共查询到20条相似文献,搜索用时 15 毫秒
1.
We have cloned a novel 100-kDa mammalian protein, which was recognized by an anti-peptide antibody against an epitope-containing nuclear localization signal of NF-kappaB p65 subunit. Predicted amino acid sequence of the protein is similar to those of yeast splicing factors, Prp1p/Zer1p of Schizosaccharomyces pombe and Prp6p of Saccharomyces cerevisiae. Among these proteins, tetratrico peptide repeat (TPR) motif, which mediates protein-protein interactions, is conserved, whereas leucine zipper motif is found only in the 100-kDa protein. Indirect immunofluorescent staining showed that the 100-kDa protein localized in the nucleus in HeLa cells. 相似文献
2.
3.
Mutational analysis identifies two separable roles of the Saccharomyces cerevisiae splicing factor Prp18 下载免费PDF全文
Prp18 functions in the second step of pre-mRNA splicing, joining the spliceosome just prior to the transesterification reaction that creates the mature mRNA. Prp18 interacts with Slu7, and the functions of the two proteins are intertwined. Using the X-ray structure of Prp18, we have designed mutants in Prp18 that imply that Prp18 has two distinct roles in splicing. Deletion mutations were used to delineate the surface of Prp18 that interacts with Slu7, and point mutations in Prp18 were used to define amino acids that contact Slu7. Experiments in which Slu7 and mutant Prp18 proteins were expressed at different levels support a model in which interaction between the proteins is needed for stable binding of both proteins to the spliceosome. Mutations in an evolutionarily conserved region show that it is critical for Prp18 function but is not involved in binding Slu7. Alleles with mutations in the conserved region are dominant negative, suggesting that the resulting mutant prp18 proteins make proper contacts with the spliceosome, but fail to carry out a Prp18-specific function. Prp18 thus appears to have two separable roles in splicing, one in stabilizing interaction of Slu7 with the spliceosome, and a second that requires the conserved loop. 相似文献
4.
Structural and functional analysis of essential pre-mRNA splicing factor Prp19p 总被引:3,自引:0,他引:3 下载免费PDF全文
Ohi MD Vander Kooi CW Rosenberg JA Ren L Hirsch JP Chazin WJ Walz T Gould KL 《Molecular and cellular biology》2005,25(1):451-460
U-box-containing Prp19p is an integral component of the Prp19p-associated complex (the nineteen complex, or NTC) that is essential for activation of the spliceosome. Prp19p makes numerous protein-protein contacts with other NTC components and is required for NTC stability. Here we show that Prp19p forms a tetramer in vitro and in vivo and we map the domain required for its oligomerization to a central tetrameric coiled-coil. Biochemical and in vivo analyses are consistent with Prp19p tetramerization providing an interaction surface for a single copy of its binding partner, Cef1p. Electron microscopy showed that the isolated Prp19p tetramer is an elongated particle consisting of four globular WD40 domains held together by a central stalk consisting of four N-terminal U-boxes and four coiled-coils. These structural and functional data provide a basis for understanding the role of Prp19p as a key architectural component of the NTC. 相似文献
5.
6.
芽殖酵母(Saccharomyces cerevisiae)和裂殖酵母(Schizosaccharomyces pombe)是用来研究异染色质形成、细胞周期、DNA复制等重要细胞功能的理想单细胞真核生物.本文主要介绍这2种酵母中异染色质形成的机制.异染色质是一种抑制基因转录和DNA重组的特殊染色质结构.尽管在芽殖酵母和裂殖酵母中异染色质形成都需要组蛋白修饰,但异染色质建立的机制不同.在芽殖酵母中参与异染色质形成的主要蛋白是Sir1-4蛋白(其中Sir2为组蛋白H3去乙酰化酶),而组蛋白H3赖氨酸9甲基化酶Clr4和异染色质蛋白Swi6在裂殖酵母异染色质形成中起关键的作用.在这两个酵母中,参与异染色质形成的组蛋白修饰蛋白由DNA结合蛋白招募到异染色质.此外,裂殖酵母也利用RNA干扰系统招募组蛋白修饰蛋白. 相似文献
7.
The carboxy terminal WD domain of the pre-mRNA splicing factor Prp17p is critical for function 下载免费PDF全文
Lindsey-Boltz LA Chawla G Srinivasan N Vijayraghavan U Garcia-Blanco MA 《RNA (New York, N.Y.)》2000,6(9):1289-1305
In Saccharomyces cerevisiae, Prp17p is required for the efficient completion of the second step of pre-mRNA splicing. The function and interacting factors for this protein have not been elucidated. We have performed a mutational analysis of yPrp17p to identify protein domains critical for function. A series of deletions were made throughout the region spanning the N-terminal 158 amino acids of the protein, which do not contain any identified structural motifs. The C-terminal portion (amino acids 160-455) contains a WD domain containing seven WD repeats. We determined that a minimal functional Prp17p consists of the WD domain and 40 amino acids N-terminal to it. We generated a three-dimensional model of the WD repeats in Prp17p based on the crystal structure of the beta-transducin WD domain. This model was used to identify potentially important amino acids for in vivo functional characterization. Through analysis of mutations in four different loops of Prp17p that lie between beta strands in the WD repeats, we have identified four amino acids, 235TETG238, that are critical for function. These amino acids are predicted to be surface exposed and may be involved in interactions that are important for splicing. Temperature-sensitive prp17 alleles with mutations of these four amino acids are defective for the second step of splicing and are synthetically lethal with a U5 snRNA loop I mutation, which is also required for the second step of splicing. These data reinforce the functional significance of this region within the WD domain of Prp17p in the second step of splicing. 相似文献
8.
The two model yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe appear to have diverged 1000 million years ago. Here, we describe that S.?pombe vectors can be propagated efficiently in S.?cerevisiae as pUR19 derivatives, and the pREP and pJR vector series carrying the S.?cerevisiae LEU2 or the S.?pombe ura4(+) selection marker are maintained in S.?cerevisiae cells. In addition, genes transcribed from the S.?pombe nmt1(+) promoter and derivatives are expressed in budding yeast. Thus, S.?pombe vectors can be used as shuttle vectors in S.?cerevisiae and S.?pombe. Our finding greatly facilitates the testing for functional orthologs of protein families and simplifies the cloning of new S.?pombe plasmids by using the highly efficient in vivo homologous recombination activity of S.?cerevisiae. 相似文献
9.
10.
Expression of human antithrombin III in Saccharomyces cerevisiae and Schizosaccharomyces pombe 总被引:2,自引:0,他引:2
Recombinant plasmids were constructed that direct the synthesis of human antithrombin III in baker's yeast, Saccharomyces cerevisiae, and the fission yeast, Schizosaccharomyces pombe. The signal sequence of antithrombin III was recognized by both yeast species, and antithrombin III was secreted into the medium. When the signal sequence was replaced by a sequence of ten arbitrary amino acids, the product expressed from such a construct stayed inside the cell. Antithrombin III was glycosylated by the baker's and fission yeast and was immunologically identical to antithrombin III isolated from human plasma. Antithrombin III isolated from the culture media of recombinant yeasts was biologically active, as could be shown by progressive inhibitor activity and heparin cofactor activity. 相似文献
11.
Six novel genes necessary for pre-mRNA splicing in Saccharomyces cerevisiae. 总被引:2,自引:0,他引:2 下载免费PDF全文
We have identified six new genes whose products are necessary for the splicing of nuclear pre-mRNA in the yeast Saccharomyces cerevisiae. A collection of 426 temperature-sensitive yeast strains was generated by EMS mutagenesis. These mutants were screened for pre-mRNA splicing defects by an RNA gel blot assay, using the intron- containing CRY1 and ACT1 genes as hybridization probes. We identified 20 temperature-sensitive mutants defective in pre-mRNA splicing. Twelve appear to be allelic to the previously identified prp2, prp3, prp6, prp16/prp23, prp18, prp19 or prp26 mutations that cause defects in spliceosome assembly or the first or second step of splicing. One is allelic to SNR14 encoding U4 snRNA. Six new complementation groups, prp29-prp34, were identified. Each of these mutants accumulates unspliced pre-mRNA at 37 degrees C and thus is blocked in spliceosome assembly or early steps of pre-mRNA splicing before the first cleavage and ligation reaction. The prp29 mutation is suppressed by multicopy PRP2 and displays incomplete patterns of complementation with prp2 alleles, suggesting that the PRP29 gene product may interact with that of PRP2. There are now at least 42 different gene products, including the five spliceosomal snRNAs and 37 different proteins that are necessary for pre-mRNA splicing in Saccharomyces cerevisiae. However, the number of yeast genes identifiable by this approach has not yet been exhausted. 相似文献
12.
Agata Jacewicz Beate Schwer Paul Smith Stewart Shuman 《Nucleic acids research》2014,42(20):12885-12898
Yeast Prp28 is a DEAD-box pre-mRNA splicing factor implicated in displacing U1 snRNP from the 5′ splice site. Here we report that the 588-aa Prp28 protein consists of a trypsin-sensitive 126-aa N-terminal segment (of which aa 1–89 are dispensable for Prp28 function in vivo) fused to a trypsin-resistant C-terminal catalytic domain. Purified recombinant Prp28 and Prp28-(127–588) have an intrinsic RNA-dependent ATPase activity, albeit with a low turnover number. The crystal structure of Prp28-(127–588) comprises two RecA-like domains splayed widely apart. AMPPNP•Mg2+ is engaged by the proximal domain, with proper and specific contacts from Phe194 and Gln201 (Q motif) to the adenine nucleobase. The triphosphate moiety of AMPPNP•Mg2+ is not poised for catalysis in the open domain conformation. Guided by the Prp28•AMPPNP structure, and that of the Drosophila Vasa•AMPPNP•Mg2+•RNA complex, we targeted 20 positions in Prp28 for alanine scanning. ATP-site components Asp341 and Glu342 (motif II) and Arg527 and Arg530 (motif VI) and RNA-site constituent Arg476 (motif Va) are essential for Prp28 activity in vivo. Synthetic lethality of double-alanine mutations highlighted functionally redundant contacts in the ATP-binding (Phe194-Gln201, Gln201-Asp502) and RNA-binding (Arg264-Arg320) sites. Overexpression of defective ATP-site mutants, but not defective RNA-site mutants, elicited severe dominant-negative growth defects. 相似文献
13.
Pentamidine inhibits mitochondrial intron splicing and translation in Saccharomyces cerevisiae 总被引:3,自引:0,他引:3 下载免费PDF全文
Pentamidine inhibits in vitro splicing of nuclear group I introns from rRNA genes of some pathogenic fungi and is known to inhibit mitochondrial function in yeast. Here we report that pentamidine inhibits the self-splicing of three group I and two group II introns of yeast mitochondria. Comparison of yeast strains with different configurations of mitochondrial introns (12, 5, 4, or 0 introns) revealed that strains with the most introns were the most sensitive to growth inhibition by pentamidine on glycerol medium. Analysis of blots of RNA from yeast strains grown in raffinose medium in the presence or absence of pentamidine revealed that the splicing of seven group I and two group II introns that have intron reading frames was inhibited by the drug to varying extents. Three introns without reading frames were unaffected by the drug in vivo, and two of these were inhibited in vitro, implying that the drug affects splicing by acting directly on RNA in vitro, but on another target in vivo. Because the most sensitive introns in vivo are the ones whose splicing depends on a maturase encoded by the intron reading frames, we tested pentamidine for effects on mitochondrial translation. We found that the drug inhibits mitochondrial but not cytoplasmic translation in cells at concentrations that inhibit mitochondrial intron splicing. Therefore, pentamidine is a potent and specific inhibitor of mitochondrial translation, and this effect explains most or all of its effects on respiratory growth and on in vivo splicing of mitochondrial introns. 相似文献
14.
Fuglsang A 《Antonie van Leeuwenhoek》2004,86(2):135-147
The compositional non-randomness was studied in genes of Saccharomyces cerevisiae and Schizosaccharomyces pombe. In both species, codon usage is well correlated with expressivity (measured as the codon adaptation index). Both species generally display higher nucleotide non-randomness in the group of highly expressed genes than in the lowly expressed genes. The highly expressed genes in both species are furthermore characterized by marked peaks in non-randomness at N=3 upstream of start codons, N=2 downstream of start codons and at N=1 and N=7 downstream of stop codons, indicating that these nucleotides may be key elements in translational regulation. Intragenic variation in codon usage was also observed to be linked to expressivity. It is suggested that the firm link between expressivity and codon usage calls for codon optimization. Based on bioinformatic calculations, examples of proteins are given for which codon optimizations might be relevant. 相似文献
15.
Characterization of Schizosaccharomyces pombe malate permease by expression in Saccharomyces cerevisiae 总被引:3,自引:0,他引:3
Camarasa C Bidard F Bony M Barre P Dequin S 《Applied and environmental microbiology》2001,67(9):4144-4151
In Saccharomyces cerevisiae, L-malic acid transport is not carrier mediated and is limited to slow, simple diffusion of the undissociated acid. Expression in S. cerevisiae of the MAE1 gene, encoding Schizosaccharomyces pombe malate permease, markedly increased L-malic acid uptake in this yeast. In this strain, at pH 3.5 (encountered in industrial processes), L-malic acid uptake involves Mae1p-mediated transport of the monoanionic form of the acid (apparent kinetic parameters: Vmax = 8.7 nmol/mg/min; Km = 1.6 mM) and some simple diffusion of the undissociated L-malic acid (Kd = 0.057 min(-1)). As total L-malic acid transport involved only low levels of diffusion, the Mae1p permease was further characterized in the recombinant strain. L-Malic acid transport was reversible and accumulative and depended on both the transmembrane gradient of the monoanionic acid form and the DeltapH component of the proton motive force. Dicarboxylic acids with stearic occupation closely related to L-malic acid, such as maleic, oxaloacetic, malonic, succinic and fumaric acids, inhibited L-malic acid uptake, suggesting that these compounds use the same carrier. We found that increasing external pH directly inhibited malate uptake, resulting in a lower initial rate of uptake and a lower level of substrate accumulation. In S. pombe, proton movements, as shown by internal acidification, accompanied malate uptake, consistent with the proton/dicarboxylate mechanism previously proposed. Surprisingly, no proton fluxes were observed during Mae1p-mediated L-malic acid import in S. cerevisiae, and intracellular pH remained constant. This suggests that, in S. cerevisiae, either there is a proton counterflow or the Mae1p permease functions differently from a proton/dicarboxylate symport. 相似文献
16.
Roguev A Shevchenko A Schaft D Thomas H Stewart AF Shevchenko A 《Molecular & cellular proteomics : MCP》2004,3(2):125-132
The sequential application of protein tagging, affinity purification, and mass spectrometry enables highly accurate charting of proteomic environments by the characterization of stable protein assemblies and the identification of subunits that are shared between two or more protein complexes, termed here "proteomic hyperlinks." We have charted the proteomic environments surrounding the histone methyltransferase, Set1, in both yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe. Although the composition of these nonessential Set1 complexes is remarkably conserved, they differ with respect to their hyperlinks to their proteomic environments. We speculate that conservation of the core components of protein assemblies and variability of hyperlinks represents a general principle in the molecular organization of eukaryotic proteomes. 相似文献
17.
Nuclear pre-mRNA splicing in the fission yeast Schizosaccharomyces pombe strictly requires an intron-contained, conserved sequence element. 总被引:25,自引:3,他引:22 下载免费PDF全文
It has recently been argued that pre-mRNA splicing in the fission yeast Schizosaccharomyces pombe may be more similar to splicing in metazoan species than in the budding yeast Saccharomyces cerevisiae. In this report we show that, contrary to this assumption, the conserved sequence element 5'-CTPu APy-3' found in all S. pombe introns 6-18 nucleotides upstream of the 3' splice site is, like the TACTAAC box in S. cerevisiae, indispensable for efficient splicing. The conserved adenine residue of this sequence is used for branch formation and point mutations introduced into the CTPuAPy sequence abolish splicing and seem not to result in the recruitment of cryptic branch sites. We also show that an S. cerevisiae intron is correctly excised in S. pombe whereby the TACTAAC box is used in branch formation. 相似文献
18.
Identification and characterization of Prp45p and Prp46p,essential pre-mRNA splicing factors 总被引:4,自引:0,他引:4
Through exhaustive two-hybrid screens using a budding yeast genomic library, and starting with the splicing factor and DEAH-box RNA helicase Prp22p as bait, we identified yeast Prp45p and Prp46p. We show that as well as interacting in two-hybrid screens, Prp45p and Prp46p interact with each other in vitro. We demonstrate that Prp45p and Prp46p are spliceosome associated throughout the splicing process and both are essential for pre-mRNA splicing. Under nonsplicing conditions they also associate in coprecipitation assays with low levels of the U2, U5, and U6 snRNAs that may indicate their presence in endogenous activated spliceosomes or in a postsplicing snRNP complex. 相似文献
19.
Cloning and expression of a Saccharomyces diastaticus glucoamylase gene in Saccharomyces cerevisiae and Schizosaccharomyces pombe. 总被引:1,自引:2,他引:1 下载免费PDF全文
A recombinant plasmid pool of the Saccharomyces diastaticus genome was constructed in plasmid YEp13 and used to transform a strain of Saccharomyces cerevisiae. Six transformants were obtained which expressed amylolytic activity. The plasmids each contained a 3.9-kilobase (kb) BamHI fragment, and all of these fragments were cloned in the same orientations and had identical restriction maps, which differed from the map of the STA1 gene (I. Yamashita and S. Fukui, Agric. Biol. Chem. 47:2689-2692, 1983). The glucoamylase activity exhibited by all S. cerevisiae transformants was approximately 100 times less than that of the donor strain. An even lower level of activity was obtained when the recombinant plasmid was introduced into Schizosaccharomyces pombe. No expression was observed in Escherichia coli. The 3.9-kb BamHI fragment hybridized to two sequences (4.4 and 3.9 kb) in BamHI-digested S. diastaticus DNA, regardless of which DEX (STA) gene S. diastaticus contained, and one sequence (3.9 kb) in BamHI-digested S. cerevisiae DNA. Tetrad analysis of crosses involving untransformed S. cerevisiae and S. diastaticus indicated that the 4.4-kb homologous sequence cosegregated with the glucoamylase activity, whereas the 3.9-kb fragment was present in each of the meiotic products. Poly(A)+ RNA fractions from vegetative and sporulating diploid cultures of S. cerevisiae and S. diastaticus were probed with the 3.9-kb BamHI fragment. Two RNA species, measuring 2.1 and 1.5 kb, were found in both the vegetative and sporulating cultures of S. diastaticus, whereas one 1.5-kb species was present only in the RNA from sporulating cultures of S. cerevisiae. 相似文献
20.
Ars3002 is an efficient single-copy replication origin in the fission yeast, Schizosaccharomyces pombe. In a previous study, we tested the effects of consecutive approximately 50-bp deletions throughout ars3002 on the replication efficiency of those origins in S. pombe. Here we report the results of our use of the same approximately 50-bp deletions to test the hypothesis that some of the cis-acting sequences important for replication origin activity in fission yeast might be conserved in the evolutionarily distant budding yeast, Saccharomyces cerevisiae. We found that in most cases there was no correlation between the effects of particular mutations in S. pombe and in S. cerevisiae. We conclude that it is unlikely that any of the cis-acting sequences recognised by homologous replication proteins is conserved between these two yeast species. 相似文献