首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The growth of wheat seedlings (Triticum sativum) is inhibited by abscisic acid (ABA). The inhibition increases with the concentration of ABA (from 10-6M to 5 × 10-5M) and is stronger in the case of coleoptiles and first leaves than in roots. In contrast, naphthaleneacetic acid (ANA), at 10-5M, exerts its greatest inhibitory effect on the roots. The inhibitory effect of ABA on coleoptiles can be partially overcome by kinetin and to a much smaller degree by gibberellic acid. Neither of these two compounds, at 10-5M, had any effect on the ABA-induced inhibition of root growth. The RNA and DNA contents per plant organ are considerably reduced after treatment of the seedlings with ABA, particularly in the coleoptiles and the first leaves. The incorporation of uracil-2-14C and uridine T (G) into RNA of treated seedlings is reduced in the case of coleoptiles and first leaves, but considerably enhanced in roots. The mechanism of the action of ABA is discussed in the light of these results.  相似文献   

2.
Since the existence of root promoting substances that consist of a complex between auxin and another molecule has been suggested, we have examined the role of auxin conversion products in root regeneration by Pinus lambertiana embryo cuttings. Auxin conversion products were detected using radioactive forms of the auxins IAA (indoIe-3-acetic acid), NAA (a-napthaleneacetic acid) and 2,4-D (2,4-dichlorophenoxyacetic acid). 10?7M NAA was more effective than 10?6M IAA at promoting rooting, yet it formed conversion products much less rapidly. Also continuous exposure to IAA was necessary for optimum root formation. Based on these and other findings, we conclude that free auxin, and not the conversion products we detected, is essential to root meristem formation.  相似文献   

3.
The growth response (increase in weight) of cultured explants from seedling date (Phoenix dactylifera L.) and mature coconut (Cocos nucifera L. cv. Malayan Dwarf) palms to source and concentration of organic nitrogen. carbohydrate, auxins, cytokinins and gibberellins was examined. Growth was strongly stimulated by the presence of auxins (10?7 to 10?6M), cytokinins (10?6 to 10?5M), high concentrations of sucrose (0.2 M), and in the absence of NH4Cl, by organic sources of reduced nitrogen. Higher concentrations of auxin (2,4-D or NAA at 10?6 to 10?5M) which still stimulated growth of Phoenix tissue, proved inhibitory to growth of freshly excised Cocos tissues. Explants from both palms initiated roots when subcultured on a medium with increased levels of auxin (NAA, 2.5 × 10?6 to 2.5 × 10?5M) and reduced levels of cytokinin (6-BAP, 5 × 10?8M). Isolated roots excised from these explants continued growth and produced new laterals when subcultured on media with GA3 (5 × 10?7M) and reduced levels of auxin, cytokinin, and either minerals or sucrose.  相似文献   

4.
Summary Yellowish compact callus, induced from cowpea hypocotyls on Murashige and Skoog(MS) medium (1962) containing 0.2 mg/l(0.93 μM) kinetin and 0.4 mg/l (1.81 μM) 2,4-dichlorophenoxyacetic acid (2,4-D), was subcultured on MS medium containing cytokinin alone, auxin alone, or auxins plus cytokinins in order to determine the effect of cytokinins on root organogenesis in callus cultures. The callus actively proliferated on the same medium but did not show any organogenic activity macroscopically as well as microscopically. On medium with N6-benzyladenine (BA) and 1-naphthaleneacetic acid (NAA), the yellowish compact callus first changed to pale green compact callus and then many green spots appeared on its surface under light culture. But the yellowsih compact callus remained yellowish and white spots appeared on its surface in dark culture. These spots gradually became white nodular structures. Adventitious root formation from the nodular structures occurred not only on the same medium, but also on medium with either auxin or cytokinin but not both. Yellowish compact callus on medium with auxin alone was transformed to yellowish friable callus, which did not develop adventitious roots. The yellowish friable callus could gain rhizogenic activity only after morphological modification to pale green compact callus on medium with auxin plus cytokinin. The modified callus did not form adventitious roots on medium with auxins but only with cytokinins. Therefore, it is suggested that cytokinins have stimulating effects on root formation from callus that previously did not show rhizogenic activity on medium with auxins alone. In addition, the rhizogenic potential of cowpea callus was discriminated from that of leaf explants, which formed adventitious roots directly on medium with auxin alone.  相似文献   

5.
Polyphenols and Growth: Inhibition of Polar Auxin Transport by Phenolic Compounds. The possible effects of polyphenols on auxin transport in tomato plants (Lycopersicum esculentum Mill.) were investigated. For this purpose, the phenolic content of the material was stimulated by exogenously supplied quinic acid. After the apical bud had been excised, labelled compounds were applied to the cut surface, and the radioactivity transported to the roots was measured. Quinic acid treatment significantly delayed polar transport of labelled auxins (IAA or NAA). It did not affect the migration rate of sucrose?14C and leucine?3H. A number of evidences seems to demonstrate that the phenolics are responsible for these modifications, since similar results were recorded when the labelled compounds were supplied simultaneously with polyphenols from tomato. Moreover, a decreased polarity of NAA transport could be observed when the plants were submitted to treatments which lead to an increased level of phenols (boron deficiency, infection by Fusarium oxysporum). The data presented in this paper suggest that phenolic compounds could act on growth processes via the regulation of polar auxin transport.  相似文献   

6.
Coleoptile sections from Avena sativa L. were exposed to non-lethal concentrations of peroxyacetyl nitrate (PAN). The sections were then incubated in solutions of 50 mM glucose plus 2.5 mM potassium phosphate with various concentrations of 2,4-dichlorophenoxyacetic acid (2,4-D). Growth after 4 hours was measured. A corresponding series of experiments was carried out and the effect of the 2,4-D treatments on enzymes utilizing uridine diphosphate glucose (14C-glucose) to form glucolipid and β-glucans including cellulose was determined. Growth in the PAN-treated sections was inhibited less at optimal and superoptimal auxin levels than at low auxin levels. Glucolipid synthetase activity was only slightly inhibited by PAN pretreatment and was reduced by increasing levels of auxin. Responses of alkali-soluble glucan and cellulose synthetases were similar to growth in both control and PAN treated tissues. It was concluded that the earlier reported response of cell wall metabolism in vivo probably is due to effects on these enzyme levels.  相似文献   

7.
A biologically active and photolabile auxin analog, 5-azido-[7-3H]indole-3-acetic acid ([3H]N3IAA), was used to search for auxin-binding proteins in cytosolic extracts from maize coleoptiles (Zea mays L.) and identified a protein with a molecular mass of 60 kDa (p60). Binding of [3H]N3IAA is highly specific as demonstrated by competition analysis with functionally relevant auxin analogs. p60 is found in coleoptiles and roots of etiolated maize seedlings and was detected in cytosolic as well as in microsomal fractions. The protein binds to 1-naphthylacetic acid (1-NAA) sepharose and is eluted with auxins. A purification scheme resulting in homogenous p60 protein was devised and it was shown that p60 has β-d -glucoside glucohydrolase activity (E.C.3.2.1.21). The hydrolytic activity of p60 for the synthetic substrate p-nitro-phenyl-β-d -glucopyranoside is diminished by 1-NAA. p60 shows high substrate specificity since it hydrolyzes indoxyl-O-glucoside, but not β-(1,4)-cellobiose, IAA-inositol or IAA-amino acid conjugates. The present data suggest that p60 might be involved in the hydrolysis of auxin conjugates.  相似文献   

8.
We have studied the role of endogenous auxin on adventitious rooting in hypocotyls of derooted sunflower (Helianthus annuus L. var. Dahlgren 131) seedlings. Endogenous free and conjugated indole-3-acetic acid (IAA) were measured in three segments of hypocotyls of equal length (apical, middle, basal) by using gas chromatography-mass spectrometry with [13C6]-IAA as an internal standard. At the time original roots were excised (0 h), the free IAA level in the hypocotyls showed an acropetally decreasing gradient, but conjugated IAA level increased acropetally; i.e. free to total IAA ratio was highest in the basal portion of hypocotyls. The basal portion is the region where most of root primordia were found. Some primordia were seen in this region within 24 h after the roots were excised. The quantity of free IAA in the middle portion of the hypocotyl increased up to 15 h after excision and then decreased. In this middle region there were fewer root primordia, and they could not be seen until 72 h. In the apical portion the amount of free IAA steadily increased and no root primordia were seen by 72 h. Surgical removal of various parts of the hypocotyl tissues caused adventitious root formation in the hypocotyl regions where basipetally transported IAA could accumulate. Reduction in the basipetal flow of auxin by N-1-naphthylphthalamic acid and 2,3,5-tri-iodobenzoic acid resulted in fewer adventitious roots. The fewest root primordia were seen if the major sources of endogenous auxin were removed by decapitation of the cotyledons and apical bud. Exogenous auxins promoted rooting and were able to completely overcome the inhibitory effect of 2,3,5-tri-iodobenzoic acid. Exogenous auxins were only partially able to overcome the inhibitory effect of decapitation. We conclude that in sunflower hypocotyls endogenously produced auxin is necessary for adventitious root formation. The higher concentrations of auxin in the basal portion may be partially responsible for that portion of the hypocotyl producing the greatest number of primordia. In addition to auxins, other factors such as wound ethylene and lowered cytokinin levels caused by excision of the original root system cuttings must also be important.  相似文献   

9.
We examined ethylene effects on root regeneration in tomato leaf discs cultured in vitro. Applied ethylene or Ethephon did not stimulate rooting in the leaf discs. In the presence of indoleacetic acid. 5 × 10-6M, these substances significantly inhibited root formation. Ethylene production (nl C2H4· (24 h)-1. flask-1) was positively correlated with increased IAA concentrations at various times during the culture period and, as a consequence, with the rooting response after 168 h. However, separate testing of equimolar concentrations of seven different auxins and auxin-like compounds showed no positive correlation between the rate of ethylene production and subsequent rooting response. Aeration of gas-tight flasks containing leaf discs and absorption of ethylene evolved from the discs by mercuric perchlorate in gas-tight flasks or pre-treatment of leaf discs with AgNO3 significantly enhanced IAA induced root regeneration. Thus, these studies indicate that ethylene is not a rooting hormone per se. Furthermore, ethylene (whether applied externally or synthesized by the tissue) does not appear to account for the ability of auxin to stimulate rooting.  相似文献   

10.
The lateral margins of immature primary leaf blades of Phaseolus vulgaris L. cv. ‘Pinto’ curve up and in toward the midrib when auxin is applied to the leaf. The leaves are most sensitive to auxin shortly after they first unfold and leaves which have grown to about 60 % or more of their ultimate area no longer give this hyponastic response. The response is specific for auxins and is inhibited by the anti-auxins, trans-cinnamic acid and para-chlorophenoxyisobutyric acid. Ethylene and ethylene-generating compounds failed to induce hyponasty, suggesting the response is due to a positive growth promotion by auxin. Measurements of the distance between the lateral margins of the leaf at its maximum width were used to provide quantitative estimates of the degree of hyponasty. Between 2 and 4 hr after auxin application a direct proportionality was found between the amount of curvature and the logarithm of the indoleacetic acid concentration over the range of 10−6 to 10−3 m. The relative sensitivity of the leaves to different auxins was qualitatively similar to that observed in many straight-growth bioassays. Similar responses were obtained when auxin was applied by a carborundum wounding procedure. Potential applications of this auxin bioassay for investigations of the role of auxin in the normal plagiotropic growth behavior of leaf lamina and of the role of auxin in the initiation of various plant diseases are suggested.  相似文献   

11.
Tryptophan-dependent biosynthesis of auxins in soil   总被引:1,自引:0,他引:1  
The presence of auxins in soil may have an ecological impact affecting plant growth and development. A rapid and simple colorimetric method was used to assess California soils for their potential to produce auxins upon the addition of L-tryptophan (L-TRP). The auxin content measured by colorimetry was expressed as indole-3-acetic acid (IAA)-equivalents. A substrate (L-TRP) concentration of 5.3 g kg-1, glucose concentration of 6.7 g kg-1, no nitrogen, pH 7.0, 40°C, shaking (aeration) and 48 h incubation time were selected as standardized conditions to assay for auxin biosynthesis in soil. IAA was confirmed as a major microbial metabolite derived from L-TRP in soil by use of high performance liquid chromatography (HPLC). Under standardized conditions, L-TRP-derived auxins in 19 soils varied greatly ranging from 18.2 to 303.2 mg IAA equivalents (auxins) kg-1 soil. This study suggests that the phenotypic character of the soil microbiota has more of an influence on auxin production than the soil physicochemical properties (e.g., pH, organic C content, CEC, etc.).  相似文献   

12.
Using oat coleoptile segments the following results were obtained. Ten mg/l auxin (indole-3-acetic acid) increased the incorporation of uracil-2-14C and orthophosphate-32P into RNA fraction during a relatively short incubation period. Stimulation of 32P incorporation due to auxin was found only in the region heavier than ribosomal RNA, probably in the messenger RNA region. The stimulation of uracil-2-14C incorporation into RNA caused by auxin was not influenced by the presence of 0.3 M mannitol which prevents osmotically the water absorption of cells. It is concluded that auxin primarily stimulates the biosynthesis of RNA, possibly messenger, in oat coleoptile cells.  相似文献   

13.
D. A. Morris  A. Guy Thomas 《Planta》1974,118(3):225-234
Summary When eight 14C-labelled auxin and non-auxin compounds were applied to the apical buds of intact dwarf pea seedlings (Pisum sativum L.), only [1-14C]indoleacetic acid ([14C]IAA) and -[1-14C] naphthaleneacetic acid ([14C]NAA) underwent appreciable basipetal transport during the first 24 h; over a longer period (72 h) considerable basipetal transport of the auxin [1-14C]2,4-dichlorophenoxyacetic acid ([14C]2,4-D) also occurred, but at a very much lower velocity (ca. 1.4–2.2 mm·h-1). The movement of 2,4-D possessed many of the characteristics of a typical auxin transport. During uptake and transport IAA and NAA were extensively metabolised to the corresponding aspartates, and to ethanol-insoluble/NaOH-soluble compounds; little metabolism of 2,4-D was observed. None of the non-auxin compounds applied (sorbose, sucrose, leucine, adenine and kinetin) underwent appreciable basipetal transport from the apical bud. All but sorbose were extensively metabolised by the apical tissues. Little metabolism of sorbose itself was detected.The results suggest that the long-distance basipetal auxin transport system from the apical bud of intact plants is specific for auxins; the specificity may result from the affinity of auxins for specific transport sites.  相似文献   

14.
The effect of 5-(2-chloro-4-(trifluoromethyl)phenoxy)-2-nitrobenzoic acid (acifluorfen) on the translocation of the14C-labeled auxins 2,4,5-trichlorophenoxyacetic acid (2,4,5-T-1-14C) and indole-3-acetic acid (IAA-1-14C) was determined. The auxins and acifluorfen were injected into the stem at the cotyledonary node of 9-day-old bean (Phaseolus vulgaris L. cv Tenderpod) seedlings. The plants were harvested 4 h after treatment and analyses of14C were made of various plant parts. Acifluorfen increased 2,4,5-T,-1-14C translocation out of the treated area and especially into the large primary leaves. This translocation pattern is indicative of apoplastic translocation and suggests that acifluorfen inhibited vein loading of the auxins. Acifluorfen affected auxin translocation in the dark as effectively as in the light even though the herbicidal effects of acifluorfen are known to be expressed only after light treatment.Journal article no. 4403 of the Agric. Exp. Stn., Oklahoma State Univ.  相似文献   

15.
Rainer Hertel  Rand Flory 《Planta》1968,82(2):123-144
Summary Movement of radioactive auxins was analysed in corn coleoptile sections. The results support the idea that processes involved in the transport of indoleacetic acid (IAA) are specific for growth-promoting auxins.Inhibition of IAA transport by triiodobenzoic acid is caused by a reversible block of the exit; the auxin held back remains in the transport pool. The observed increase in immobilization may be a secondary effect caused by the increased concentration of free IAA in the tissue.Auxin molecules are most likely transported by anon-covalent mechanism. IAA and naphthaleneacetic acid (NAA) move through the cell and exit as free molecules. A search for a transient auxin complex, chaseable as required for any transport carrier intermediate, yielded negative results. No18O was lost from NAA labeled with18O in the carboxyl group during transport of the auxin through coleoptile tissue.After application of IAA to auxin-depleted tissue, the transport rate undergoes oscillations with a period length of ca. 25 min.The movement of the auxin 2.4-dichlorophenoxyacetic acid which is usually sluggish, increased several times if some IAA was added. Auxin, thus, stimulates its own transport.A model is discussed in which auxin-binding to the plasma membrane and reversible changes of membrane conformation may provide a basis for active secretion and for the observed cooperativity. Leo Brauner zum 70. Geburtstag gewidmet.  相似文献   

16.
In-vitro auxin binding to particulate cell fractions from corn coleoptiles   总被引:4,自引:3,他引:1  
Summary When low concentrations (e.g. 10-6 M) of labelled 3-indoleacetic acid (14C-IAA) or -naphthaleneacetic acid (14C-NAA) are added in vitro to homogenates of corn coleoptiles, radioactivity is reversibly bound to pelletable particles. From the saturation kinetics of the binding it is possible to estimate an apparent K M between 10-6 M and 10-5 M and a concentration of specific sites of 10-7–10-6 M per tissue volume.The binding is auxin-specific. Among many compounds tested, only auxins and such auxin analogues that are known to interact directly with auxin in transport and/or growth were found to interfere with this binding. For instance, the growth-active d-dichlorophenoxyisopropionic acid at 10-4 M inhibits 14C-NAA binding more than the less active l-isomer.The auxin-binding fractions are practically free of DNA and cytochrome-C oxidase and contain binding sites for 1-naphthylphthalamic acid. The results are discussed in context with the hyothesis—derived mainly from physiological data—that auxin receptors are localized at the plasma membrane.  相似文献   

17.
Aims: To test the effect of auxin‐treatment on plant pathogenic phytoplasmas and phytoplasma‐infected host. Methods and Results: In vitro grown periwinkle shoots infected with different ‘Candidatus Phytoplasma’ species were treated with indole‐3‐acetic acid (IAA) or indole‐3‐butyric acid (IBA). Both auxins induced recovery of phytoplasma‐infected periwinkle shoots, but IBA was more effective. The time period and concentration of the auxin needed to induce recovery was dependent on the ‘Candidatus Phytoplasma’ species and the type of auxin. Two ‘Candidatus Phytoplasma’ species, ‘Ca. P. pruni’ (strain KVI, clover phyllody from Italy) and ‘Ca. P. asteris’ (strain HYDB, hydrangea phyllody), were susceptible to auxin‐treatment and undetected by nested PCR or detected only in the second nested PCR in the host tissue. ‘Ca. P. solani’ (strain SA‐I, grapevine yellows) persisted in the host tissue despite the obvious recovery of the host plant and was always detected in the direct PCR. Conclusions: Both auxins induced recovery of phytoplasma‐infected plants and affected tested ‘Candidatus Phytoplasma’ species in the same manner, implying that the mechanism involved in phytoplasma elimination/survival is common to both, IAA and IBA. Significance and Impact of the Study: The results imply that in the case of some ‘Candidatus Phytoplasma’ species, IBA‐treatment could be used to eliminate phytoplasmas from in vitro grown Catharanthus roseus shoots.  相似文献   

18.
Summary A micropropagation procedure for the adult cherimoya tree (Annona cherimola Mill.) is described. Axillary shoot proliferation was obtained after culturing nodal sections from Annona cherimola cv. ‘Fino de Jete’, on Murashige and Skoog (MS) medium supplemented with 2.28 μM zeatin. Roots were induced after preincubation of shoots for 3d in light on MS basal medium supplemented with lgl−1 activated charcoal, followed by culturing for 10 d (7 d dark and 3 d light) on MS medium with 492 μM indole-3-butyrie acid (IBA), 15 gl−1 sucrose, and 200 mgl−1 citric acid. Sixty-eight percent of induced shoots rooted after transferring to the same medium without auxin and with the macroelements at half strength and the sucrose at 20gl−1. About 65% of rooted shoots survived after acclimatization. The procedures described herein may prove useful for clonal micropropagation of selected genotypes of cherimoya.  相似文献   

19.
The potential of Plant Growth Promoting Rhizobacteria (PGPR) has been demonstrated in the case of plant inoculation with bacteria of the genus Azospirillum which improves yield. A. brasilense produces a wide variety of molecules, including the natural auxin indole-3-acetic acid (IAA), as well as other phytoregulators. However, several studies have suggested that auxin induces changes in plant development during their interaction with the bacteria. The effects of A. brasilense Sp245 on the development of Arabidopsis thaliana root were investigated to help explain the molecular basis of the interaction. The results obtained showed a decrease in primary root length from the first day and remained so throughout the exposure, accompanied by a stimulation of initiation and maturation of lateral root primordia and an increase of lateral roots. An enhanced auxin response was evident in the vascular tissue and lateral root meristems of inoculated plants. However, after five days of bacterization, the response disappeared in the primary root meristems. The role of polar auxin transport (PAT) in auxins relocation involved the PGP1, AXR4-1, and BEN2 proteins, which apparently mediated A. brasilense-induced root branching of Arabidopsis seedlings.  相似文献   

20.
We examined whether auxins and cytokinins, either singly or in combination, stimulate cell division in tissue cultures of a red seaweed. Our experimental model consisted of filamentous and callus-like growths that developed from cross-sectional discs cut from young branches of Agardhiella subulata. Plant growth regulators were added to the medium to give combinations of an auxin with a cytokinin over a range of concentrations (1 µg L–1 –10 mg L–1). Several mixtures of auxins and cytokinins, as well as some single auxins, cytokinins and phenolics, stimulated cell division and growth in the tissue cultures beyond that of controls. The treatments that were effective included: phenylacetic acid/zeatin; phenylacetic acid/6-benzylaminopurine; -naphthaleneacetic acid/zeatin; 2,4,5-trichlorophenoxyacetic acid/6-benzylaminopurine; and indoleacetic acid/kinetin. High concentrations of cytokinins (i.e. 10 mg L–1) inhibited the regeneration of plants in some of the cell cultures. These results provide further evidence that growth regulators can be used for the tissue culture of seaweeds and for the study of developmental phenomena in these plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号