首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phototropin (phot) is a light-regulated protein kinase that mediates a variety of photoresponses in plants, such as phototropism, chloroplast positioning, and stomata opening. Arabidopsis has two homologues, phot1 and phot2, that share physiological functions depending on light intensity. A phot molecule has two photoreceptive light oxygen voltage-sensing domains, LOV1 and LOV2, and a Ser/Thr kinase domain. The LOV domains undergo a photocycle upon blue light (BL) stimulation, including transient adduct formation between the chromophore and a conserved cysteine (S390 intermediate) that leads to activation of the kinase. To uncover the mechanism underlying the photoactivation of the kinase, we have introduced a kinase assay system composed of a phot1 LOV2-linker-kinase polypeptide as a light-regulated kinase and its N-terminal polypeptide as an artificial substrate (Okajima, K., Matsuoka, D., and Tokutomi, S. (2011) LOV2-linker-kinase phosphorylates LOV1-containing N-terminal polypeptide substrate via photoreaction of LOV2 in Arabidopsis phototropin1. FEBS Lett. 585, 3391–3395). In the present study, we extended the assay system to phot2 and compared the photochemistry and kinase activation by BL between phot1 and phot2 to gain insight into the molecular basis for the different photosensitivities of phot1 and phot2. Photosensitivity of kinase activation by BL and the lifetime of S390 of phot1 were 10 times higher and longer, respectively, than those of phot2. This correlation was confirmed by an amino acid substitution experiment with phot1 to shorten the lifetime of S390. The present results demonstrated that the photosensitivity of kinase activation in phot involves the lifetime of S390 in LOV2, suggesting that the lifetime is one of the key factors for the different photosensitivities observed for phot1 and phot2.  相似文献   

2.
Chen E  Swartz TE  Bogomolni RA  Kliger DS 《Biochemistry》2007,46(15):4619-4624
Light-, oxygen-, or voltage-regulated (LOV1 and LOV2) domains bind flavin mononucleotide (FMN) and activate the phototropism photoreceptors phototropin 1 (phot1) and phototropin 2 (phot2) by using energy from absorbed blue light. Upon absorption of blue light, chromophore and protein conformational changes trigger the kinase domain for subsequent autophosphorylation and presumed downstream signal transduction. To date, the light-induced photocycle of the phot1 LOV2 protein is known to involve formation of a triplet flavin mononucleotide (FMN) chromophore followed by the appearance of a FMN adduct within 4 micros [Swartz, T. E., Corchnoy, S. B., Christie, J. M., Lewis, J. W., Szundi, I., Briggs, W. R., and Bogomolni, R. A. (2001) J. Biol. Chem. 276, 36493-36500] before thermal decay back to the dark state. To probe the mechanism by which the blue light information is relayed from the chromophore to the protein, nanosecond time-resolved optical rotatory dispersion (TRORD) spectroscopy, which is a direct probe of global secondary structure, was used to study the phot1 LOV2 protein in the far-UV region. These TRORD experiments reveal a previously unobserved intermediate species (tau approximately 90 micros) that is characterized by a FMN adduct chromophore and partially unfolded secondary structure (LOV390(S2)). This intermediate appears shortly after the formation of the FMN adduct. For LOV2, formation of a long-lived species that is ready to interact with a receptor domain for downstream signaling is much faster by comparison with formation of a similar species in other light-sensing proteins.  相似文献   

3.
Phototropin (phot), a blue light (BL) receptor in plants, has two photoreceptive domains named LOV1 and LOV2 as well as a Ser/Thr kinase domain (KD) and acts as a BL-regulated protein kinase. A LOV domain harbors a flavin mononucleotide that undergoes a cyclic photoreaction upon BL excitation via a signaling state in which the inhibition of the kinase activity by LOV2 is negated. To understand the molecular mechanism underlying the BL-dependent activation of the kinase, the photochemistry, kinase activity, and molecular structure were studied with the phot of Chlamydomonas reinhardtii. Full-length and LOV2-KD samples of C. reinhardtii phot showed cyclic photoreaction characteristics with the activation of LOV- and BL-dependent kinase. Truncation of LOV1 decreased the photosensitivity of the kinase activation, which was well explained by the fact that the signaling state lasted for a shorter period of time compared with that of the phot. Small angle x-ray scattering revealed monomeric forms of the proteins in solution and detected BL-dependent conformational changes, suggesting an extension of the global molecular shapes of both samples. Constructed molecular model of full-length phot based on the small angle x-ray scattering data proved the arrangement of LOV1, LOV2, and KD for the first time that showed a tandem arrangement both in the dark and under BL irradiation. The models suggest that LOV1 alters its position relative to LOV2-KD under BL irradiation. This finding demonstrates that LOV1 may interact with LOV2 and modify the photosensitivity of the kinase activation through alteration of the duration of the signaling state in LOV2.  相似文献   

4.
Phototropins (phot1 and phot2) are blue light-activated serine/threonine protein kinases that elicit a variety of photoresponses in plants. Light sensing by the phototropins is mediated by two flavin mononucleotide (FMN)-binding domains, designated LOV1 and LOV2, located in the N-terminal region of the protein. Exposure to light results in the formation of a covalent adduct between the FMN chromophore and a conserved cysteine residue within the LOV domain. LOV2 photoexcitation is essential for phot1 function in Arabidopsis and is necessary to activate phot1 kinase activity through light-induced structural changes within a conserved alpha-helix situated C-terminal to LOV2. Here we have used site-directed mutagenesis to identify further amino acid residues that are important for phot1 activation by light. Mutagenesis of bacterially expressed LOV2 and full-length phot1 expressed in insect cells indicates that perturbation of the conserved salt bridge on the surface of LOV2 does not play a role in receptor activation. However, mutation of a conserved glutamine residue (Gln(575)) within LOV2, reported previously to be required to propagate structural changes at the LOV2 surface, attenuates light-induced autophosphorylation of phot1 expressed in insect cells without compromising FMN binding. These findings, in combination with double mutant analyses, indicate that Gln(575) plays an important role in coupling light-driven cysteinyl adduct formation from within LOV2 to structural changes at the LOV2 surface that lead to activation of the C-terminal kinase domain.  相似文献   

5.
Phototropin (phot) is a blue-light receptor protein that triggers phototropic responses, chloroplast relocation, and stomata opening to maximize the efficiency of photosynthesis in higher plants. Phot is composed of three functional domains. The N-terminal half folds into two light-oxygen-voltage-sensing domains called LOV1 and LOV2, each binding a flavin mononucleotide to absorb blue light. The C-terminal half is a serine/threonine kinase domain that causes light-dependent autophosphorylation leading to cellular signaling cascades. LOV2 domain is primarily responsible for activation of the kinase, and LOV1 domain is thought to act as a dimerization site and to regulate sensitivity to activation by blue light. Here we show the crystal structures of LOV1 domains of Arabidopsis phot1 and phot2 in the dark at resolutions of 2.1 Å and 2.0 Å, respectively. Either LOV1 domain forms a dimer through face-to-face association of β-scaffolds in the crystallographic asymmetric unit. Three types of interactions stabilizing the dimer structures found are as follows: contacts of side chains in their β-scaffolds, hydrophobic interactions of a short helix found in the N-terminus of a subunit with the β-scaffolds of both subunits, and hydrogen bonds mediated by hydration water molecules filling the dimer interface. The critical residues for dimerization are Cys261, forming a disulfide bridge between subunits in phot1-LOV1 domain, and Thr217 and Met232 in phot2-LOV1. The topology in homodimeric associations of the LOV1 domains is discussed when referring to those of homodimers or heterodimers of light-oxygen-voltage-sensing or Per-ARNT-Sim domains. The present results also provide clues to understanding structural basis in dimeric interactions of Per-ARNT-Sim protein modules in cellular signaling.  相似文献   

6.
Phototropins (phot1 and phot2) are autophosphorylating serine/threonine kinases that function as photoreceptors for phototropism, light-induced chloroplast movement, and stomatal opening in Arabidopsis. The N-terminal region of phot1 and phot2 contains two specialized PAS domains, designated LOV1 and LOV2, which function as binding sites for the chromophore flavin mononucleotide (FMN). Both LOV1 and LOV2 undergo a self-contained photocycle, which involves the formation of a covalent adduct between the FMN chromophore and a conserved active-site cysteine residue (Cys39). Replacement of Cys39 with alanine abolishes the light-induced photochemical reaction of LOV1 and LOV2. Here we have used the Cys39Ala mutation to investigate the role of LOV1 and LOV2 in regulating phototropin function. Photochemical analysis of a bacterially expressed LOV1 + LOV2 fusion protein indicates that LOV2 functions as the predominant light-sensing domain for phot1. LOV2 also plays a major role in mediating light-dependent autophosphorylation of full-length phot1 expressed in insect cells and transgenic Arabidopsis. Moreover, photochemically active LOV2 alone in full-length phot1 is sufficient to elicit hypocotyl phototropism in transgenic Arabidopsis, whereas photochemically active LOV1 alone is not. Further photochemical and biochemical analyses also indicate that the LOV1 and LOV2 domains of phot2 exhibit distinct roles. The significance for the different roles of the phototropin LOV domains is discussed.  相似文献   

7.
Transient grating signals after photoexcitation of Arabidopsis phototropin 1 light-oxygen-voltage 2 (phot1LOV2) domain without the linker were found to be very sensitive to temperature. In particular, the diffusion signal drastically increased with rising temperature. The signal was consistently explained by the superposition of the photo-induced dissociation and association reactions. This observation indicated the presence of an equilibrium between the monomer and dimer forms of the phot1LOV2 domain in the dark. The equilibrium was confirmed by a gel chromatographic technique. The equilibrium constants at various temperatures were calculated from the fraction of the dimer, and the stabilization enthalpy and entropy were determined. Interestingly, the transient grating signal of phot1LOV2 with the linker (phot1LOV2-linker), which exists as the monomer form, was also temperature dependent; the diffusion signal intensity decreased with increasing temperature. Because the diffusion signal reflects a conformation change of the linker upon photoexcitation, this temperature dependence indicated that there were two forms of the phot1LOV2-linker. One form exhibited a conformational change upon photoexcitation whereas the other form showed no change. These two forms are not distinguishable spectroscopically. The fraction of these species depended on the temperature. Considering the monomer-dimer equilibrium of the phot1LOV2 domain, we suggest that the nonreactive form possesses the linker region that is dissociated from the LOV2 domain. Because the dissociation of the linker region from the LOV2 domain is a key step for the conformation change of the phot1LOV2-linker to induce biological activity, we proposed that the phototropins could have a role as a temperature sensor.  相似文献   

8.
Iwata T  Nozaki D  Tokutomi S  Kandori H 《Biochemistry》2005,44(20):7427-7434
Phototropin (phot) is a blue-light photoreceptor for phototropic responses, relocation of chloroplasts, and stomata opening in plants. Phototropin has two chromophore-binding domains named LOV1 and LOV2 in its N-terminal half, each of which binds a flavin mononucleotide (FMN) noncovalently. The C-terminal half is a Ser/Thr kinase. A transgenic study of Arabidopsis suggested that only LOV2 domain is necessary for the kinase activity, whereas X-ray crystallographic structures of LOV1 and LOV2 domains are almost identical. These facts imply that the detailed structures and/or structural changes are different between LOV1 and LOV2 domains. In this study, we compared light-induced structural changes of the LOV1 and LOV2 domains of a phototropin, Adiantum phytochrome3 (phy3), by means of UV-visible and Fourier transform infrared (FTIR) spectroscopy. Photochemical properties of an adduct formation between FMN and a cysteine are essentially similar between phy3-LOV1 and phy3-LOV2. On the other hand, the S-H group of the reactive cysteine forms a hydrogen bond in phy3-LOV1, which is strengthened at low temperatures. This is possibly correlated with the fact that no adduct formation takes place for phy3-LOV1 at 77 K as revealed by the UV-visible absorption spectra. The most prominent difference was seen in the amide-I vibration that monitors the secondary structure of peptide backbone. Protein structural changes in phy3-LOV2 involve the regions of loops, alpha-helices, and beta-sheets, which differ significantly among various temperatures. Extended protein structural changes are probably correlated with the signal transduction activity of LOV2. In contrast, protein structural changes were very small in phy3-LOV1, and they were almost temperature independent. The photocycle of phy3-LOV1 takes 3.1 h, being more than 100 times longer than that of phy3-LOV2. These facts suggest that Adiantum phy3-LOV1 does not work for light sensing, being consistent with the previous transgenic study of Arabidopsis. It is likely that plants utilize a unique protein architecture (LOV domain) for different functions by regulating their protein structural changes.  相似文献   

9.
Phototropins (phot1 and phot2) are plant blue-light receptors that mediate phototropism, chloroplast movement, stomatal opening, rapid inhibition of growth of etiolated seedlings, and leaf expansion in Arabidopsis (Arabidopsis thaliana). Their N-terminal region contains two light, oxygen, or voltage (LOV) domains, which bind flavin mononucleotide and form a covalent adduct between a conserved cysteine and the flavin mononucleotide chromophore upon photoexcitation. The C-terminal region contains a serine/threonine kinase domain that catalyzes blue-light-activated autophosphorylation. Here, we have transformed the phot1 phot2 (phot1-5 phot2-1) double mutant with PHOT expression constructs driven by the cauliflower mosaic virus 35S promoter. These constructs encode either wild-type phototropin or phototropin with one or both LOV-domain cysteines mutated to block their photochemistry. We selected multiple lines in each of the eight resulting categories of transformants for further physiological analyses. Specifically, we investigated whether LOV1 and LOV2 serve the same or different functions for phototropism and leaf expansion. Our results show that the LOV2 domain of phot1 plays a major role in phototropism and leaf expansion, as does the LOV2 domain of phot2. No complementation of phototropism or leaf expansion was observed for the LOV1 domain of phot1. However, phot2 LOV1 was unexpectedly found to complement phototropism to a considerable level. Similarly, transformants carrying a PHOT transgene with both LOV domains inactivated developed strong curvatures toward high fluence rate blue light. However, we found that the phot2-1 mutant is leaky and produces a small level of full-length phot2 protein. In vitro experiments indicate that cross phosphorylation can occur between functional phot2 and inactivated phot1 molecules. Such a mechanism may occur in vivo and therefore account for the functional activities observed in the PHOT transgenics with both lov domains inactivated. The implications of this mechanism with respect to phototropin function are discussed.  相似文献   

10.
Nakasako M  Iwata T  Matsuoka D  Tokutomi S 《Biochemistry》2004,43(47):14881-14890
Phototropin is a blue-light receptor of plants and comprises two light-receptive domains, LOV1 and LOV2, Ser/Thr kinase domain and one linker region connecting the LOV2 and the kinase domains. The LOV2 domain is thought to regulate predominantly the light-dependent autophosphorylation of the kinase domain, leading to cellular signaling cascades. In this study, we constructed recombinant LOV1, LOV2, and LOV2-linker polypeptides from phototropin 1 and phototropin 2 of Arabidopsis thaliana and studied their quaternary structures and light-dependent conformational changes by small-angle X-ray scattering. The molecular weights of the polypeptides determined from scattering intensities demonstrated the dimeric associations of LOV1 polypeptides of both isoforms. In contrast, while LOV2 and LOV2-linker polypeptides of phototropin 1 were homodimers, corresponding polypeptides of phototropin 2 existed as monomeric forms. Under blue-light irradiation, the LOV2-linker polypeptide of phototropin 1 displayed small but definite changes of the scattering profile. Through simulation of low-resolution molecular structures, the changes were likely explained as structural changes of the linker region and/or a movement of the region relative to the LOV2 domain. Light-induced profile changes were not observed in the Cys(512)Ala mutated LOV2-linker polypeptide of phototropin 1 losing the phototransformation capability. Thus, it was indicated that the photoreaction in the LOV2 domain probably caused the structural changes in the LOV2-linker polypeptide of phototropin 1. On the basis of the results, the interdomain interactions in phototropin are discussed.  相似文献   

11.
Phot proteins are homologs of the blue-light receptor phototropin. We report a comparative study of the photocycles of the isolated, light-sensitive domains LOV1 and LOV2 from Chlamydomonas reinhardtii phot protein, as well as the construct LOV1/2 containing both domains. Transient absorption measurements revealed a short lifetime of the LOV2-wt triplet state (500 ns), but a long lifetime (287 micros) of the triplet in the mutant LOV2-C250S, in which the reactive cysteine is replaced by serine. For LOV1, in comparison, corresponding numbers of 800 ns and 4 micros for the two conformers in LOV1-wt, and 27 micros for LOV1-C57S have been reported. The triplet decay kinetics in the mixed domains LOV1/2-wt, LOV1/2-C57S, and LOV1/2-C250S can be analyzed as the superposition of the behavior of the corresponding single domains. The situation is different for the slow, thermal reaction of the photoadduct back to the dark form. Whereas the individual domains LOV1 and LOV2 show two decay components, the double domains LOV1/2-C57S and LOV1/2-C250S both show only a single component. The interaction of the two domains does therefore not manifest itself during the lifetime of the triplet states, but changes the decay behavior of the adduct states.  相似文献   

12.
Higher plants use several classes of blue light receptors to modulate a wide variety of physiological responses. Among them, both the phototropins and members of the Zeitlupe (ZTL) family use light oxygen voltage (LOV) photosensory domains. In Arabidopsis, these families comprise phot1, phot2 and ZTL, LOV Kelch Protein 2 (LKP2), and Flavin-binding Kelch F-box1 (FKF1). It has now been convincingly shown that blue-light-induced autophosphorylation of the phot1 kinase domain is an essential step in signal transduction. Recent experiments also shed light on the partially distinct photosensory specificities of phot1 and phot2. Phototropin signaling branches rapidly following photoreceptor activation to mediate distinct responses such as chloroplast movements or phototropism. Light activation of the LOV domain in ZTL family members modulates their capacity to interact with GIGANTEA (GI) and their ubiquitin E3 ligase activity. A complex between GI and FKF1 is required to trigger the degradation of a repressor of CO (CONSTANS) expression and thus modulates flowering time. In contrast, light-regulated complex formation between ZTL and GI appears to limit the capacity of ZTL to degrade its targets, which are part of the circadian oscillator.  相似文献   

13.
Blue light-induced chloroplast accumulation and avoidance relocation movements are controlled by the blue light photoreceptor phototropin. The Arabidopsis thaliana genome has two phototropin genes encoding phot1 and phot2. Each of these photoreceptors contains two LOV (light oxygen and voltage) domains and a kinase domain. The LOV domains absorb blue light though an associated flavin mononucleotide chromophore, while the kinase domain is thought to be associated with signal transduction. The phototropins control not only chloroplast relocation movement, but also blue light-induced phototropic responses, leaf expansion and stomatal opening. Here I review the role of phototropin as a photoreceptor for chloroplast photorelocation movement. Electronic Publication  相似文献   

14.
Phototropins (phot1 and phot2) are blue light-activated serine/threonine protein kinases that function to mediate a variety of adaptive processes that serve to optimize the photosynthetic efficiency of plants and thereby promote their growth. Light sensing by the phototropins is mediated by a repeated motif located within the N-terminal region of the protein designated the LOV domain. Although phototropins possess two LOV photosensors (LOV1 and LOV2), recent biophysical and structure-function analyses clearly indicate that the LOV2 domain plays a predominant role in regulating phototropin kinase activity owing to specific protein changes that occur in response to LOV2 photoexcitation. In particular, the central β-sheet scaffold plays a role in propagating the photochemical signal generated from within LOV2 to protein changes at the surface that are necessary for kinase activation.Key words: phototropin, LOV domain, FMN, cysteinyl adduct, amphipathic helix, receptor autophosphoryation  相似文献   

15.
Phototropins (phot) sense blue light through the two N-terminal chromophore binding LOV domains and activate the C-terminal kinase domain. The resulting phototropin autophosphorylation is essential for biological activity. We identified the A1 subunit of Ser/Thr protein phosphatase 2A (PP2A) as interacting with full-length phot2 in yeast and also interacting with phot2 in an in vitro protein binding assay. Phenotypic characterizations of a phot1-5 rcn1-1 (for root curling in n-naphthylphthalamic acid1) double mutant, in which phot2 is the only functional phototropin and PP2A activity is reduced, showed enhanced phototropic sensitivity and enhanced blue light–induced stomatal opening, suggesting that PP2A activity is involved in regulating phot2 function. When treated with cantharidin, a chemical inhibitor of PP2A, the phot1-5 mutant exhibited enhanced phot2-mediated phototropic responses like those of the phot1-5 rcn1-1 double mutant. Immunoblot analysis to examine phot2 endogenous phosphorylation levels and in vitro phosphorylation assays of phot2 extracted from plants during dark recovery from blue light exposure confirmed that phot2 is more slowly dephosphorylated in the reduced PP2A activity background than in the wild-type PP2A background, suggesting that phosphorylated phot2 is a substrate of PP2A activity. While reduced PP2A activity enhanced the activity of phot2, it did not enhance either phot1 dephosphorylation or the activity of phot1 in mediating phototropism or stomatal opening.  相似文献   

16.
Phototropin, a blue-light receptor protein of plants, triggers phototropic responses, chloroplast relocation, and opening of stomata to maximize the efficiency of photosynthesis. Phototropin is composed of two light-oxygen-voltage sensing domains (LOV1 and LOV2) that absorb blue light and a serine/theroine kinase domain responsible for light-dependent autophosphorylation leading to cellular signaling cascades. Although the light-activated LOV2 domain is primarily responsible for subsequent activation of the kinase domain, it is unclear how conformational changes in the former transmit to the latter. To understand this molecular mechanism in Arabidopsis phototropin 2, we performed small-angle X-ray scattering analysis on a fragment composed of the LOV2 and kinase domains, which contained an Asp720Asn mutation that led to an absence of ATP binding activity. The scattering data were collected up to a resolution of 25 ?. The apparent molecular weight of the fragment estimated from scattering intensities demonstrated that the fragment existed in a monomeric form in solution. The fragment exhibited photoreversible changes in the scattering profiles, and the radii of gyration under dark and blue-light irradiation conditions were 32.4 and 34.8 ?, respectively. In the dark, the molecular shape restored from the scattering profile appeared as an elongated shape of 110 ? in length and 45 ? in width. The homology modeled LOV2 and kinase domains could be fitted to the molecular shape and appeared to make slight contact. However, under blue-light irradiation, a more extended molecular shape was observed. The changes in the molecular shape and radius of gyration were interpreted as a light-dependent positional shift of the LOV2 domain of approximately 13 ? from the kinase domain. Because the region connecting the LOV2 and kinase domains was categorized as a naturally unfolded polypeptide, we propose that the light-activated LOV2 domain triggers conformational changes in the linker region to separate the LOV2 and kinase domains.  相似文献   

17.
Phototropin is a membrane-bound UV-A/blue light photoreceptor of plants responsible for phototropism, chloroplast migration and stomatal opening. Characteristic are two LOV domains, each binding one flavin mononucleotide, in the N-terminal half and having a serine/threonine kinase domain in the C-terminal half of the molecule. We purified the N-terminal half of oat phototropin 1, containing LOV1 and LOV2 domains, as a soluble fusion protein with the calmodulin binding peptide (CBP) by expression in Escherichia coli. Gel chromatography showed that it was dimeric in solution. While the fusion protein CBP-LOV2 was exclusively monomeric in solution, the fusion protein CBP-LOV1 occurred as monomer and dimer. The proportion of dimer increased on prolonged incubation. We conclude that native phototropin is a dimer and that the LOV1 domain is probably responsible for dimerization.  相似文献   

18.
The phototropins phot1 and phot2 are plant blue-light receptors that mediate phototropism, chloroplast movements, stomatal opening, leaf expansion, the rapid Inhibition of hypocotyl growth in etiolated seedlings, and possibly solar tracking by leaves in those species in which It occurs. The phototroplns are plasma membrane-associated hydrophilic proteins with two chromophore domains (designated LOV1 and LOV2 for their resemblance to domains In other signaling proteins that detect light, oxygen, or voltage) in their Nterminal half and a classic serine/threonlne kinase domain in their C-terminal half. Both chromophore domains bind flavin mononucleotide (FMN) and both undergo light-activated formation of a covalent bond between a nearby cystelne and the C(4a) carbon of the FMN to form the signaling state. LOV2-cystelnyl adduct formation leads to the release downstream of a tightly bound amphlpathlc α-helix, a step required for activation of the klnase function. This cysteinyl adduct then slowly decays over a matter of seconds or minutes to return the photoreceptor chromophore modules to their ground state. Functional LOV2 is required for light-activated phosphorylation and for various blue-light responses mediated by the phototroplns. The function of LOV1 is still unknown, although It may serve to modulate the signal generated by LOV2. The LOV domain Is an ancient chromophore module found In a wide range of otherwise unrelated proteins In fungi and prokaryotes, the latter Including cyanobacterla, eubacterla, and archaea. Further general reviews on the phototropins are those by Celaya and Liscum (2005) and Christie and Briggs (2005).  相似文献   

19.
Hitomi Katsura 《FEBS letters》2009,583(3):526-3395
Oligomeric structures of the four LOV domains in Arabidopsis phototropin1 (phot1) and 2 (phot2) were studied using crosslinking. Both LOV1 domains of phot1 and phot2 form a dimer independently on the light conditions, suggesting that the LOV1 domain can be a stable dimerization site of phot in vivo. In contrast, phot1-LOV2 is in a monomer-dimer equilibrium and phot2-LOV2 exists as a monomer in the dark. Blue light-induced a slight increase in the monomer population in phot1-LOV2, suggesting a possible blue light-inducible dissociation of dimers. Furthermore, blue light caused a band shift of the phot2-LOV2 monomer. CD spectra revealed the unfolding of helices and the formation of strand structures. Both light-induced changes were reversible in the dark.

Structured summary

MINT-6823377, MINT-6823391:PHOT1 (uniprotkb:O48963) and PHOT1 (uniprotkb: O48963) bind (MI:0407) by cross-linking studies (MI:0030)MINT-6823495, MINT-6823508:PHOT2 (uniprotkb:P93025) and PHOT2 (uniprotkb:P93025) bind (MI:0407) by cross-linking studies (MI:0030)  相似文献   

20.
Phototropins (phot1 and phot2) are blue light receptor kinases that control a range of photoresponses that serve to optimize the photosynthetic efficiency of plants. Light sensing by the phototropins is mediated by a repeated motif at the N-terminal region of the protein known as the LOV domain. Bacterially expressed LOV domains bind flavin mononucleotide noncovalently and are photochemically active in solution. Irradiation of the LOV domain results in the formation of a flavin-cysteinyl adduct (LOV390) which thermally relaxes back to the ground state in the dark, effectively completing a photocycle that serves as a molecular switch to control receptor kinase activity. We have employed a random mutagenesis approach to identify further amino acid residues involved in LOV-domain photochemistry. Escherichia coli colonies expressing a mutagenized population of LOV2 derived from Avena sativa (oat) phot1 were screened for variants that showed altered photochemical reactivity in response to blue light excitation. One variant showed slower rates of LOV390 formation but exhibited adduct decay times 1 order of magnitude faster than wild type. A single Ile --> Val substitution was responsible for the effects observed, which removes a single methyl group found in van der Waals contact with the cysteine sulfur involved in adduct formation. A kinetic acceleration trend was observed for adduct decay by decreasing the size of the isoleucine side chain. Our findings therefore indicate that the steric nature of this amino acid side chain contributes to stabilization of the C-S cysteinyl adduct.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号