首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Exofacial phosphatidylserine (PS) is an important ligand mediating apoptotic cell clearance by phagocytes. Oxidation of PS fatty acyl groups (oxPS) during apoptosis reportedly mediates recognition through scavenger receptors. Given the oxidative capacity of the neutrophil NADPH oxidase, we sought to identify oxPS signaling species in stimulated neutrophils. Using mass spectrometry analysis, only trace amounts of previously characterized oxPS species were found. Conversely, 18:1 and 18:0 lysophosphatidylserine (lyso-PS), known bioactive signaling phospholipids, were identified as abundant modified PS species following activation of the neutrophil oxidase. NADPH oxidase inhibitors blocked the production of lyso-PS in vitro, and accordingly, its generation in vivo by activated, murine neutrophils during zymosan-induced peritonitis was absent in mice lacking a functional NADPH oxidase (gp91phox-/-). Treatment of macrophages with lyso-PS enhanced the uptake of apoptotic cells in vitro, an effect that was dependent on signaling via the macrophage G2A receptor. Similarly, endogenously produced lyso-PS also enhanced the G2A-mediated uptake of activated PS-exposing (but non-apoptotic) neutrophils, raising the possibility of non-apoptotic mechanisms for removal of inflammatory cells during resolution. Finally, antibody blockade of G2A signaling in vivo prolonged zymosan-induced neutrophilia in wild-type mice, whereas having no effect in gp91phox-/- mice where lyso-PS are not generated. Taken together, we show that lyso-PS are modified PS species generated following activation of the NADPH oxidase and lyso-PS signaling through the macrophage G2A functions to enhance existing receptor/ligand systems for optimal resolution of neutrophilic inflammation.  相似文献   

2.
Since few previous studies have investigated the in vivo response of intestinal mucosa to the luminally administered lipopolysaccharide (LPS), we examined the cellular localization of exogenously applied LPS in the intestinal mucosa and the expression of Toll-like receptor (TLR) and IL-1 receptor-associated kinase (IRAK) in the epithelial cells of monkey ileum. FITC-labeled LPS was injected into the lumen of monkey ileum. Thirty minutes after the LPS injection, the ileal tissue was fixed and localization of FITC fluorescence in the ileal mucosa was examined. We applied Factor C immunohistochemistry to demonstrate the bioactivity of LPS taken up by the mucosal tissue. The expression of TLR4 and IRAK-1 in the epithelial cells was also examined by immunohistochemistry. FITC fluorescence was detected in the cells migrated into the epithelium and those in the lamina propria. The FITC-labeling cells were completely overlapped with the Factor C immunoreactive cells. These FITC-labeling/Factor C-positive cells were identified as neutrophils by the immunoelectron microscopic analysis. TLR4 and IRAK-1 were expressed at the apical membrane of the epithelial cells in the ileum of both control and FITC-LPS injected animals. These results suggest that intraluminal injection of LPS stimulates the transmigration of neutrophils into the epithelium and these neutrophils may uptake luminally applied LPS and possibly inactivate the enterotoxin. Expression of TLR4 and IRAK-1 in the epithelial cells suggests that epithelial cells may react to LPS and produce chemoattractant mediator to induce the neutrophil chemotaxis.  相似文献   

3.
Synthesis of 3,4,5-triheterocyclyl-2,6-dicyanoanilines, starting from heterocyclic aldehydes and 1,2-diheterocycle-substituted ethanones, is described. 2,6-Dicyanoanilines with one or two heterocyclic substituents have also been synthesized. It was found that some of these molecules have selective cell-staining properties useful for cell imaging applications. The compounds 1g, 10f and 11 were found to stain cytoplasm of the cells in contact but not the nucleus while the compound 12 showed affinity to apoptotic cells resulting in blue fluorescence. The cell imaging results with compound 12 were similar to Annexin V-FITC, a known reagent containing recombinant Annexin V conjugated to green-fluorescent FITC dye, used for detection of apoptotic cells. These compounds were found to be non-cytotoxic and have potential application as cell imaging agents.  相似文献   

4.
In this study we investigated the relationship between the reorganisation of actin cytoskeleton and the changes at cell surface level (i.e. PS exposure and blebbing) in two neoplastic cell lines during apoptosis: Chang liver cells (adherent culture) and promyelocytic HL-60 cells (suspension culture), treated with the podophyllotoxin derivative VP16. The morphological analysis, performed by means of conventional fluorescence microscopy and confocal laser scanning microscopy, on Chang cells showed that onset and progress of the two processes are synchronised. The initial disassembly of stress fibers was associated with the early PS exposure on the cell surface. Moreover, the accumulation of actin at cortical level appeared strongly associated with an intense labelling for Annexin V and, in some cases, especially in the areas of membrane blebbing. The double staining for actin and PS exposure, quantitatively analysed by flow cytometry in HL-60 cells after different treatment times, demonstrated that the decrease of Annexin V binding in the late stages of apoptosis is associated with the strong reduction of actin labelling probably also due to a proteolytic cleavage. These events were also partially related to variations of the functional state of mitochondria, by analysing cytofluorometrically the dissipation of the inner membrane potential (delta psi m).  相似文献   

5.
人神经母细胞瘤细胞SH-SY5Y细胞可以表达神经元特异性的酪氨酸羟化酶、多巴胺-β-羟化酶以及多巴胺转运体等,因此可用于建立帕金森病的体外模型。虽然帕金森综合症发病的确切机制至今尚不清楚,但众多的病理学资料证实该病患者存在中脑黑质多巴胺能神经元的凋亡。自由基、兴奋性  相似文献   

6.
There is a critical need to identify molecules that modulate the biology of neutrophils because activated neutrophils, though necessary for host defense, cause exuberant tissue damage through production of reactive oxygen species and increased lifespan. Angiostatin, an endogenous anti-angiogenic cleavage product of plasminogen, binds to integrin αvβ3, ATP synthase and angiomotin and its expression is increased in inflammatory conditions. We test the hypothesis that angiostatin inhibits neutrophil activation, induces apoptosis and blocks recruitment in vivo and in vitro. The data show immuno-reactivity for plasminogen/angiostatin in resting neutrophils. Angiostatin conjugated to FITC revealed that angiostatin was endocytozed by activated mouse and human neutrophils in a lipid raft-dependent fashion. Co-immunoprecipitation of human neutrophil lysates, confocal microscopy of isolated mouse and human neutrophils and functional blocking experiments showed that angiostatin complexes with flotillin-1 along with integrin αvβ3 and ATP synthase. Angiostatin inhibited fMLP-induced neutrophil polarization, as well as caused inhibition of hsp-27 phosphorylation and stabilization of microtubules. Angiostatin treatment, before or after LPS-induced neutrophil activation, inhibited phosphorylation of p38 and p44/42 MAPKs, abolished reactive oxygen species production and released the neutrophils from suppressed apoptosis, as indicated by expression of activated caspase-3 and morphological evidence of apoptosis. Finally, intravital microscopy and myeloperoxidase assay showed inhibition of neutrophil recruitment in post-capillary venules of TNFα-treated cremaster muscle in mouse. These in vitro and in vivo data demonstrate angiostatin as a broad deactivator and silencer of neutrophils and an inhibitor of their migration. These data potentially open new avenues for the development of anti-inflammatory drugs.  相似文献   

7.
8.
Galectin-3 (Gal 3) is a glycan-binding protein that can be secreted by activated macrophages and mast cells at inflammation sites and plays an important role in inflammatory diseases caused by Bacteria and their products, such as lipopolysaccharides (LPS). Although it is well established that Gal 3 can interact with LPS, the pathophysiological importance of LPS/Gal 3 interactions is not fully understood. Data presented herein demonstrate for the first time that the interaction of Gal 3, either via its carbohydrate binding C-terminal domain or via its N-terminal part, with LPS from different bacterial strains, enhances the LPS-mediated neutrophil activation in vitro. Gal 3 allowed low LPS concentrations (1 μg/mL without serum, 1 ng/mL with serum) to upregulate CD11b expression and reactive oxygen species (ROS) generation on human neutrophils in vitro and drastically enhanced the binding efficiency of LPS to the neutrophil surface. These effects required LPS preincubation with Gal 3, before neutrophil stimulation and involved specific Gal 3/LPS interaction. A C-terminal Gal-3 fragment, which retains the lectin domain but lacks the N-terminal part, was still able to bind both to Escherichia coli LPS and to neutrophils, but had lost the ability to enhance neutrophil response to LPS. This result emphasizes the importance of an N-terminus-mediated Gal 3 oligomerization induced by its interaction with LPS. Finally we demonstrated that Balb/C mice were more susceptible to LPS-mediated shock when LPS was pretreated with Gal 3. Altogether, these results suggest that multimeric interactions between Gal 3 oligomers and LPS potentiate its pro-inflammatory effects on neutrophils.  相似文献   

9.
Interaction of LPS with monocytes and neutrophils is known to occur via CD14 and is strongly enhanced by LPS-binding protein (LBP). Integrins as well as CD14 play a role in the interaction of erythrocytes (E) coated with LPS or whole Gram-negative bacteria with phagocytes. We reasoned that the density of LPS on a particle is an important determinant in these interactions. Therefore, E were coated with different concentrations of LPS (ELPS). The binding of these ELPS to neutrophils was evaluated by flow cytometry. Simultaneously, we measured fMLP receptor expression to evaluate neutrophil activation. ELPS only bound to neutrophils in the presence of LBP. Blocking CD14 inhibited both activation and binding, whereas blocking complement (C) receptor 3 (CR3) inhibited binding but not activation. TNF activation restored ELPS binding in CD14-blocked cells but not in cells in which CR3 was blocked. Salmonella minnesota did bind to neutrophils independent of CR3 or CD14. The addition of LBP enhanced binding twofold, and this surplus was dependent upon CD14 but not on CR3. We conclude that ELPS interact with neutrophils via CD14, initially giving rise to cell activation; subsequently, binding is solely mediated by activated CR3.  相似文献   

10.
During Gram-negative sepsis and endotoxemia, CD14 is essential for the recognition of LPS by the TLR4 complex and subsequent generation of systemic inflammation. However, CD14-independent responses to LPS have been reported in vitro and in vivo in selected tissues including the skin. As the liver is a key target organ for neutrophil sequestration and inflammatory pathology during sepsis and endotoxemia, we investigated the role of CD14 in the recruitment of neutrophils into the liver in a mouse model of endotoxemia. Using dynamic in vivo imaging of the liver, we observed that neutrophil recruitment within the sinusoids and post-sinusoidal venules occurred equivalently between LPS-treated wild-type and CD14-knockout mice. Neutrophil recruitment within the liver was completely independent of CD14 regardless of whether it was expressed on cells of hematopoietic or nonhematopoietic origin or in serum as soluble CD14. Whereas CD14 expression was essential for activation of circulating neutrophils and for the development of LPS-induced systemic inflammation (pulmonary neutrophil sequestration, leukopenia, and increased serum proinflammatory cytokine levels), deficiency of CD14 did not limit the adhesion strength of neutrophils in vitro. Furthermore, wild-type and CD14-knockout mice displayed identical deposition of serum-derived hyaluronan-associated protein within liver sinusoids in response to LPS, indicating that the sinusoid-specific CD44/hyaluronan/serum-derived hyaluronan-associated protein-dependent pathway of neutrophil adhesion is activated independently of CD14. Therefore, the liver microcirculation possesses a unique CD14-independent mechanism of LPS detection and activation of neutrophil recruitment.  相似文献   

11.
Pulmonary surfactant with surfactant-associated proteins (PS+SAP) decreases pulmonary inflammation by suppressing neutrophil activation. We have observed that PS+SAP inserts channels into artificial membranes, depolarizes neutrophils, and depresses calcium influx and function in stimulated neutrophils. We hypothesize that PS+SAP suppresses neutrophil activation by depletion of internal Ca(++) stores and that PS+SAP induces depletion through release of Ca(++) stores and through inhibition of Ca(++) influx. Our model predicts that PS+SAP releases Ca(++) stores through insertion of channels, depolarization of neutrophils, and activation of a G protein-dependent pathway. If the model of channel insertion and membrane depolarization is accurate, then gramicidin-a channel protein with properties similar to those of PS+SAP-is expected to mimic these effects. Human neutrophils were monitored for [Ca(++)] responses after exposure to one of two different PS+SAP preparations, a PS-SAP preparation, gramicidin alone, and gramicidin reconstituted with phospholipid (PLG). [Ca(++)] responses were reexamined following preexposure to inhibitors of internal Ca(++) release or the G protein pathway. We observed that (i) 1% PS+SAP-but not PS-SAP-causes transient increase of neutrophil [Ca(++)] within seconds of exposure; (ii) 1% PLG-but not gramicidin alone-closely mimics the effect of PS+SAP on Ca(++) response; (iii) PS+SAP and PLG equally depolarize neutrophils; (iv) direct inhibition of internal Ca(++) stores releases or of G protein activation suppresses Ca(++) responses to PS+SAP and PLG; and (v) preexposure to either PS+SAP or PLG inhibits Ca(++) influx following fMLP stimulation. We conclude that PS+SAP independently depolarizes neutrophils, releases Ca(++) from internal stores by a G protein-mediated pathway, and alters subsequent neutrophil response to physiologic stimulants by depleting internal Ca(++) stores and by inhibiting Ca(++) influx during subsequent fMLP activation. The mimicking of these results by PLG supports the hypothesis that PS+SAP initiates depolarization via channel insertion into neutrophil plasma membrane.  相似文献   

12.
Neutrophil granules contain proteins important in host defense against bacterial pathogens. Granule proteins released from activated neutrophils facilitate opsonization, phagocytosis, tissue digestion, and antimicrobial activity. Three similar, if not identical, neutrophil proteins, bactericidal/permeability-increasing protein (BPI), 57,000 m.w. cationic antimicrobial protein, and bactericidal protein have been described that specifically kill gram negative bacteria. Since LPS is a structure common to all gram-negative bacteria, we investigated whether the microbicidal protein BPI affects biologic activity of LPS in vitro. Human neutrophils can be activated both in vitro and in vivo by LPS. Upon stimulation, surface expression of CR1 and CR3 increases markedly. Using flow microfluorimetry, we analyzed surface expression of CR1 and CR3 as a measure of neutrophil stimulation in response to LPS. CR up-regulation on neutrophils was TNF independent, suggesting direct LPS stimulation of neutrophils in this system. Purified BPI completely inhibited CR up-regulation on neutrophils stimulated with both rough and smooth LPS chemotypes at 1.8 to 3.6 nM (100 to 200 ng/ml). By comparison, the polypeptide antibiotic polymyxin B completely inhibited the same dose of LPS at 0.4 nM. The inhibitory activity of BPI appeared to be specific for LPS because neutrophil stimulation by formylated peptide or TNF was unaffected. The specificity of BPI for LPS was further demonstrated by inhibition of LPS activity in the limulus amebocyte lysate assay. Therefore, the role of BPI in infection may not be limited to its microbicidal activity, but it may also regulate the neutrophil response to LPS.  相似文献   

13.
14.
AMP-activated protein kinase (AMPK) is activated by increases in the intracellular AMP-to-ATP ratio and plays a central role in cellular responses to metabolic stress. Although activation of AMPK has been shown to have anti-inflammatory effects, there is little information concerning the role that AMPK may play in modulating neutrophil function and neutrophil-dependent inflammatory events, such as acute lung injury. To examine these issues, we determined the effects of pharmacological activators of AMPK, 5-aminoimidazole-4-carboxamide-1-beta-d-ribofuranoside (AICAR) and barberine, on Toll-like receptor 4 (TLR4)-induced neutrophil activation. AICAR and barberine dose-dependently activated AMPK in murine bone marrow neutrophils. Exposure of LPS-stimulated neutrophils to AICAR or barberine inhibited release of TNF-alpha and IL-6, as well as degradation of IkappaBalpha and nuclear translocation of NF-kappaB, compared with findings in neutrophil cultures that contained LPS without AICAR or barberine. Administration of AICAR to mice resulted in activation of AMPK in the lungs and was associated with decreased severity of LPS-induced lung injury, as determined by diminished neutrophil accumulation in the lungs, reduced interstitial pulmonary edema, and diminished levels of TNF-alpha and IL-6 in bronchoalveolar lavage fluid. These results suggest that AMPK activation reduces TLR4-induced neutrophil activation and diminishes the severity of neutrophil-driven proinflammatory processes, including acute lung injury.  相似文献   

15.
We report that human galectin-1 (dGal-1), a small dimeric beta-galactoside-binding protein, induces phosphatidylserine (PS) exposure, measured by Annexin V staining, on human promyelocytic HL-60 cells, T leukemic MOLT-4 cells, and fMet-Leu-Phe-activated, but not resting, human neutrophils. This effect of dGal-1 on HL-60 and MOLT-4 cells is enhanced by pretreatment of the cells with neuraminidase, but treatment of resting neutrophils with neuraminidase does not enhance their sensitivity to dGal-1. Although the induction of staining with Annexin V is often associated with apoptosis, the dGal-1-treated HL-60 cells, MOLT-4 cells, and activated neutrophils do not undergo apoptosis, and there is no detectable DNA fragmentation. HL-60 and MOLT-4 cells treated with dGal-1 continue to grow normally. By contrast, camptothecin-treated HL-60 cells, etoposide-treated MOLT-4 cells, and anti-Fas-treated neutrophils exhibit extensive DNA fragmentation and/or cell death. Lactose inhibits the dGal-1-induced effects, indicating that dGal-1-induced signaling requires binding to cell surface beta-galactosides. The dimeric form of Gal-1 is required for signaling, because a monomeric mutant form of Gal-1, termed mGal-1, binds to cells but does not cause these effects. Importantly, dGal-1, but not mGal-1, treatment of HL-60 cells and activated human neutrophils significantly promotes their phagocytosis by activated mouse macrophages. These dGal-1-induced effects are distinguishable from apoptosis, but like apoptotic agents, prepare cells for phagocytic removal. Such effects of dGal-1 may contribute to leukocyte homeostasis.  相似文献   

16.
1. Carp and rabbit sarcoplasmatic reticulum Ca(2+)-ATPase enzymes were compared with respect to their sensitivity to FITC labelling. 2. The carp enzyme showed much lower sensitivity to FITC in the Ca(2+)-Mg2+ activated ATPase activity. Fifty percent inhibition was observed at 20 microM labelling FITC concentration; in rabbit enzyme this inhibition was already achieved at 2 microM FITC. 3. The tryptic cleavage products of the carp enzyme identified with immunoblot analysis as well as with FITC fluorescence, suggest multiple cleavage, yielding different fragments from the ones well known in rabbit and in rat enzyme. 4. The present results indicates major structural differences with respect to the FITC binding, and tryptic cleavage between the SR Ca(2+)-ATPase enzymes from carp and rabbit, despite the cross-reactivity with polyclonal antibodies.  相似文献   

17.
Annexin 1 is an anti-inflammatory protein that plays a key role in innate immunity by modulating the activation of several types of cells, including neutrophils. Here we have developed a cleavage assay using tagged annexin 1 and observed marked activity in the membrane fraction of activated neutrophils. A combination of inhibitors, transfected cells, and proteomic analyses allowed us to identify proteinase 3 as the main enzyme responsible for this cleavage in the N terminus region of the protein, at least in the context of neutrophil activation. Because annexin 1 is an important endogenous anti-inflammatory mediator, blocking its cleavage by proteinase 3 would augment its homeostatic pro-resolving actions and could represent an opportunity for innovative anti-inflammatory drug discovery.  相似文献   

18.
TLRs are key elements of the pathogen recognition mechanism used by the host immune system. Neutrophils express almost all TLRs, and activation of TLRs, such as TLR2 and TLR4, has been shown to induce the production of proinflammatory cytokines and chemokines, potentially linking innate and adaptive immunity. In the present study, we investigated whether activation of TLRs induces neutrophil production of MCP-1/CCL2, a key mediator involved in the development of adaptive immunity. Activation of neutrophils with LPS, lipoteichoic acid, or N-palmitoyl-S-[2,3-bis(palmitoyloxy)-(2RS)-propyl]-[R]-Cys-[S]-Ser-[S]-Lys did not induce significant MCP-1 production and release; however, the Th1 cytokine IFN-gamma dramatically up-regulated MCP-1 production in cells activated with each TLR ligand. The majority of MCP-1 was released between 24 and 48 h of culture, indicating that this is a late event. The effect of IFN-gamma appeared to be due to its antiapoptotic effect, but not priming effect, revealing a biological consequence of IFN-gamma-induced neutrophil survival. Although IFN-gamma failed to protect neutrophils from cell death at a higher dose of LPS, the p38 MAPK inhibitor SB203580 dramatically increased MCP-1 release and neutrophil survival at this LPS concentration. Thus, p38 MAPK plays a previously uncharacterized role in neutrophil function. Taken together, our results indicate that human neutrophils produce MCP-1 in a Th1 microenvironment and this neutrophil-derived MCP-1 potentially amplifies the development of Th1 adaptive responses.  相似文献   

19.
Increased nuclear accumulation of NF-kappaB in LPS-stimulated peripheral blood neutrophils has been shown to be associated with more severe clinical course in patients with infection associated acute lung injury. Such observations suggest that differences in neutrophil response may contribute to the pulmonary inflammation induced by bacterial infection. To examine this question, we sequentially measured LPS-induced DNA binding of NF-kappaB in neutrophils collected from healthy humans on at least three occasions, each separated by at least 2 wk, and then determined pulmonary inflammatory responses after instillation of LPS into the lungs. Consistent patterns of peripheral blood neutrophil responses, as determined by LPS-induced NF-kappaB DNA binding, were present in volunteers, with a >80-fold difference between individuals in the mean area under the curve for NF-kappaB activation. The number of neutrophils recovered from bronchoalveolar lavage after exposure to pulmonary LPS was significantly correlated with NF-kappaB activation in peripheral blood neutrophils obtained over the pre-LPS exposure period (r = 0.65, p = 0.009). DNA binding of NF-kappaB in pulmonary neutrophils also was associated with the mean NF-kappaB area under the curve for LPS-stimulated peripheral blood neutrophils (r = 0.63, p = 0.01). Bronchoalveolar lavage levels of IL-6 and TNFRII were significantly correlated with peripheral blood neutrophil activation patterns (r = 0.75, p = 0.001 for IL-6; and r = 0.48, p = 0.049 for TNFRII. These results demonstrate that stable patterns in the response of peripheral blood neutrophils to LPS exist in the human population and correlate with inflammatory response following direct exposure to LPS in the lung.  相似文献   

20.
Certain microbial substances, e.g., LPS, can activate neutrophils or prime them to enhance their response to other activating agents, e.g., fMLP. We investigated the role of the Mycobacterium tuberculosis (MTB) 19-kDa lipoprotein in activation of human neutrophils. MTB 19-kDa lipoprotein initiated phenotypic changes characteristic of neutrophil activation, including down-regulation of CD62 ligand (L-selectin) and up-regulation of CD35 (CR1) and CD11b/CD18 (CR3, Mac-1). In addition, exposure of neutrophils to MTB 19-kDa lipoprotein enhanced the subsequent oxidative burst in response to fMLP as assessed by oxidation of dihydrorhodamine 123 (determined by flow cytometry). LPS also produced these effects with similar kinetics, but an oligodeoxynucleotide containing a CpG motif failed to induce any priming or activation response. Although the effects of LPS required the presence of serum, neutrophil activation by MTB 19-kDa lipoprotein occurred independently of serum factors, suggesting the involvement of different receptors and signaling mechanisms for LPS and MTB 19-kDa lipoprotein. Thus, MTB 19-kDa lipoprotein serves as a pathogen-associated molecular pattern that promotes neutrophil priming and activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号