首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Neurogenic pulmonary edema (NPE) may develop in individuals with head trauma or seizures and is generally thought to have a hydrostatic basis in the severe degree of pulmonary hypertension that occurs. Recently, it has been suggested that vascular pressures may rise to levels that damage the vessels, leaving the patient at risk for further edema development. The objective of this study was to determine if pulmonary vascular protein permeability is increased in a canine isolated perfused left lower lung lobe (LLL) preparation by pressure transients that may occur in NPE. Venous pressure (Pv) was transiently raised to values ranging from 8 to 102 Torr in 19 LLL. One Pv transient was studied per LLL. After Pv was returned to normal, the osmotic reflection coefficient (sigma d) for total proteins was determined by the hematocrit-protein double indicator technique. No reduction in sigma d was observed until microvascular pressure exceeded 70 Torr. The average sigma d for the 11 LLL in which the peak microvascular pressure was less than 70 Torr was 0.74 +/- 0.03 (SE). Above this level sigma d fell linearly with increasing Pv, with a value of 0.26 being observed after the highest Pv transient. These results suggest that protein permeability may increase in patients with NPE who develop very large increases in pulmonary vascular pressures but may not be a universal occurrence in this disorder.  相似文献   

2.
To determine the correlation between ultrastructural and physiological changes in blood-gas barrier function in lungs transiently exposed to very high vascular pressures, we increased capillary transmural pressure (Ptm) of 6 canine isolated perfused left lower lung lobe preparations (high-pressure group) to 80.3 Torr for 3.8 min and then determined the capillary filtration (K(fc)) and osmotic reflection (sigma(d)) coefficients at a Ptm of 19.1 Torr in the ventilated lung lobes. This was followed by perfusion fixation of the lobes at a Ptm of 20.5 Torr for ultrastructural analysis. These data were compared with those obtained in six lobes in which Ptm was not transiently elevated before K(fc), sigma(d), and ultrastructural evaluation. K(fc) was higher [0.249 +/- 0.042 (SE) vs. 0.054 +/- 0.009 g. min(-1). Torr(-1). 100 g(-1); P < 0.01] and sigma(d) was lower (0.52 +/- 0.07 vs. 0.85 +/- 0.08; P < 0.01) in the high-pressure group. In contrast, although endothelial and epithelial breaks were occasionally observed in some experiments, their incidence was not increased in the high-pressure group. These data suggest that the increased transvascular water and protein flux occurred through pathways of a size not resolvable by electron microscopy after vascular perfusion-fixation at a Ptm of 20.5 Torr.  相似文献   

3.
Experiments were conducted in seven chronically instrumented unanesthetized sheep to estimate the osmotic reflection coefficient (sigma d) for total proteins and the solvent-drag reflection coefficients (sigma f) for six endogenous protein fractions. We measured the lymph-to-plasma ratio of total proteins (CL/CP) and six protein fractions during base-line conditions and after left atrial pressure elevations of 24-26 h per elevation. We also monitored pulmonary arterial pressure, left atrial pressure, systemic arterial pressure, and lung lymph flow at the various levels of pulmonary microvascular pressure. Our results indicate the CL/CP may require up to 24 h to reach a true steady state. It was found that sigma d is at least 0.89 for total proteins and sigma f is at least 0.84, 0.87, 0.86, 0.92, 0.95, and 0.96 for protein fractions with effective molecular radii of 36, 39.5, 44, 66, 105, and 123 A, respectively. In addition, the sigma f values for various protein fractions obtained from this investigation are compared with the predicted values of various mathematical models of the lung microcirculation.  相似文献   

4.
Previous studies have suggested that papaverine, a drug commonly used in studies of transvascular fluid and solute exchange to eliminate confounding effects of changes in vascular tone, may itself increase vascular permeability. In this study, we determined the ability of papaverine to alter pulmonary vascular protein permeability by measuring the osmotic reflection coefficient (sigma) for total proteins in a canine isolated perfused left lower lung lobe (LLL) preparation. The reflection coefficient, determined by the hematocrit-protein double-indicator technique, for control LLL's was 0.83 +/- 0.04 (SE) (n = 7). In separate groups of LLL's, blood papaverine HCl concentrations of 10(-5), 10(-4), and 10(-3) M resulted in sigma's of 0.84 +/- 0.02 (n = 6), 0.73 +/- 0.04 (n = 7), and 0.53 +/- 0.04 (n = 6), respectively. When two LLL's from the 10(-4) M group with sigma's of 0.56 and 0.57 were excluded from the analysis, the average sigma for this group was 0.79 +/- 0.02. We conclude that papaverine increases protein permeability at a concentration of 10(-3) M but does so in only some lobes at 10(-4) M. These results suggest that caution be taken when using high concentrations of papaverine in fluid balance studies.  相似文献   

5.
The osmotic reflection coefficient (sigma) can be estimated from the increases in hematocrit and plasma protein concentration that result from fluid filtration occurring in an isolated perfused organ. We determined what effect perfusion pump-induced hemolysis has on the value of sigma determined by this technique in both the isolated canine left lower lung lobe (LLL) and forelimb by comparing estimates of sigma obtained before and after correction for hemolysis. Hemolysis was corrected by using the slopes of the relationships between hematocrit and plasma hemoglobin concentration and between the plasma protein and hemoglobin concentrations to correct hematocrit and protein concentration to a state of zero hemolysis. Uncorrected estimates of sigma in the LLL were 1.19 +/- 0.14 (SE) at a venous pressure (Pv) of 12 Torr (n = 7) and 0.90 +/- 0.02 at a Pv of 19 Torr (n = 6). Both sets of LLL's yielded sigma values of 0.77 +/- 0.03 after hemolysis correction. In the forelimb (n = 5), uncorrected and corrected estimates of sigma of 0.99 +/- 0.03 and 0.85 +/- 0.01, respectively, were obtained. The latter values were similar to sigma's (0.88 +/- 0.01) determined by lymph analysis in five additional forelimbs. We conclude that hemolysis results in overestimates of sigma. After hemolysis correction, this technique yields similar results to those obtained from lymph analysis for the forelimb and from published values for the LLL.  相似文献   

6.
We studied the effects of regional hypoxic pulmonary vasoconstriction (HPV) on lobar flow diversion in the presence of hydrostatic pulmonary edema. Ten anesthetized dogs with the left lower lobe (LLL) suspended in a net for continuous weighing were ventilated with a bronchial divider so the LLL could be ventilated with either 100% O2 or a hypoxic gas mixture (90% N2-5% CO2-5% O2). A balloon was inflated in the left atrium until hydrostatic pulmonary edema occurred, as evidenced by a continuous increase in LLL weight. Left lower lobe flow (QLLL) was measured by electromagnetic flow meter and cardiac output (QT) by thermal dilution. At a left atrial pressure of 30 +/- 5 mmHg, ventilation of the LLL with the hypoxic gas mixture caused QLLL/QT to decrease from 17 +/- 4 to 11 +/- 3% (P less than 0.05), pulmonary arterial pressure to increase from 35 +/- 5 to 37 +/- 6 mmHg (P less than 0.05), and no significant change in rate of LLL weight gain. Gravimetric confirmation of our results was provided by experiments in four animals where the LLL was ventilated with an hypoxic gas mixture for 2 h while the right lung was ventilated with 100% O2. In these animals there was no difference in bloodless lung water between the LLL and right lower lobe. We conclude that in the presence of left atrial pressures high enough to cause hydrostatic pulmonary edema, HPV causes significant flow diversion from an hypoxic lobe but the decrease in flow does not affect edema formation.  相似文献   

7.
We studied the effects of regional alveolar hypoxia on permeability pulmonary edema formation. Anesthetized dogs had a bronchial divider placed so that the left lower lobe (LLL) could be ventilated with a hypoxic gas mixture (HGM) while the right lung was continuously ventilated with 100% O2. Bilateral permeability edema was induced with 0.05 ml/kg oleic acid and after 4 h of LLL ventilation with an HGM (n = 9) LLL gross weight was 161 +/- 13 (SE) g compared with 204 +/- 13 (SE) g (P less than 0.05) in the right lower lobe (RLL). Bloodless lobar water and dry weight were also significantly lower in the LLL as compared with the RLL of the study animals. In seven control animals in which the LLL fractional inspired concentration of O2 (FIO2) was 1.0 during permeability edema, there were no differences in gravimetric variables between LLL and RLL. In eight additional animals, pulmonary capillary pressure (Pc), measured by simultaneous occlusion of left pulmonary artery and vein, was not significantly different between LLL FIO2 of 1.0 and 0.05 either before or after pulmonary edema. We conclude that, in the presence of permeability pulmonary edema, regional alveolar hypoxia causes reduction in edema formation. The decreased edema formation during alveolar hypoxia is not due to a reduction in Pc.  相似文献   

8.
Distribution of pulmonary vascular resistance in experimental fibrosis   总被引:3,自引:0,他引:3  
To elucidate mechanisms of pulmonary hypertension in interstitial fibrosis, we compared the left lower lobes (LLL) of six dogs in which fibrosis was induced by radiation and bleomycin with the normal right lower lobes (RLL) for 1) slope and intercept of the vascular pressure-flow (P-Q) curves, 2) segmental resistances with arterial and venous occlusion under base-line conditions, after serotonin and vasodilators, and 3) light-microscopic morphology and morphometry. We found that 1) the total volume and vascular compliance of the fibrotic LLL were five and four times less, respectively, than controls, 2) the slope and intercept of the P-Q curves in the LLL were 154.0 +/- 65.8 (SE) mmHg.l-1.min-1 and 8.2 +/- 1.5 mmHg, respectively, compared with 18.3 +/- 2.3 and 3.2 +/- 0.9 for the RLL, 3) the resistance of the arterial, middle, and venous segments in the LLL were higher than in the RLL, but middle segment resistance rose disproportionately, and 4) constriction of the arterial segment with serotonin was similar in LLL and RLL, and vasodilators were ineffective. Histologically, fibrosis involved 36% of the lung, and the capillary bed was severely obliterated. Arteries showed an increased percentage of medial and intimal thickening and peripheral muscularization; venous abnormalities were less marked. We conclude that pulmonary fibrosis increases vascular resistance mainly in the middle segment, largely by loss of tissue and obliteration of the microvasculature.  相似文献   

9.
We used a new technique to estimate the pulmonary microvascular membrane reflection coefficient to plasma protein (sigma d) in anesthetized dogs. In five animals we continuously weighed the lower left lung lobe and used a left atrial balloon to increase the pulmonary microvascular pressure (Pc). We determined the relationship between the rate of edema formation (S) and Pc and estimated the fluid filtration coefficient (Kf) as delta S/delta Pc. From the S vs. Pc relationship and Kf, we estimated the Pc at which S/Kf = 10 mmHg for each dog. This pressure (P10) was 38.0 +/- 5.8 (SD) mmHg, and the plasma protein osmotic pressure (pi c) was 14.9 +/- 3.7 mmHg. In five additional dogs in which we decreased pi c to 2.9 +/- 1.7 mmHg, P10 = 27.2 +/- 2.6 mmHg. The P10 vs. pi c regression line fit to the data from all 10 dogs was P10 = 0.92 pi c +/- 24.4 mmHg (r = 0.88). We estimated sigma d from the slope of the regression line as sigma d = square root of delta P10/delta pi c. With this technique, we estimated that, with 95% probability, sigma d lies between 0.72 and unity. This is higher than most previous sigma d estimates.  相似文献   

10.
Pulmonary hemodynamics and lung water content were evaluated in open-chest dogs during splanchnic arterial occlusion (SAO) shock. Mean pulmonary arterial pressure [Ppa = 13.0 +/- 0.6 (SE) mmHg] and pulmonary venous pressure (4.1 +/- 0.2 mmHg) were measured by direct cannulation and the capillary pressure (Ppc = 9.0 +/- 0.6 mmHg) estimated by the double-occlusion technique. SAO shock did not produce a significant change in Ppa or Ppc despite a 90% decrease in cardiac output. An 18-fold increase in pulmonary vascular resistance occurred, and most of this increase (70%) was on the venous side of the circulation. No differences in lung water content between shocked and sham-operated dogs were observed. The effect of SAO shock was further evaluated in the isolated canine left lower lobe (LLL) perfused at constant flow and outflow pressure. The addition of venous blood from shock dogs to the LLL perfusion circuit caused a transient (10-15 min) increase in LLL arterial pressure (51%) that could be reversed rapidly with papaverine. In this preparation, shock blood produced either a predominantly arterioconstriction or a predominantly venoconstriction. These results indicate that both arterial and venous vasoactive agents are released during SAO shock. The consistently observed venoconstriction in the intact shocked lung suggests that other factors, in addition to circulating vasoactive agents, contribute to the pulmonary hemodynamic response of the open-chest shocked dog.  相似文献   

11.
The effects of alpha-naphthylthiourea (ANTU) on lung microvascular permeability to plasma proteins were studied in anesthetized open-chest dogs. Lymph flow (Jv) was recorded, and total protein in plasma and lymph was analyzed after cannulating a small prenodal lung lymphatic. The protocol involved four experimental periods. Period 1. During this base-line period the preparation stabilized and steady states were reached in Jv, lymph total protein, pulmonary arterial pressure (Ppa), and left atrial pressure (Pla). Period 2. Pla was increased to approximately 20 cmH2O and maintained at that level until Jv and protein measurements attained a new steady state. Period 3. After Pla was lowered to control levels, ANTU (5 mg/kg body wt) was infused intravenously and parameters were measured for 3 h. Period 4 Pla was again raised to the pre-ANTU levels of period 2 and maintained for an additional 2-3 h. The lymphatic total protein clearance increased 8.6-fold for an equivalent increase in pulmonary capillary pressure after ANTU. Vascular permeability was assessed by estimating the osmotic reflection coefficient (sigma d) for total protein at the pulmonary capillary membrane. Sigma d decreased from 0.65 to 0.40 following ANTU. From plasma protein fractions in four experiments, equivalent pore radii for the capillary membrane of 95 and 280 A were calculated after ANTU compared with 80 and 200 A for normal lung capillaries. In addition, extravascular lung water increased from 3.8 +/- 0.16 to 5.87 +/- 0.25 following ANTU and to 7.55 +/- 0.55 (g/g blood-free dry wt) when Pla was elevated with ANTU. The experimental design allowed quantitative assessment of the vascular permeability increase after ANTU by use of lymph protein fluxes that had minimal errors due to changes in surface area or lymph contamination from nonpulmonary structures.  相似文献   

12.
To determine whether uremia changes lung vascular permeability, we measured the flow of lymph and proteins from the lungs of acutely uremic sheep. Acute renal failure was induced by either bilateral nephrectomy or by reinfusing urine. Both models of renal failure increased the plasma creatinine from 0.8 +/- 0.3 to 11 +/- 1 mg/dl in 3 days but caused no significant change in the flow of lymph from the lungs. To determine whether uremia increased the protein clearance response to elevated pulmonary microvascular pressures, we inflated a balloon in the left atrium for 2 h before and 3 days after inducing acute renal failure. In seven sheep, before removing the kidneys, the 20 cmH2O elevation of left atrial pressure increased the protein clearance 3.9 +/- 3.0 ml/h (from 9.5 +/- 4.9 to 13.4 +/- 5.4 ml/h). Three days after the bilateral nephrectomy the same increase in left atrial pressure increased the protein clearance 6.4 +/- 3.6 ml/h (from 6.1 +/- 2.1 to 12.5 +/- 5.2 ml/h), which was a significantly larger increase than that measured before the nephrectomy (P less than 0.05). Sham nephrectomy in seven sheep caused the protein clearance response to the elevated left atrial pressure to fall from 4.7 +/- 1.9 ml/h before the sham nephrectomy to 2.6 +/- 1.4 ml/h 3 days later (P less than 0.05). Uremia due to reinfusion of urine in five sheep did not affect the protein clearance response to elevations in left atrial pressure. Neither model of acute uremia increased the postmortem extravascular lung water volume.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Systemic to pulmonary flow from bronchial circulation, important in perfusing potentially ischemic regions distal to pulmonary vascular obstructions, depends on driving pressure between an upstream site in intrathoracic systemic arterial network and pulmonary vascular bed. The reported increase of pulmonary infarctions in heart failure may be due to a reduction of this driving pressure. We measured upstream element for driving pressure for systemic to pulmonary flow from bronchial circulation by raising pulmonary venous pressure (Ppv) until the systemic to pulmonary flow from bronchial circulation ceased. We assumed that this was the same as upstream pressure when there was flow. Systemic to pulmonary flow from bronchial circulation was measured in left lower lobes (LLL) of 21 anesthetized open-chest dogs from volume of blood that overflowed from pump-perfused (90-110 ml/min) pulmonary vascular circuit of LLL and was corrected by any changes of LLL fluid volume (wt). Systemic to pulmonary flow from bronchial circulation upstream pressure was linearly related to systemic arterial pressure (slope = 0.24, R = 0.845). Increasing Ppv caused a progressive reduction of systemic to pulmonary flow from bronchial circulation, which stopped when Ppv was 44 +/- 6 cmH2O and pulmonary arterial pressure was 46 +/- 7 cmH2O. A further increase in Ppv reversed systemic to pulmonary flow from bronchial circulation with blood flowing back into the dog. When net systemic to pulmonary flow from bronchial circulation by the overflow and weight change technique was zero a small bidirectional flow (3.7 +/- 2.9 ml.min-1 X 100 g dry lobe wt-1) was detected by dispersion of tagged red blood cells that had been injected.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Unilateral pulmonary artery obstruction (PAO) for 24-48 h, followed by reperfusion, results in pulmonary edema and lung inflammation. We hypothesized that lung injury actually occurred during the period of PAO but, because of low microvascular pressures during the period of occlusion, was not detected until perfusion was reestablished. To test this hypothesis, we studied 14 rabbits divided into three groups: group I rabbits underwent sham occlusion of the left pulmonary artery for 24 h; group II rabbits underwent PAO but were not reperfused; and group III rabbits were subjected to PAO and then reperfused for 4 h. The fluid filtration coefficient measured during a zone 3 no-flow hydrostatic stress (pulmonary arterial pressure = pulmonary venous pressure, both greater than alveolar pressure) in group I lungs was less than that of lungs in either group II or III [0.52 +/- 0.02 (SE) ml.min-1.cmH2O.100 g wet wt-1 vs. 0.94 +/- 0.11 and 0.86 +/- 0.13 for groups II and III, respectively, P less than 0.05]. The wet-to-dry weight ratio of the left lung measured after the zone 3 stress was applied for 20 min was 6.90 +/- 0.09 in group I rabbits and 9.21 +/- 0.75 and 11.75 +/- 0.44 in groups II and III, respectively (P less than 0.05). Radiolabeled microspheres demonstrated that flow to the left lung was diminished after the period of PAO (38 +/- 4, 9 +/- 5, and 2 +/- 1% of cardiac output in groups I, II, and III, respectively; P less than 0.05 for group I vs. groups II and III).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
The vasopressor response to graded bolus doses (50-500 micrograms) of serotonin (5-hydroxytryptamine; 5-HT) was examined in the isolated canine lower left lung lobe (LLL) perfused at constant flow with autogenous blood before and after cyclooxygenase inhibition (COI). Lobar vascular resistance (LVR) was partitioned into pre- (Ra) and postcapillary (Rv) segments by venous occlusion with lobar blood volume changes monitored gravimetrically. Before COI, 5-HT produced transient, dose-dependent increases in pulmonary arterial pressure (Ppa) of 43.8 +/- 4.8-123.0 +/- 8.5% (n = 22) and simultaneous decreases in lobar blood volume (5.5 +/- 0.5-8.2 +/- 0.6 g/100 g LLL) with nearly proportionate increases in Ra and Rv at each 5-HT dose. After the initial challenge to 5-HT, LLL's were treated either with saline (n = 7) or one of three chemically distinct cyclooxygenase inhibitors. COI with 40 microM indomethacin (n = 6) or 45 microM meclofenamate (n = 6) increased resting LVR by 36.0 +/- 8.3% (P less than 0.01; n = 12) and decreased the Ra/Rv from 1.9 +/- 0.3 to 1.1 +/- 0.2 (P less than 0.01), whereas 1 mM aspirin (n = 3) caused a fourfold increase in resting LVR without affecting Ra/Rv. After indomethacin or meclofenamate treatment, the vasopressor response to graded doses of 5-HT was markedly potentiated as Ppa increased by 71.6 +/- 7.6-207.0 +/- 24.6%. COI did not potentiate the lobar vasopressor response to graded doses (10-100 micrograms) of norepinephrine (NE, n = 6).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Because both chemical and mechanical insults to the lung may occur concomitantly with trauma, we hypothesized that the pressure threshold for vascular pressure-induced (mechanical) injury would be decreased after a chemical insult to the lung. Normal isolated canine lung lobes (N, n = 14) and those injured with either airway acid instillation (AAI, n = 18) or intravascular oleic acid (OA, n = 25) were exposed to short (5-min) periods of elevated venous pressure (HiPv) ranging from 19 to 130 cmH2O. Before the HiPv stress, the capillary filtration coefficient (Kf,c) was 0.12 +/- 0.01, 0.27 +/- 0.03, and 0.31 +/- 0.02 ml.min-1.cmH2O-1 x 100 g-1 and the isogravimetric capillary pressure (Pc,i) was 9.2 +/- 0.3, 6.8 +/- 0.5, and 6.5 +/- 0.3 cmH2O in N, AAI, and OA lungs, respectively. However, the pattern of response to HiPv was similar in all groups: Kf,c was no different from the pre-HiPv value when the peak venous pressure (Pv) remained less than 55 cmH2O, but it increased reversibly when peak Pv exceeded 55 cmH2O (P less than 0.05). The reflection coefficient (sigma) for total proteins measured after pressure exposure averaged 0.60 +/- 0.03, 0.32 +/- 0.04, and 0.37 +/- 0.09 for N, AAI, and OA lobes respectively. However, in contrast to the result expected if pore stretching had occurred at high pressure, in all groups the sigma measured during the HiPv stress when Pv exceeded 55 cmH2O was significantly larger than that measured during the recovery period.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
The effect of lung lymph fistula preparation on pulmonary microvascular permeability was investigated in sheep. Acutely prepared animals (n = 9) were compared with animals with a chronic lung lymph fistula (n = 5). The osmotic reflection coefficients (sigma) for total protein, albumin, immunoglobins (Ig) G and M, and the equivalent pore dimensions were calculated. Data were achieved at maximal possible lymph flows (QL) following elevation of left atrial pressure. In sheep with a chronic lung lymph fistula sigma's for total protein, albumin, IgG, and IgM at maximal lymph flows were 0.76 +/- 0.01, 0.65 +/- 0.09, 0.79 +/- 0.03, and 0.91 +/- 0.01, respectively. In the acutely prepared group the minimum lymph-to-plasma protein concentration for total protein was 0.39 +/- 0.06, corresponding to a sigma of 0.61 +/- 0.01. The sigma for albumin, IgG, and IgM were 0.48 +/- 0.04, 0.64 +/- 0.02, and 0.87 +/- 0.01, respectively. The equivalent pore radii in the chronic group were determined to be 54 and 190 A with 29% of the filtration accounted for by large pores. In the acute group the small pores were 56 A and the large pores 175 A with 53% of total volume flow at maximum lymph flows occurring through the large pores. Assuming a constant small-pore population the large pore number increased 4.5 times after surgery. For total protein, IgG, and IgM, sigma's in the acutely prepared group were significantly lower than in the control group. These results thus indicate that surgical preparation of a lung lymph fistula in sheep may cause acute increases in pulmonary microvascular permeability.  相似文献   

18.
Experiments were conducted on five chronically instrumented unanesthetized sheep to determine the effects of sustained hypoproteinemia on lung fluid balance. Plasma total protein concentration was decreased from a control value of 6.17 +/- 0.019 to 3.97 +/- 0.17 g/dl (mean +/- SE) by acute plasmapheresis and maintained at this level by chronic thoracic lymph duct drainage. We measured pulmonary arterial pressure, left atrial pressure, aortic pressure, central venous pressure, cardiac output, oncotic pressures of both plasma and lung lymph, lung lymph flow rate, and lung lymph-to-plasma ratio of total proteins and six protein fractions for both control base-line conditions and hypoproteinemia base-line conditions. Moreover, we estimated the average osmotic reflection coefficient for total proteins and the solvent drag reflection coefficients for the six protein fractions during hypoproteinemia. Hypoproteinemia caused significant decreases in lung lymph total protein concentration, lung lymph-to-plasma total protein concentration ratio, and oncotic pressures of plasma and lung lymph. There were no significant alterations in the vascular pressures, lung lymph flow rate, cardiac output, or oncotic pressure gradient. The osmotic reflection coefficient for total proteins was found to be 0.900 +/- 0.004 for hypoproteinemia conditions, which is equal to that found in a previous investigation for sheep with a normal plasma protein concentration. Our results suggest that hypoproteinemia does not alter the lung filtration coefficient nor the reflection coefficients for plasma proteins. Possible explanations for the reported increase in the lung filtration coefficient during hypoproteinemia by other investigators are also made.  相似文献   

19.
Simultaneous measures of vascular permeability to fluid (capillary filtration coefficient, Kf) and to plasma proteins (solvent drag reflection coefficient, sigma) were obtained over venous pressures (Pv) from 14 to 105 Torr in the isolated ventilated canine lung lobe (n = 70) pump perfused with autologous blood. The sigma was obtained from the relative increase in the concentration of plasma proteins vs. erythrocytes during fluid filtration. Kf's were obtained from two gravimetric methods as well as from change in hematocrit. All Kf's increased (P less than 0.05) as Pv was increased. However, sigma averaged 0.59 +/- 0.01 (range 0.54-0.67) and was unchanged (P greater than 0.05) by elevation of Pv over 20-105 Torr. In 44 lobes where all three Kf measures were obtained, gravimetric measures of Kf did not differ (P greater than 0.05) and were highly correlated with Kf obtained from hematocrit change, Vf Kf (P less than 0.001). However, both weight-based Kf's exceeded Vf Kf (P less than 0.05), suggesting that fluid filtration was overestimated by rate of lung weight gain or underestimated by hematocrit change. Increased permeability to water but not to protein over Pv from 20 to 105 Torr indicates that permeability to both can change independently and is counter to the theory that elevated vascular pressure "stretches" vascular pores.  相似文献   

20.
Changes in pulmonary microvascular permeability in sheep, after oleic acid injection, were studied using estimations of the osmotic reflection coefficient (sigma d) for total protein, albumin, immunoglobulins (Ig) G and M and calculation of the equivalent small and large pores of the microvessels. A chronic lung fistula was prepared in eight sheep. After a base-line period, left atrial pressure (Pla) was increased. Oleic acid (0.05 mg/kg body wt) was injected after a filtration-independent state had been obtained, and the spontaneously ventilating animals were then followed for 2 h. The sigma d for the normal lung was 0.65 +/- 0.03, 0.59 +/- 0.02, 0.72 +/- 0.04, and 0.84 +/- 0.02 for total protein, albumin, IgG, and IgM, respectively. The equivalent pore radii were 54 and 225 A. After oleic acid infusion, arterial pressure and arterial O2 tension decreased and leukocytes and platelets were consumed. At the end of the experiment, sigma d's were 0.27 +/- 0.04, 0.24 +/- 0.07, 0.33 +/- 0.06, and 0.55 +/- 0.04 for total protein, albumin, IgG, and IgM, respectively. The equivalent pore radii were 54 and 275 A, and the number of large pores was increased by 195%. The results indicate that oleic acid produces an increased vascular permeability by increasing the size and the numbers of large pores of the pulmonary microvascular walls.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号