首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Metabolic engineering of anthocyanin biosynthesis in Escherichia coli   总被引:3,自引:0,他引:3  
Anthocyanins are red, purple, or blue plant pigments that belong to the family of polyphenolic compounds collectively called flavonoids. Their demonstrated antioxidant properties and economic importance to the dye, fruit, and cut-flower industries have driven intensive research into their metabolic biosynthetic pathways. In order to produce stable, glycosylated anthocyanins from colorless flavanones such as naringenin and eriodictyol, a four-step metabolic pathway was constructed that contained plant genes from heterologous origins: flavanone 3beta-hydroxylase from Malus domestica, dihydroflavonol 4-reductase from Anthurium andraeanum, anthocyanidin synthase (ANS) also from M. domestica, and UDP-glucose:flavonoid 3-O-glucosyltransferase from Petunia hybrida. Using two rounds of PCR, each one of the four genes was first placed under the control of the trc promoter and its own bacterial ribosome-binding site and then cloned sequentially into vector pK184. Escherichia coli cells containing the recombinant plant pathway were able to take up either naringenin or eriodictyol and convert it to the corresponding glycosylated anthocyanin, pelargonidin 3-O-glucoside or cyanidin 3-O-glucoside. The produced anthocyanins were present at low concentrations, while most of the metabolites detected corresponded to their dihydroflavonol precursors, as well as the corresponding flavonols. The presence of side product flavonols is at least partly due to an alternate reaction catalyzed by ANS. This is the first time plant-specific anthocyanins have been produced from a microorganism and opens up the possibility of further production improvement by protein and pathway engineering.  相似文献   

2.
Perianth parts, in particular, tepals of Echinocereus triglochidiatus var. gurneyi yielded a complex mixture of dihydroflavonols and dihydroflavonol 7-O-glucosides. Dihydroquercetin and its 7-O-glucoside were the predominant compounds while dihydrokaempferol and dihydromyricetin and their 7-O-glycosides were present in lesser amounts. Quercetin 7-O-glucoside was the principal flavonol glycoside: others present were quercetin and kaempferol 3-O-glucosides and 3-O-rhamnosylglucosides. The epidermis and spines yielded only traces of presumed flavonols as determined by two-dimensional TLC. No flavonoids were detected in the cortex tissue. This is the first report of dihydroflavonol derivatives from the Cactaceae and constitutes the first record of flavonoids from Echinocereus.  相似文献   

3.
Three anthocyanins (13) and eight flavonols (411) were isolated from the flowers of Amherstia nobilis endemic to Myanmar. Anthocyanins were identified as cyanidin 3-O-glucoside (1), 3-O-xyloside (2), and peonidin 3-O-glucoside (3). On the other hand, flavonols were identified as isorhamnetin 3-O-glucoside (4), 7-O-glucoside (5), 3,7-di-O-glucoside (6) and 3-O-rutinoside (7), quercetin 3-O-rutinoside (8) and 3-O-glucoside (9), and kaempferol 3-O-rutinoside (10) and 3-O-glucoside (11). Although an anthocyanin, pelargonidin 3-O-pentoside, has been reported from the flowers of A. nobilis, it was not found in this survey. The presence of flavonols in A. nobilis was reported in this survey for the first time. Flavonoid composition of Amherstia was chemotaxonomically compared with those of phylogenetically related genera Cynometra and Brownea.  相似文献   

4.
Three anthocyanins, four flavonols, three aromatic acids and five gallotannins were isolated from Sapria himalayana f. albovinosa in Myanmar. They were identified as cyanidin 3-O-glucoside (1), cyanidin 3-O-xyloside (2) and peonidin 3-O-glucoside (3) (anthocyanins), quercetin 3-O-glucoside (4), quercetin 7-O-glucoside (5), quercetin 3-O-glucuronide (6) and isorhamnetin 3-O-glucoside (7) (flavonols), ellagic acid (8), gallic acid (9) and ethyl gallate (10) (aromatic acids), and 1,2,4,6-tetragalloylglucose (11), 1,4,6-trigalloylglucose (12), 1,2,6-trigalloylglucose (13), 1,2,4-trigalloylglucose (14) and 1,6-digalloylglucose (15) (gallotannins) by UV, LC-MS, acid hydrolysis, NMR and/or HPLC comparisons with authentic samples. The chemical composition of S. myanmarensis was qualitatively the same with that of S. himalayana f. albovinosa. Phenolic compounds of the Rafflesiaceae species including Sapria, Rafflesia and Rhizanthes were isolated and identified in this survey for the first time.  相似文献   

5.
Twenty-two ornamental flowers from different Adenium obesum, Mandevilla sanderi, and Nerium oleander cultivars/seedlings were analyzed for the presence of anthocyanins, flavonols, and chlorogenic acid using nuclear magnetic resonance (NMR) and mass spectrometry (MS). Cyanidin 3-O-[6-O-(rhamnosyl)-galactoside] and cyanidin 3-O-(galactoside) were identified as the major and minor anthocyanins, respectively, in three A. obesum seedlings that had red and red-purple flowers.Cyanidin 3-O-[2-O-(xylosyl)-galactoside] was identified as the major anthocyanin, whereas cyanidin 3-O-[6-O-(rhamnosyl)-galactoside] and cyanidin 3-O-(galactoside) were identified as the minor anthocyanins in 8 M. sanderi cultivars that had red and red-purple flowers. Cyanidin 3-O-[6-O-(rhamnosyl)-galactoside] and cyanidin 3-O-(galactoside) were identified as the major anthocyanins, whereas cyanidin 3-O-[2-O-(xylosyl)-galactoside] was identified as the minor anthocyanin in 8 N. oleander cultivars with red and red-purple flowers. Low levels of anthocyanins were detected in the N. oleander and M. sanderi cultivars that had white flowers, and there were no anthocyanins detected in the N. oleander cultivars with yellow flowers. Chlorogenic acid and four flavonols, quercetin 3-O-[6-O-(rhamnosyl)-galactoside], quercetin 3-O-[6-O-(rhamnosyl)-glucoside], kaempferol 3-O-(galactoside), and kaempferol 3-O-[6-O-(rhamnosyl)-galactoside], were identified in the flowers from all 22 cultivars/seedlings investigated.  相似文献   

6.
Blue flowers of six Bhutani Meconopsis species, M. bhutanica, M. bella, M. horridula, M. simplicifolia, M. primulina and M. polygonoides, were surveyed for anthocyanins and other flavonoids. Four anthocyanins were isolated and identified as cyanidin 3-O-sambubioside-7-O-glucoside (1), cyanidin 3-O-[xylosyl-(1 → 2)-(6″-malonylglucoside)]-7-O-glucoside (2), cyanidin 3-O-sambubioside (4) and cyanidin 3-O-[xylosyl-(1 → 2)-(6″-malonylglucoside)] (5). On the other hand, 12 flavonols were isolated from their Meconopsis species with various combination and characterized as kaempferol 3-O-glycosides (812), kaempferol 3,7-O-glycosides (1316), quercetin 3-O-glycosides (17 and 18) and isorhamnetin 3-O-glycoside (19). Of six Meconopsis species which were surveyed in this experiment, anthocyanin and flavonol composition of five species except for M. horridula was clarified for the first time. Their Meconopsis species showed the different flavonoid profiles, respectively, and flavonoid diversity within the glycosylation level of Meconopsis flowers were indicated.  相似文献   

7.
Fifteen flavonols, five aglycones and ten glucosides were isolated from the four species of Tetragonotheca, T. repanda, T. helianthoides, T. texana and T. ludoviciana. Included among the isolated flavonols are four previously unreported 7-O-glucosides, 6-hydroxykaempferol 7-O-glucoside, 6-hydroxykaempferol 6-methyl ether 7-O-glucoside, quercetagetin 6,3′-dimethyl ether 7-O-glucoside and quercetagetin 3,6-dimethyl ether 7-O-glucoside.  相似文献   

8.
Heterogaura is a monotypic genus of the tribe Onagreae of the Onagraceae. It is endemic to south western Oregon and California. Four flavonol glycosides, kaempferol 3-O-rhamnoside, quercetin 3-O-glucoside, quercetin 3-O-rhamnoglucoside and myricetin 3-O-glucoside, were found to occur in methanolic leaf extracts of each of the populations sampled. The presence of only flavonols is consistent with flavonoid analyses from other genera of the Onagreae, including Clarkia, the closest relative of Heterogaura.  相似文献   

9.
We examined the foliar flavonoids of Chrysanthemum arcticum subsp. arcticum and yezoense, and related Chrysanthemum species. Five flavonoid glycosides (luteolin 7-O-glucoside and 7-O-glucuronides of luteolin, apigenin, eriodictyol and naringenin) were isolated from these taxa. Luteolin 7-O-xylosylglucoside, luteolin, apigenin and quercetin 3-methyl ether were found in subsp. yezoense as very minor compounds that were not recognised by high-performance liquid chromatography/photodiode array (HPLC/PDA). The related species C. yezoense contained acacetin 7-O-rutinoside and some methoxylated flavone aglycones as major compounds. Thus, C. arcticum was distinguished from C. yezoense according to their flavonoid profiles.  相似文献   

10.
The flavonoids and xanthones in the leaves of Amorphophallus titanum, which has the largest inflorescence among all Araceous species, were surveyed. Eight C-glycosylflavones, five flavonols, one flavone O-glycoside and two xanthones were isolated and characterized as vitexin, isovitexin, orientin, isoorientin, schaftoside, isoschaftoside, vicenin-2 and lucenin-2 (C-glycosylflavones), kaempferol 3-O-robinobioside, 3-O-rutinoside and 3-O-rhamnosylarabinoside, and quercetin 3-O-robinobioside and 3-O-rutinoside (flavonols), luteolin 7-O-glucoside (flavone), and mangiferin and isomangiferin (xanthones). Although the inflorescence of this species has been surveyed for flavonoids, those of the leaves were reported for the first time.  相似文献   

11.
A rare anthocyanin, malvidin 3-O-rhamnoside, was isolated from the blue flowers of Parochetus communis Buch.-Ham. ex D. Don along with two known flavonols: kaempferol 3-O-(2-O-glucosyl-6-O-rhamnosyl)-glucoside and kaempferol 3-O-(2,6-di-O-rhamnosyl)-glucoside. These structures were identified using Nuclear Magnetic Resonance (NMR) and Mass Spectrometry (MS).  相似文献   

12.
Five flavonols, four flavones and one C-glycosylflavone were isolated from the leaves of Cathcartia villosa which is growing in the Himalayan Mountains. They were characterized as quercetin 3-O-vicianoside (1), quercetin 7,4′-di-O-glucoside (3), quercetin 3-O-rutinoside (4), quercetin 3-O-glucoside (5), quercetin 3-O-arabinosylarabinosylglucoside (6) (flavonols), luteolin (7), luteolin 7-O-glucoside (8), apigenin (9), chrysoeriol (10) (flavones), and vicenin-2 (11) (C-glycosylflavone) by UV, LC-MS, acid hydrolysis, NMR and/or HPLC and TLC comparisons with authentic samples. On the other hand, two flavonols 1 and kaempferol 3-O-vicianoside (2) were isolated and identified from the flowers of the species. Flavonoids were reported from the genus Cathcartia in this survey for the first time. Their chemical characters were chemotaxonomically compared with those of related Papaveraceous genera, Meconopsis and Papaver.  相似文献   

13.
Anthocyanins are widely distributed secondary metabolites that play an essential role in skin pigmentation of many plant organs and microorganisms. Anthocyanins have been associated with a wide range of biological and pharmacological properties. They are also effective agents in the prevention and treatment of many chronic diseases. Berries are particularly abundant in these compounds; therefore, their dietary intake has health-promoting effects. The aim of this study was to identify and determine the anthocyanin content in selected species and cultivars of berry fruits, such as raspberry, blackberry, red currant, blackcurrant, and highbush blueberry, widely consumed by Europeans. The concentrations of anthocyanins were determined by HPLC, identifying individual compounds: cyanidin-3-O-glucoside, pelargonidin-3-O-glucoside, delphinidin-3-O-glucoside, delphinidin-3-O-rutinoside, cyanidin-3-O-rutinoside, delphinidin-3-O-galactoside, cyanidin-3-O-galactoside, and malvidin-3-O-galactoside. The experimental data showed that the selected species and cultivars of berry fruits differ significantly in the contents of anthocyanins. Among all species tested, blackberry and blackcurrant were characterized significantly by the highest content of anthocyanins (sum), while the lowest content was found in red currant fruits. Additionally, the content of individual anthocyanin compounds in particular species and cultivars was also different. Considering the high content of anthocyanins and their potential positive impact on human health and protection against disease, berries should be part of healthy nutrition.  相似文献   

14.
A new dihydroflavonol, pallasiin, together with kaempferol, quercetin, isorhamnetin, mearnsetin, aromadendrin, eriodictyol and taxifolin, has been isolated from the bark of Rhamnus pallasii and its structure elucidated as 2,3-dihydromyricetin 4′-O-methyl ether.  相似文献   

15.
The major flavonoids in Riccia crystallina are naringenin and its 7-O-glucoside, apigenin 7-O-glucoside and apigenin 7-O-glucuronide and derivatives. Ricciocarpus natans is a rich source of luteolin 7,3′-di-O-glucuronide and also contains the 7-O-glucuronides of apigenin and luteolin and the 3′-O-glucuronide of luteolin. A parallel between the production of biosynthetically simple flavonoids and reduced morphology is evident among these liverworts.  相似文献   

16.
鸳鸯茉莉开花过程中花青素组成的变化   总被引:1,自引:0,他引:1  
为了解鸳鸯茉莉(Brunfelsiaacuminata)花色变化的机理,采用高效液相色谱(HPLC)体系检测其开花过程中花青素组成的变化。结果表明,优化的HPLC体系为:流速为0.8 mL min–1,流动相A为7.5%甲酸乙腈,流动相B为7.5%甲酸水,洗脱程序为0 min,8%A;15 min,18%A;25 min,23%A;45 min,40%A;50 min,8%A。利用优化体系检测到鸳鸯茉莉花瓣中含有锦葵色素-3-O-葡萄糖苷、矮牵牛素葡萄糖苷和飞燕草素葡萄糖苷3种花青苷,其中锦葵色素-3-O-葡萄糖苷的含量最高,飞燕草素葡萄糖苷含量最低,且在花色由深变浅的过程中3种花青苷的含量均降低。因此,鸳鸯茉莉的呈色与这3种花青苷有关,且锦葵色素-3-O-葡萄糖苷起主导作用。  相似文献   

17.
The biotransformation of naringin and naringenin was investigated using cultured cells of Eucalyptus perriniana. Naringin (1) was converted into naringenin 7-O-β-d-glucopyranoside (2, 15%), naringenin (3, 1%), naringenin 5,7-O-β-d-diglucopyranoside (4, 15%), naringenin 4′,7-O-β-d-diglucopyranoside (5, 26%), naringenin 7-O-[6-O-(β-d-glucopyranosyl)]-β-d-glucopyranoside (6, β-gentiobioside, 5%), naringenin 7-O-[6-O-(α-l-rhamnopyranosyl)]-β-d-glucopyranoside (7, β-rutinoside, 3%), and 7-O-β-d-gentiobiosyl-4′-O-β-d-glucopyranosylnaringenin (8, 1%) by cultured cells of E. perriniana. On the other hand, 2 (14%), 4 (7%), 5 (13%), 6 (2%), 7 (1%), naringenin 4′-O-β-d-glucopyranoside (9, 4%), naringenin 5-O-β-d-glucopyranoside (10, 2%), and naringenin 4′,5-O-β-d-diglucopyranoside (11, 5%) were isolated from cultured E. perriniana cells, that had been treated with naringenin (3). Products, 7-O-β-d-gentiobiosyl-4′-O-β-d-glucopyranosylnaringenin (8) and naringenin 4′,5-O-β-d-diglucopyranoside (11), were hitherto unknown.  相似文献   

18.
Anaerobic degradation of flavonoids by Eubacterium ramulus   总被引:2,自引:0,他引:2  
Eubacterium ramulus, a quercetin-3-glucoside-degrading anaerobic microorganism that occurs at numbers of approximately 108/g dry feces in humans, was tested for its ability to transform other flavonoids. The organism degraded luteolin-7-glucoside, rutin, quercetin, kaempferol, luteolin, eriodictyol, naringenin, taxifolin, and phloretin to phenolic acids. It hydrolyzed kaempferol-3-sorphoroside-7-glucoside to kaempferol-3-sorphoroside and transformed 3,4-dihydroxyphenylacetic acid, a product of anaerobic quercetin degradation, very slowly to non-aromatic fermentation products. Luteolin-5-glucoside, diosmetin-7-rutinoside, naringenin-7-neohesperidoside, (+)-catechin, and (–)-epicatechin were not degraded. Cell extracts of E. ramulus contained α- and β-d-glucosidase activities, but were devoid of α-l-rhamnosidase activity. Based on the degradation patterns of these substrates, a pathway for the degradation of flavonoids by E. ramulus is proposed. Received: 1 July 1999 / Accepted: 25 September 1999  相似文献   

19.
20.
Seventy-five taxa belonging to the genus Asarum sensu lato were studied for their composition of flavonoids. Three chalcones and an aurone were found as major components. The chalcones were identified as chalcononaringenin 2′,4′-di-O-glucoside, 4,2′,4′-tri-O-glucoside, 4-O-glucoside, and the aurone as aureisidin 4,6-di-O-glucoside. The glycoside, 2′,4′-di-O-glucoside was detected in all taxa examined, and is a chemotaxonomical feature of Asarum sensu lato. 4,2′,4′-Tri-O-glucoside was found from the taxa classified into the genera Asiasarum, Geotaenium and Heterotropa by Maekawa's system. On the other hand, the glycoside was not detected from three Asarum sensu stricto species, A. caudigerum, A. caulescens and A. leptophyllum. In contrast, aurone, aureusidin 4,6-di-O-glucoside occurred in two Asarum s.s., A. caulescens and A. leptophyllum. Thus, the Asarum s.s. and other Maekawa's genera, Asiasarum, Geotaenium and Heterotropa could distinguish by the presence or absence of some anthochlor pigments. Other flavonoids were isolated from the selected 18 Asarum species. They were characterized as some flavonol 3- or 3,7-O-glycosides based on kaempferol, quercetin and isorhamnetin, flavone, apigenin 6,8-di-C-glycoside, flavanone, naringenin 5,7-di-O-glucoside, and xanthone, mangiferin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号