首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
While bulk crystallization from impure solutions is used industrially as a purification step for a wide variety of materials, it is a technique that has rarely been used for proteins. Proteins have a reputation for being difficult to crystallize and high purity of the initial crystallization solution is considered paramount for success in the crystallization. Although little is written on the purifying capability of protein crystallization or of the effect of impurities on the various aspects of the crystallization process, recent published reports show that crystallization shows promise and feasibility as a purification technique for proteins. To further examine the issue of purity in macromolecule crystallization, this study investigates the effect of the protein impurities, avidin, ovalbumin, and conalbumin at concentrations up to 50%, on the solubility, crystal face growth rates, and crystal purity of the protein lysozyme. Solubility was measured in batch experiments while a computer controlled video microscope system was used to measure the ?110? and ?101? lysozyme crystal face growth rates. While little effect was observed on solubility and high crystal purity was obtained (>99.99%), the effect of the impurities on the face growth rates varied from no effect to a significant face specific effect leading to growth cessation, a phenomenon that is frequently observed in protein crystal growth. The results shed interesting light on the effect of protein impurities on protein crystal growth and strengthen the feasibility of using crystallization as a unit operation for protein purification.  相似文献   

2.
激光扫描共聚焦显微镜与普通光学显微镜相比,其分辨率高,同时具有可对样品进行非侵入性无损伤断层扫描,以及对样品形貌进行三维成建等特点,因此,可作为研究晶体生长强有利的工具。本文介绍了其在定量测量晶体的个数,重组三维图像以获得晶体生长的过程信息及测定晶体生长台阶动态变化等方面的应用。还对激光扫描共聚焦显微镜在晶体生长研究的其它方面应用前景作了展望。  相似文献   

3.
[目的]研究苏云金芽孢杆菌(Bacillus thuringiensis,Bt)Bt9875菌株晶体蛋白对人急性髓细胞性白血病细胞HL-60的影响.[方法]采用MTT比色、荧光显微观察、DNA凝胶电泳、流式细胞术等方法来检测不同浓度的Bt9875晶体蛋白处理后HL-60细胞的凋亡特征.[结果]Bt9875晶体蛋白对HL-60细胞的生长具有明显的抑制作用,且随着蛋白质浓度的增加对HL-60细胞生长抑制愈加明显,而对正常人外周血单个核细胞(PBMC)无作用;荧光显微镜下观察发现经该蛋白作用后HL-60细胞核的形态呈现凋亡特征;流式细胞术分析表明,HL-60细胞经100 μg/mL晶体蛋白作用后,凋亡率达到52%;琼脂糖凝胶电泳显示细胞DNA呈梯状降解.[结论]初步证明了Bt9875晶体蛋白在体外能够明显抑制HL-60细胞的增长,并诱导其凋亡,这为苏云金芽抱杆菌晶体蛋白的应用开创了新的思路.  相似文献   

4.
Pressure is expected to be an important parameter to control protein crystallization, since hydrostatic pressure affects the whole system uniformly and can be changed very rapidly. So far, a lot of studies on protein crystallization have been done. Solubility of protein depends on pressure. For instance, the solubility of tetragonal lysozyme crystal increased with increasing pressure, while that of orthorhombic crystal decreased. The solubility of subtilisin increased with increasing pressure. Crystal growth rates of protein also depend on pressure. The growth rate of glucose isomerase was significantly enhanced with increasing pressure. The growth rate of tetragonal lysozyme crystal and subtilisin decreased with increasing pressure. To study the effects of pressure on the crystallization more precisely and systematically, hen egg white lysozyme is the most suitable protein at this stage, since a lot of data can be used. We focused on growth kinetics under high pressure, since extensive studies on growth kinetics have already been done at atmospheric pressure, and almost all of them have explained the growth mechanisms well. The growth rates of tetragonal lysozyme decreased with pressure under the same supersaturation. This means that the surface growth kinetics significantly depends on pressure. By analyzing the dependence of supersaturation on growth rate, it was found that the increase in average ledge surface energy of the two-dimensional nuclei with pressure explained the decrease in growth rate. At this stage, it is not clear whether the increase in surface energy with increasing pressure is the main reason or not. Fundamental studies on protein crystallization under high pressure will be useful for high pressure crystallography and high pressure protein science.  相似文献   

5.
We have isolated a 4.785 Da protein from the nacreous layer of the sea snail Haliotis laevigata (greenlip abalone) shell after demineralization with acetic acid. The sequence of 41 amino acids was determined by Edman degradation supported by mass spectrometry. The most abundant amino acids were cysteine (19.5%), histidine (17%), and arginine (14.6%). The positively charged amino acids were almost counterbalanced by negatively charged ones resulting in a calculated isoelectric point of 7.86. Atomic-force microscopy studies of the interaction of the protein with calcite surfaces in supersaturated calcium carbonate solution or calcium chloride solution showed that the protein bound specifically to calcite steps, inhibiting further crystal growth at these sites in carbonate solution and preventing crystal dissolution when carbonate was substituted with chloride. Therefore this protein was named perlinhibin. X-ray diffraction investigation of the crystal after atomic-force microscopy growth experiments showed that the formation of aragonite was induced on the calcite substrate around holes caused by perlinhibin crystal-growth inhibition. The strong interaction of the protein with calcium carbonate was also shown by vapor diffusion crystallization. In the presence of the protein, the crystal surfaces were covered with holes due to protein binding and local inhibition of crystal growth. In addition to perlinhibin, we isolated and sequenced a perlinhibin-related protein, indicating that perlinhibin may be a member of a family of closely related proteins.  相似文献   

6.
In this study, we used microbeam grazing-incidence small-angle x-ray scattering (μGISAXS) to investigate in situ protein nucleation and crystal growth assisted by a protein nanotemplate, and introduced certain innovations to improve the method. Our aim was to understand the protein nanotemplate method in detail, as this method has been shown to be capable of accelerating and increasing crystal size and quality, as well as inducing crystallization of proteins that are not crystallizable by classical methods. The nanotemplate experimental setup was used for drops containing growing protein crystals at different stages of nucleation and growth. Two model proteins, lysozyme and thaumatin, were used under unique flow conditions to differentially probe protein crystal nucleation and growth.  相似文献   

7.
W J Ray 《Proteins》1992,14(2):300-308
Although rabbit muscle phosphoglucomutase occasionally deposits tetragonal crystals from solutions of ammonium sulfate at about 47% of saturation, low concentrations of polyethylene glycol-400 (PEG), 1 to 4.5% w/v, must be included to sustain crystal growth. A comparison of long-term growth rates for macroscopic crystals in the presence and absence of added PEG suggests that at high salt concentration this cosolute exerts its primary effect on disordered protein aggregates, either in the external medium or at the surface of the crystal, and thereby allows the growth of much larger crystals. Since the observed effects may arise from a PEG-induced increase in the "solubility" of the aggregate that exceeds the induced increase in solubility of the crystalline phase under these conditions, the physical basis for a cosolute-induced increase in solubility in the presence of a precipitant is considered. The applicability of such a rationale to the present system is supported by an assessment of the relative effects of polyethylene glycol and beta-octylglucoside on amorphous, salt-induced precipitates of phosphoglucomutase. PEG also produces what appears to be a differential effect on nucleation efficiency and crystal growth rate. Thus, seed crystals cannot be enlarged at a significant rate at high salt concentration without producing showers of extraneous nucleation centers when the concentration of added PEG is 3% or less. But PEG concentrations of 4.5% essentially eliminate the showering problem, ostensibly by increasing the supersaturation required for nucleation to a greater extent than that required for crystal growth. The same type of effect is observed during de novo growth. Again a solubility-based mechanism is posed. Hysteretic effects related to properties of amorphous aggregates of the protein also are described.  相似文献   

8.
Models of protein crystal growth   总被引:2,自引:0,他引:2  
The growth of large and well ordered protein crystals remains the major obstacle in protein structure determination by means of X-ray crystallography. One of the reasons is that the physico-chemical aspect of protein crystallization process is not understood. This article reviews efforts towards formulation of models that could become theoretical frameworks for the interpretation of voluminous experimental data collected on protein crystal growth. Special attention is devoted to microscopic models that recognize the role of the shape of protein molecules in crystal formation.  相似文献   

9.
Formation of cholesterol gallstones in gallbladder is controlled by procrystallizing and anticrystallizing factors present in bile. Dietary garlic and onion have been recently observed to possess anti-lithogenic potential in experimental mice. In this investigation, the role of biliary proteins from rats fed lithogenic diet or garlic/onion-containing diet in the formation of cholesterol gallstones in model bile was studied. Cholesterol nucleation time of the bile from lithogenic diet group was prolonged when mixed with bile from garlic or onion groups. High molecular weight proteins of bile from garlic and onion groups delayed cholesterol crystal growth in model bile. Low molecular weight (LMW) proteins from the bile of lithogenic diet group promoted cholesterol crystal growth in model bile, while LMW protein fraction isolated from the bile of garlic and onion groups delayed the same. Biliary LMW protein fraction was subjected to affinity chromatography using Con-A and the lectin-bound and unbound fractions were studied for their influence on cholesterol nucleation time in model bile. Major portion of biliary LMW proteins in lithogenic diet group was bound to Con-A, and this protein fraction promoted cholesterol nucleation time and increased cholesterol crystal growth rate, whereas Con-A unbound fraction delayed the onset of cholesterol crystallization. Biliary protein from garlic/onion group delayed the crystallization and interfered with pronucleating activity of Con-A bound protein fraction. These data suggest that apart from the beneficial modulation of biliary cholesterol saturation index, these Allium spices also influence cholesterol nucleating and antinucleating protein factors that contribute to their anti-lithogenic potential.  相似文献   

10.
11.
A new method of protein nucleation and crystallization based on Langmuir-Blodgett technology is here utilized for the template stimulation of crystal growth of so far non-crystallized proteins. Microcrystals (60-120 microm) of bovine cytochrome P450scc and human protein kinase CKII alpha subunit were obtained with use of the homologous protein thin film template by vapor diffusion modified hanging drop method. The induction of microcrystals nucleation by the thin template confirms in the two different important classes of proteins, until now never crystallized, the positive stimulatory influence for crystal formation of protein thin film template, which was observed in an earlier study with a model system (chicken egg white lysozyme) as an unexpected acceleration and enhancement in the crystal growth.  相似文献   

12.
The mass transfer process and the growth rate of protein crystals   总被引:1,自引:0,他引:1  
Duan L  Kang Q  Hu WR  Li GP  Wang DC 《Biophysical chemistry》2002,97(2-3):189-201
In this paper, protein crystal growth is studied by a Mach-Zehnder interferometer and an image process system. The interference fringe images are recorded during the crystallization of tetragonal hen egg white lysozyme crystal. Concentration distributions of the protein solution are given from the interference fringe images recorded by the Mach-Zehnder interferometer with a real time servo system of a four-step phase shift. The mass transfer flux and the crystal growth rates are obtained from the concentration distribution. The results show that the observed rates are in accordance with those demonstrated by measurements of the experimental images; therefore the method for determining growth rate by the diffusion process is reasonable.  相似文献   

13.
A microscopic, reversible model to study protein crystal nucleation and growth is presented. The probability of monomer attachment to the growing crystal was assumed to be proportional to the protein volume fraction and the orientational factor representing the anisotropy of protein molecules. The rate of detachment depended on the free energy of association of the given monomer in the lattice, as calculated from the buried surface area. The proposed algorithm allowed the simulation of the process of crystal growth from free monomers to complexes having 10(5) molecules, i.e. microcrystals with already formed faces. These simulations correctly reproduced the crystal morphology of the chosen model system--the tetragonal lysozyme crystal. We predicted the critical size, after which the growth rate rapidly increased to approximately 50 protein monomers. The major factors determining the protein crystallisation kinetics were the geometry of the protein molecules and the resulting number of kinetics traps on the growth pathway.  相似文献   

14.
用汽相扩散法生长溶菌酶晶体并利用CCD显微摄像系统记录了溶菌酶晶体的生长过程。由此图象序列,我们可以计算晶体的最大线度、生长速度,估计溶菌酶分子层的增长速度,了解蛋白质晶体在结晶室内的分布及其形态变化。得到结果如下:蛋白晶体生长初期最大线度与时间近似成线性关系;各晶面生长速度基本相等。  相似文献   

15.
Mollusk shell nacre is known for its superior mechanical properties and precisely controlled biomineralization process. However, the question of how mollusks control the morphology of nacre lamellae remains unresolved. Here, a novel 38-kDa extrapallial fluid (EPF) protein, named amorphous calcium carbonate-binding protein (ACCBP), may partially answer this question. Although sequence analysis indicated ACCBP is a member of the acetylcholine-binding protein family, it is actively involved in the shell mineralization process. In vitro, ACCBP can inhibit the growth of calcite and induce the formation of amorphous calcium carbonate. When ACCBP functions were restrained in vivo, the nacre lamellae grew in a screw-dislocation pattern, and low crystallinity CaCO(3) precipitated from the EPF. Crystal binding experiments further revealed that ACCBP could recognize different CaCO(3) crystal phases and crystal faces. With this capacity, ACCBP could modify the morphology of nacre lamellae by inhibiting the growth of undesired aragonite crystal faces and meanwhile maintain the stability of CaCO(3)-supersaturated body fluid by ceasing the nucleation and growth of calcite. Furthermore, the crystal growth inhibition capacity of ACCBP was proved to be directly related to its acetylcholine-binding site. Our results suggest that a "safeguard mechanism" of undesired crystal growth is necessary for shell microstructure formation.  相似文献   

16.
The effects of potential serum inhibitors upon the growth of calcium hydroxyapatite (HAP) crystals were studied in vivo using a pH-stat system. Whole serum caused a marked decrease in crystal growth in a dose-dependent manner. At a protein concentration of 13 micrograms/ml, whole serum reduced the initial rate of crystal growth from 84 mumol of KOH/h to 48 mumol of KOH/h. Serum components were separated by ultrafiltration (10,000 Da cut-off). The high-molecular-mass fraction containing serum proteins gave an initial rate of crystal growth of 48 mumol of KOH/h compared with 64 mumol of KOH/h given by the low-molecular-mass components. Thus, two-thirds of the inhibitory activity was associated with proteins and other serum macromolecules, whilst the remainder of the activity was associated with the low-molecular-mass components. Albumin-depleted serum showed an initial rate of crystal growth of 59 mumol of KOH/h, whilst albumin purified by affinity chromatography gave an initial rate of crystal growth of 56 mumol of KOH/h at the same protein concentration. Albumin, therefore, not only accounts for half of the protein concentration in serum, but also contributes half of the inhibitory activity of the high-molecular-mass fraction. Heat denaturation of albumin dramatically enhanced the inhibition of HAP seeded growth with the initial rate of crystal growth falling to 27 mumol of KOH/h after treatment compared with 62 mumol of KOH/h before denaturation. Isoelectric focusing indicated that the tertiary and secondary structure, and hence the distribution of surface charge of albumin, are altered by heat denaturation. Gels showed a mixture of species with isoelectric points ranging from 6.0 to 5.0 compared with the native protein value of 4.7. These data suggest that adsorption of serum proteins to the growing HAP crystals is one mechanism of growth inhibition. It is also clear that the most abundant serum protein, albumin, is an important mediator of this process.  相似文献   

17.
根据冰晶在水溶液中生长的基本热力学性质,应用多层界面模型,分别得到了冰晶在纯水及抗冻蛋白溶液中生长界面层的吉布斯自由能.由冰晶生长界面层的吉布斯自由能,分析了冰晶在三种不同第一类鱼抗冻蛋白分子溶液中,热平衡状态下生长界面层的微观平衡结构,发现冰晶在抗冻蛋白溶液中生长与其在纯水中生长相比,界面层结构有明显变化,结合抗冻蛋...  相似文献   

18.
The purine analogue, 8-azaguanine, was added to cultures of the parasporal crystal-forming organism Bacillus cereus var. alesti at different times during growth and synchronous sporulation. The effect of its incorporation has been studied with particular reference to cell growth, nucleic acid composition, cytology, and the synthesis of the spore and crystal protein. Additions of the analogue during any stage of growth prevented further cell proliferation and all spore and crystal formation. Since both nucleic acids continued to be formed, cells of an increased size developed, containing large masses of chromatin in the form of condensed balls or axial cords. Lipid-containing inclusions also appeared following these additions and were usually aggregated at the centre or poles of the cells. The analogue could be isolated as the ribonucleotide from both the acid soluble and RNA fractions of these inhibited cells. Additions of the analogue following commencement of sporulation did not prevent either spore or crystal formation or affect the nucleic acid content of the sporulating cells. However, as before, the 8-azaguanine was incorporated into both the acid soluble and RNA of the cells, but not into these fractions of the spores ultimately formed. The implications of these findings are discussed in relation to crystal protein synthesis.  相似文献   

19.
Co-crystallization of membrane proteins with antibody fragments may emerge as a general tool to facilitate crystal growth and improve crystal quality. The bound antibody fragment enlarges the hydrophilic part of the mostly hydrophobic membrane protein, thereby increasing the interaction area for possible protein-protein contacts in the crystal. Additionally, it may restrain flexible parts or lock the membrane protein in a defined conformational state. For successful co-crystallization trials, the antibody fragments must be stable in detergents during the extended period of crystal growth and must be easily produced in amounts necessary for crystallography. Therefore, we constructed a library of antibody Fab fragments from a framework subset of the HuCAL GOLD library (Morphosys, Munich, Germany). By combining the most stable and well expressed frameworks, V(H)3 and V(kappa)3, with the further stabilizing constant domains, a Fab library with the desired properties was obtained in a standard phage display format. As a proof of principle, we selected binders with phage display against the detergent-solubilized citrate transporter CitS of Klebsiella pneumoniae. We describe efficient methods for the immobilization of the membrane protein during selection, for ELISA screening, and for BIAcore evaluation. We demonstrate that the selected Fab fragments form stable complexes with native CitS and recognize conformational epitopes with affinities in the low nanomolar range.  相似文献   

20.
High-resolution confocal laser scanning microscopy (CLSM) is a powerful tool for in situ observation and analysis of protein crystal growth kinetics. Because the resolution of CLSM is not diffraction-limited by the object, it is possible to visualize, under certain conditions, objects in molecular dimensions. A modified batch technique is applied which allows the growth kinetics of sufficiently small crystallites fixed at the lower side of a cover glass, within a hanging drop, to be studied in reflected light near the total reflection angle. A gap, or cavity, filled with solution is formed between the cover glass and the upper crystal face, which acts to fix small crystallites by hydrodynamic friction forces. The cavity height enables the propagation of molecular steps across the upper crystal face without constraint, so that the propagation velocity and geometrical parameters can be measured by CLSM. The layer growth kinetics of monoclinic crystallites of a long-acting insulin derivative (Insulin Glargine) is investigated. For a twofold supersaturation of the solution, the growth is governed by 2D nucleation at the edges of the crystallites followed by a spreading of molecular steps. The layer growth kinetics are well fitted by the simple cubic kinetic lattice model. We find that only about one of a thousand solute (protein) molecules which push a kink place due to their Brownian motion becomes really incorporated into the growing crystal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号