marker approach possessed multiple stem cell features important for cardiac regeneration.  相似文献   

7.
The process of in vitro embryonic stem cell differentiation and embryoid body development was monitored using a panel of antibodies against surface markers traditionally associated with embryonic tissue (Forssman, SSEA-1) and hematopoietic progenitor cells (Fall-3, HSA, Sca-1, Thy-1.2, ER-MP12, CD45, AA4.1, and c-kit). All markers with the exception of CD45 and AA4.1 were initially detected in cultures of undifferentiated ES cells. During the first 11 days of differentiation, distinct and reproducible patterns of surface expression were observed for each marker. Using the kinetic display of surface markers as a gauge of differentiation, perturbations in embryoid body development were detected in cultures supplemented with interleukin-11, a gp130-activating cytokine thought to affect embryonic stem cell differentiation. In the absence of exogenous cytokines, microbead immunoselected day 7 c-kit, ER-MP12, and CD45-positive embryoid body cells were enriched for hematopoietic progenitors as detected by methylcellulose colony assays, while no significant enrichment of hematopoietic progenitors was observed with Sca-1, Thy-1.2, Fall-3, and Forssman-immunoselected cells. These results indicate that the process of early embryoid body development is associated with a programmed sequence of cell surface marker display, concomitant with the development of phenotypically definable embryonic cell lineages. J. Cell. Physiol. 171:104–115, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

8.
Mammary epithelium can functionally regenerate upon transplantation. This renewal capacity has been classically ascribed to the function of a multipotent mammary gland stem cell population, which has been hypothesized to be a primary target in the etiology of breast cancer. Several complementary approaches were employed in this study to identify and enrich mammary epithelial cells that retain stem cell characteristics. Using long-term BrdU labeling, a population of label retaining cells (LRCs) that lack expression of differentiation markers has been identified. LRCs isolated from mammary primary cultures were enriched for stem cell antigen-1 (Sca-1) and Hoechst dye-effluxing "side population" properties. Sca-1(pos) cells in the mammary gland were localized to the luminal epithelia by using Sca-1(+/GFP) mice, were progesterone receptor-negative, and did not bind peanut lectin. Finally, the Sca-1(pos) population is enriched for functional stem/progenitor cells, as demonstrated by its increased regenerative potential compared with Sca-1(neg) cells when transplanted into the cleared mammary fat pads of host mice.  相似文献   

9.
Regenerative tissues such as the skin epidermis, the intestinal mucosa or the hematopoietic system are organized in a hierarchical manner with stem cells building the top of this hierarchy. Somatic stem cells harbor the highest self-renewal activity and generate a series of multipotent progenitors which differentiate into lineage committed progenitors and subsequently mature cells. In this report, we applied an in-depth quantitative proteomic approach to analyze and compare the full proteomes of ex vivo isolated and FACS-sorted populations highly enriched for either multipotent hematopoietic stem/progenitor cells (HSPCs, Lin(neg)Sca-1(+)c-Kit(+)) or myeloid committed precursors (Lin(neg)Sca-1(-)c-Kit(+)). By employing stable isotope dimethyl labeling and high-resolution mass spectrometry, more than 5000 proteins were quantified. From biological triplicate experiments subjected to rigorous statistical evaluation, 893 proteins were found differentially expressed between multipotent and myeloid committed cells. The differential protein content in these cell populations points to a distinct structural organization of the cytoskeleton including remodeling activity. In addition, we found a marked difference in the expression of metabolic enzymes, including a clear shift of specific protein isoforms of the glycolytic pathway. Proteins involved in translation showed a collective higher expression in myeloid progenitors, indicating an increased translational activity. Strikingly, the data uncover a unique signature related to immune defense mechanisms, centering on the RIG-I and type-1 interferon response systems, which are installed in multipotent progenitors but not evident in myeloid committed cells. This suggests that specific, and so far unrecognized, mechanisms protect these immature cells before they mature. In conclusion, this study indicates that the transition of hematopoietic stem/progenitors toward myeloid commitment is accompanied by a profound change in processing of cellular resources, adding novel insights into the molecular mechanisms at the interface between multipotency and lineage commitment.  相似文献   

10.
We attempted to characterize the phenotype of cells which initiate fibroblastic stromal cell formation (stroma-initiating cells: SICs), precursor cells for fibroblastic stromal cells, based on the expression of cell surface antigens. First, we stained adult murine bone marrow cells with several monoclonal antibodies and separated them by magnetic cell sorting. SICs were abundant in the c-kit(+), Sca-1(+), CD34(+), VCAM-1(+), c-fms(+), and Mac-1(-) populations. SICs were recovered in the lineage-negative (Lin(-)) cells but not the Lin(+) cells. When macrophage colony-stimulating factor (M-CSF) was absent from the culture medium, no stromal colony appeared among the populations enriched in SICs. Based on these findings, the cells negative for lineage markers and positive for c-fms (M-CSF receptor) were further divided on the basis of the expression of c-kit, VCAM-1, Sca-1 or CD34 with a fluorescence-activated cell sorter. SICs were found to be enriched in the Lin(-)c-fms(+)c-kit(low) cells and Lin(-)c-fms(+)VCAM-1(+) cells but not in Lin(-)c-fms(+)Sca-1(+) cells and Lin(-)c-fms(+)CD34(low) cells. As a result, the SICs were found to be present at highest frequency in Lin(-)c-fms(+)c-kit(low)VCAM-1(+) cells: a mean of 64% of the SICs in the Lin(-) cells were recovered in the population. In morphology and several characteristics, the stromal cells derived from Lin(-)c-fms(+)c-kit(low)VCAM-1(+) cells resembled fibroblastic cells. The number of Lin(-)c-fms(+)c-kit(low)VCAM-1(+) cells in bone marrow of mice injected with M-CSF was higher than that in control mice. In this study, we identified SICs as Lin(-)c-fms(+)c-kit(low)VCAM-1(+) cells and demonstrated that M-CSF had the ability to increase the cell population in vivo.  相似文献   

11.
We have previously shown that the common progenitors for myeloid, T, and B cell lineages are enriched in the earliest population of murine fetal liver. However, it remained unclear whether such multipotent progenitors represent the pluripotent progenitors capable of generating all hemopoietic cells or they also comprise progenitors restricted to myeloid, T, and B cell lineages. To address this issue, we have developed a new clonal assay covering myeloid, erythroid, T, and B cell lineages, and using this assay the developmental potential of individual cells in subpopulations of lineage marker-negative (Lin(-)) c-kit(+) murine fetal liver cells was investigated. We identified the progenitor generating myeloid, T, and B cells, but not erythroid cells in the Sca-1(high) subpopulation of Lin(-)c-kit(+) cells that can thus be designated as the common myelolymphoid progenitor (CMLP). Common myeloerythroid progenitors were also detected. These findings strongly suggest that the first branching point in fetal hemopoiesis is between the CMLP and common myeloerythroid progenitors. T and B cell progenitors may be derived from the CMLP through the previously identified myeloid/T and myeloid/B bipotent stages, respectively.  相似文献   

12.
It was reported that human hematopoietic stem cells in bone marrow were restricted to the CD34(+)KDR(+) cell fraction. We found that expression levels of Flk-1, a mouse homologue of KDR, were low or undetectable in mouse Lin(-)c-Kit(+)Sca-1(+)CD34(low/-) cells as well as Hoechst33342(-) cells (side population), which have long-term reconstitution capacity. Furthermore, neither Flk-1(+)CD34(low/-) cells nor Flk-1(+)CD34(+) cells had long-term reconstitution capacity in mouse. Taken together with other observations using Flk-1-deficient mice, these results indicate that Flk-1 is essential for the development of hematopoietic stem cells in embryo but not for the function of hematopoietic stem cells in adult mouse bone marrow.  相似文献   

13.
We report on a subset of cells that co-purify with CD45-positive/Lineage minus (CD45(pos)/Lin(minus)) hematopoietic cells that are capable of in vitro differentiation into multi-potential cells including cells with neuroectoderm properties. Although these cells are CD45 positive and have properties similar to CD45-negative mesenchymal progenitor cells (MPC) derived from bone marrow (BM), they are neither hematopoietic cells nor mesenchymal cells. These CD45(pos)/Lin(minus) cells can be expanded in vitro, express the stem cell genes Oct-4 and Nanog and can be induced to differentiate into endothelial cells, osteoblasts, muscle cells and neural cells at frequencies similar to those reported for bone marrow mesenchymal cells. Long-term culture of these cells followed by transplantation into NOD/SCID mice resulted in positive bone marrow stromal cell engraftment but not hematopoietic engraftment, suggesting that despite their CD45-positive status these cells do not have the same properties as hematopoietic stem cells. Clonal cell analysis determined that the culture period caused a broadening in the differentiation potential of the starting population.  相似文献   

14.
15.
We generated transgenic mice expressing chimeric receptors, which comprise extracellular domains of the human granulocyte-macrophage colony-stimulating factor (hGM-CSF) receptor and transmembrane and cytoplasmic domains of the mouse leukemia inhibitory factor receptor. In suspension cultures of lineage-negative (Lin(-)), 5-fluorouracil-resistant bone marrow cells of the transgenic mice, a combination of hGM-CSF and stem cell factor (SCF) induced exponential expansions of mixed colony-forming unit. The combination of hGM-CSF and SCF was effective on enriched, Lin(-)Sca-1(+)c-kit(+) progenitors and increased either mixed colony-forming unit or cobblestone area-forming cells. In case of stimulation with hGM-CSF and SCF, interleukin-6 (IL-6) and SCF, or IL-11 and SCF, the most efficient expansion was achieved with hGM-CSF and SCF. When Lin(-)Sca-1(+)c-kit(+)CD34(-) further enriched progenitors were clone sorted and individually incubated in the presence of SCF, hGM-CSF stimulated a larger number of cells than did IL-6, IL-6 and soluble IL-6 receptor (IL-6R), or IL-11. These data suggest the presence of IL-6Ralpha-, IL-11Ralpha-, and gp130-low to -negative primitive hematopoietic progenitors. Such primitive progenitors are equipped with signal transduction molecules and can expand when these chimeric receptors are genetically introduced into the cells and stimulated with hGM-CSF in the presence of SCF.  相似文献   

16.
The present study aimed to define the ability of erythropoietin (EPO) to mobilize hematopoietic stem cells (c-kit(+)/sca-1(+)/lin-1(-); KSL-cells) and hematopoietic progenitor cells (CD34(+) cells), including vascular endothelial growth factor receptor 2 expressing hematopoietic progenitor cells (CD34(+)/Flk-1(+) cells). We also sought to determine the role of endothelial nitric oxide synthase (eNOS) in EPO-induced mobilization. Wild type (WT) and eNOS(-/-) mice were injected bi-weekly with recombinant erythropoietin (EPO, 1000U/kg, s.c.) for 14 days. EPO increased the number of KSL, CD34(+), CD34(+)/Flk-1(+) cells in circulating blood of wild type mice. These effects of EPO were abolished in eNOS(-/-) mice. Our results demonstrate that, EPO stimulates mobilization of hematopoietic stem and progenitor cells. This effect of EPO is critically dependent on activation of eNOS.  相似文献   

17.
Bone marrow lineage-negative (Lin(-)) c-Kit(+) Sca-1(+) hematopoietic cells from human GM-CSF receptor gene transgenic mice were cultured on established bone marrow stromal cell (TBR59) layers and on semisolid medium. In the semisolid assay, an increasing number of larger colonies were observed in the presence of hGM-CSF. By coculture with the stromal cells, cobblestones containing myeloid and lymphoid lineages of cells were formed from the stem cell enriched fraction, and addition of hGM-CSF strongly stimulated formation of the cobblestones containing both lineages. Repeating passages of the cobblestones on TBR59 stromal cells in the presence of hGM-CSF gradually decreased cobblestone formation and inversely increased macrophages and granulocytes, while mast cells were generated when the cells derived from the semisolid assay were cultured in a liquid medium containing hGM-CSF. These results consistently suggest that cytokines such as GM-CSF may costimulate the immature hematopoietic cells at their stroma-dependent phase before lineage commitment, and after commitment that occurs by an intrinsic program of the cells, they may stimulate maintenance and maturation of progenitor cells.  相似文献   

18.
19.
N Banu  B Deng  S D Lyman  H Avraham 《Cytokine》1999,11(9):679-688
The Flt-3 receptor is expressed in primitive haematopoietic cells and its ligand exerts proliferative effects on these cells in vitro in synergy with other cytokines. To increase our knowledge of the functional properties of the human Flt-3 ligand (FL) as relating to in vitro expansion of haematopoietic stem cells, the effects on murine haematopoiesis of FL alone or in combination with other growth factors were studied. Analysis of Flk-2/Flt-3 mRNA expression indicated that Flk-2/Flt-3 was preferentially expressed in primitive haematopoietic cell populations. To examine the expression of the Flk-2/Flt-3 receptor on megakaryocyte progenitors (CFU-Meg), Flk-2/Flt-3 positive and negative CD34(+)populations were separated from human bone marrow and cultured in a plasma clot culture system. CFU-Meg colonies were found in the Flk-2/Flt-3 negative fraction. Myeloid (CFU-GM) derived colonies appeared in the presence of FL alone. Neither FL+IL-3 nor FL+IL-3+IL-6 had any effect on the generation of megakaryocyte colonies (CFU-MK), due to the lack of FL receptor expression on megakaryocyte progenitors. Bone marrow cells remaining after 5-fluorouracil (5-FU) treatment of mice represent a very primitive population of progenitors enriched for reconstituting stem cells. This cell population expressed FL receptors, as revealed by RT-PCR analysis. Addition of FL alone did not enhance the replication of such cells in liquid cultures as compared to controls. However, a significantly greater generation of myeloid progenitors (CFU-GM) in clonogenic assays was observed in the presence of FL+IL-3, FL+GM-CSF or FL+CSF-1. In addition, the effects of FL on in vitro expansion of murine haematopoietic stem cells were studied using lineage-negative (lin(-)) Sca-1 positive (Sca-1(+)) c-kit positive (c-kit(+)) marrow cells from 5-FU treated mice. FL enhanced the survival of primitive murine lin(-)Sca-1(+)c-kit(+)cells. FL and IL-6 were able to significantly expand murine progenitor stem cells in vitro and promote their survival. These studies strongly suggest that FL significantly and selectively enhanced the generation of myeloid progenitors in vitro and increased myeloid progenitor responsiveness to later acting growth factors. In addition, FL synergized with IL-6 to support in vitro expansion of haematopoietic progenitors and promoted the survival of lin(-)Sca-1(+)c-kit(+)cells.  相似文献   

20.
The mechanism by which angiogenic factors recruit bone marrow (BM)-derived quiescent endothelial and hematopoietic stem cells (HSCs) is not known. Here, we report that functional vascular endothelial growth factor receptor-1 (VEGFR1) is expressed on human CD34(+) and mouse Lin(-)Sca-1(+)c-Kit(+) BM-repopulating stem cells, conveying signals for recruitment of HSCs and reconstitution of hematopoiesis. Inhibition of VEGFR1, but not VEGFR2, blocked HSC cell cycling, differentiation and hematopoietic recovery after BM suppression, resulting in the demise of the treated mice. Placental growth factor (PlGF), which signals through VEGFR1, restored early and late phases of hematopoiesis following BM suppression. PlGF enhanced early phases of BM recovery directly through rapid chemotaxis of VEGFR1(+) BM-repopulating and progenitor cells. The late phase of hematopoietic recovery was driven by PlGF-induced upregulation of matrix metalloproteinase-9, mediating the release of soluble Kit ligand. Thus, PlGF promotes recruitment of VEGFR1(+) HSCs from a quiescent to a proliferative BM microenvironment, favoring differentiation, mobilization and reconstitution of hematopoiesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号