首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have studied the mechanisms that regulate the expression of the mouse gene encoding steroid 11 beta-hydroxylase (11 beta-OHase), a steroidogenic cytochrome P450 enzyme that is expressed only in the adrenal cortex. DNase I footprinting and gel-mobility shift analyses revealed potential regulatory elements at -370 and -310 in the 11 beta-OHase promoter region. To determine the contributions of these elements to expression, we altered their sequences by site-selected mutagenesis and studied promoter activity after transfection into Y1 mouse adrenocortical tumor cells. Mutation of either element markedly decreased basal promoter activity but did not affect the response to treatment with 8-bromo cAMP. These experiments thus document the functional roles of these elements, within the context of the intact promoter, in constitutive expression of 11 beta-OHase. Moreover, addition of either of these elements to p-40GH, a 5'-deletion plasmid containing 11 beta-OHase sequences from -40 to +8 upstream of a growth hormone reporter gene, significantly increased promoter activity but did not confer cAMP responsiveness. Finally, increased expression was seen after transfection of Y1 derivatives deficient in cAMP-dependent protein kinase, indicating that neither element required cAMP-dependent protein kinase activity. These studies thus define two regulatory elements that play important roles in 11 beta-OHase expression.  相似文献   

2.
3.
4.
5.
Steroid 21-hydroxylase (21-OHase) is specifically expressed at high levels in the adrenal cortex, where it is required for the synthesis of mineralocorticoids and glucocorticoids. In this study, we have investigated the regulatory elements in the 21-OHase promoter region which contribute to the expression of this gene in Y1 adrenocortical cells. Eight potential regulatory elements in the 5'-flanking region of the 21-OHase gene were identified by DNase I footprinting and gel mobility shift experiments. Some of these footprints were produced by nuclear extracts from many cell lines, whereas other interactions were seen only when using nuclear extracts from Y1 adrenocortical and MA-10 Leydig tumor cells. Mutation of most of the elements markedly decreased the expression of a 21-OHase gene transfected into Y1 cells, thus documenting their functional importance for expression. Moreover, oligonucleotides containing the sequences of two related elements at -65 and -210, which share the heptamer AGGTCAG, increased the activity of a heterologous promoter in a Y1 cell-specific manner. Collectively, these results demonstrate that expression of 21-OHase in Y1 adrenocortical cells requires interactions among multiple cis-acting elements and regulatory proteins.  相似文献   

6.
The cholesterol side-chain cleavage enzyme (SCC) catalyzes the initial and rate-limiting step in the synthesis of steroid hormones. The mouse gene encoding SCC was cloned and the nucleotide sequence of its 5'-flanking region determined. This sequence includes an AP-1 motif at -319 and two motifs, AGGTCA at -70 and AGCCTTG at -40, that match elements proposed to be important in the expression of steroid 21-hydroxylase. When transfected into mouse Y1 adrenocortical tumor cells, 1.5 kilobase pairs of 5'-flanking region of the SCC gene directed high levels of expression of a growth hormone reporter gene; treatment of the transfected Y1 cells with 8-bromo-cAMP increased this expression by 5-fold. In contrast, transfected mouse MA-10 Leydig cells showed appreciably lower expression, suggesting that SCC expression in Leydig cells requires additional elements not contained in the 5'-flanking region of the SCC gene used in these experiments. Deletion experiments showed that 424 base pairs of 5'-flanking sequences were sufficient for regulated expression in Y1 cells and mapped two regulatory regions: one from -424 to -327 and a second from -219 to -77. DNase I footprinting and gel mobility shift analyses of these 424 base pairs defined several interactions between nuclear proteins and the SCC promoter, including footprints centered over the AP-1 motif, over a sequence at -120, and over the sequences (-70 and -40) that resemble 21-hydroxylase promoter elements. Finally, site-selected mutagenesis of the potential elements at -40, -70, or -120 decreased SCC promoter activity in transfected Y1 adrenocortical cells, thus establishing their importance in SCC expression.  相似文献   

7.
8.
We determined the 1.8 kb intergenic sequences between the human complement C4B gene and the active steroid 21-hydroxylase gene in two subjects, and between the C4A gene and the steroid 21-hydroxylase pseudogene in one subject. Comparison of these sequences with each other and with published homologues revealed no differences which were unique to either intergenic region. Sequence analysis revealed two copies of an AGGTCA motif in all sequences. This motif is common to steroidogenic enzyme gene promoters and to the response elements for nuclear hormone receptors. Similarities with human enhancers were also found.  相似文献   

9.
Cyp-21 (the mouse steroid 21-hydroxylase gene) is expressed exclusively in cells of the adrenal cortex, is induced by ACTH and cAMP, and is required for corticosteroid synthesis. This review examines the molecular basis for the regulated expression of Cyp-21 in the ACTH-responsive, mouse adrenocortical tumor cell line, Y1. We demonstrate that 330 bp of 5′-flanking DNA from the Cyp-21 gene are sufficient for cell-selective and ACTH-induced expression of Cyp-21, and that this promoter region comprises multiple, closely spaced enhancer elements each of which is required for promoter function. Within this promoter, we define three related elements that contain variations of an AGGTCA motif and that contribute to the cell-selective expression of Cyp-21. Variations of these same AGGTCA-bearing elements are also involved in the expression of Cyp 11a and Cyp 11b in Y1 adrenocortical cells. These elements interact with the same or closely related nuclear proteins found only in steroidogenic cell lines. Taken together, these results suggest that shared elements contribute to the adrenal cell-selective expression of at least three steroidogenic cytochrome P450 genes.

The element at −170 and the related elements at −65, −140 and −210 in the Cyp-21 promoter are not active as enhancers in the mutant Y1 cell line, Kin-8. Kin-8 cells contain a mutation in the regulatory subunit of the type 1 cAMP-dependent protein kinase that renders the enzyme resistant to activation by cAMP. Therefore, these elements appear to be selectively dependent upon an intact cAMP-dependent protein kinase for enhancer function. Individually, none of these elements confer cAMP-dependence to a reporter gene driven by a heterologous promoter. On the basis of these observations, we suggest that ACTH- and cAMP-dependent expression of Cyp-21 requires the combined actions of the element at −170, and the related elements at −140, −210 and −65.  相似文献   


10.
Tributyltin, an environmental pollutant, affected adrenal steroid hormone biosynthesis by two modes of action. Treatment of bovine adrenal cultured cells with 10-100 nM tributyltin for 48 h suppressed cortisol and androstenedione secretion, but induced the accumulation of 17alpha-hydroxyprogesterone and deoxycortisol, indicating that the P450(C21) and P450(11beta) activities were specifically suppressed. Direct inhibition of the enzymatic activities due to tributyltin was not observed in isolated organelles of untreated cells at concentrations less than 10 microM. Western blotting experiments using specific antibodies against steroidogenic enzymes showed that treatment with 1-100 nM tributyltin caused a decrease in cellular P450(C21) and P450(11beta) protein levels, and real-time PCR experiments showed that the decrease in protein content was attributable to decreases in mRNA of the enzymes. Tributyltin at concentrations higher than 100 nM suppressed all steroid biosynthesis in the adrenal cells. This suppression was closely correlated to the decrease in steroidogenic acute regulatory protein. Since nanomolar concentrations of tributyltin disturbed steroidogenesis in mammalian cells, there is the possibility that steroid hormone synthesis in polluted wild animals is affected by this compound.  相似文献   

11.
12.
Frequent deletion and duplication of the steroid 21-hydroxylase genes   总被引:13,自引:3,他引:10       下载免费PDF全文
Congenital adrenal hyperplasia due to 21-hydroxylase (21-OHase) deficiency is an HLA-linked disorder resulting from a mutation in the 21-OHase B gene encoding the adrenal cytochrome P450 specific for steroid 21-hydroxylation. To identify polymorphisms associated with 21-OHase deficiency, DNA samples from 22 unrelated patients with this disorder were examined with a human cDNA clone encoding the enzyme. Deletions of the active 21-OHase gene were found in almost one-fourth of classical 21-OHase deficiency alleles. In contrast, mild, "nonclassical" 21-OHase deficiency is associated with a duplicated 21-OHase gene.  相似文献   

13.
14.
15.
L M De Luca 《FASEB journal》1991,5(14):2924-2933
  相似文献   

16.
The squirrel monkey, a representative New World primate, has high plasma cortisol and aldosterone concentrations when compared to Old World primates. We measured adrenal mitochondrial 11-hydroxylase (11-OHase) activity in squirrel monkeys and in two representative Old World species (cynomolgus and rhesus macaques) in an effort to explain these elevated plasma glucocorticoid and mineralocorticoid levels. The activity of 11-OHase was 5-fold higher in the squirrel monkey than in the Old World species tested. Calculated 11-OHase Vmax was different in the squirrel monkey and the cynomolgus. However, the Km values were similar in the New World primate when compared to cynomolgus. The ability of metyrapone to block 11-OHase was less in the former than in the latter. The data are consistent with the hypothesis that the squirrel monkey adrenal cortex possesses an increased number of 11-hydroxylase enzyme units compared to that of Old World primate species, and is therefore more efficient in producing cortisol. This difference in 11-OHase activity in the squirrel monkey, in addition to other previously reported adrenal steroidogenic enzyme alterations, may be adaptive in nature, favoring increased cortisol and aldosterone production in this and possibly other New World primate species.  相似文献   

17.
18.
19.
Primary cultures of bovine adrenocortical cells (BAC) were used to determine whether the adrenal microsomal 3 beta-hydroxysteroid dehydrogenase-isomerase complex (3 beta-HSD), like the 17 alpha-hydroxylase (17-OHase), responded to ACTH treatment with an increase in activity. Both enzymes influence the steroidogenic path leading to 17 alpha-hydroxyprogesterone formation and thus could affect adrenal androgen biosynthesis. 3 beta-HSD Activity in postmitochondrial supernatant fluid, homogenates or cell monolayers remained unchanged after cells had been maintained in 1 microM ACTH up to 48 h. Since ACTH exposure led to a marked increase in 17-OHase activity over the same time period, it is concluded that, under the conditions used, the 3 beta-HSD-isomerase complex in BAC is nonresponsive to tropic hormone treatment.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号